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We present results on the omega baryon (��) electromagnetic form factors using Nf ¼ 2þ 1 domain-

wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare

results obtained using domain-wall fermions with those of a mixed-action (hybrid) approach, which

combines domain-wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay

particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient

accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant

form factors. The �� magnetic moment, ��� , and the electric charge and magnetic radius, hr2E0=M1i, are
extracted for these pion masses. The electric quadrupole moment is determined for the first time using

dynamical quarks.
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I. INTRODUCTION

The structure of hadrons, such as size, shape, and charge
distribution, can be probed by their electromagnetic form
factors. The �� baryon, consisting of three valence
strange quarks, is significantly more stable than other
members of the baryon decuplet, such as the �, with a
lifetime of the order of 10�10 s. This fact makes the
calculation of its electromagnetic form factors particularly
interesting since they are accessible to experimental mea-
surements with smaller theoretical uncertainties. Its mag-
netic dipole moment is measured to very good accuracy,
unlike those of the other decuplet baryons. A value of
��� ¼ �2:02ð5Þ is given in the Particle Data Group
(PDG) [1] in units of nuclear magnetons (�N). Within
lattice QCD one can directly compute hadron form factors
starting from the fundamental theory of the strong inter-
actions. Furthermore, higher order multipole moments, not
detectable by current experimental setups, are accessible to
lattice methods and can reveal important information on
the structure of the hadron. An example is the electric
quadrupole moment, which detects deformation of a had-
ron state.

In this work we calculate, for the first time, the electro-
magnetic form factors of the �� baryon using dynamical
domain-wall fermion configurations. For the calculation
we use the fixed-sink approach, which enables the calcu-
lation of the form factors for all values and directions of the
momentum transfer ~q concurrently. The main advantage of
this approach is that it allows an increased statistical pre-
cision, while at the same time it provides the full Q2

dependence, where Q2 ¼ �q2. In order to obtain accurate
results on the form factors, we construct optimized sources

for the sequential inversion. This is particularly important
for the subdominant electric quadrupole form factor, for
which we construct an appropriate source that isolates it
from the two dominant form factors [2]. This requires extra
sequential inversions, but it is essential in order to deter-
mine the electric quadrupole form factor to good accuracy.
The form factors are calculated using Nf ¼ 2þ 1 dy-

namical domain-wall fermion configurations at the three
lowest pion masses currently available, namely m� ¼
350 MeV, m� ¼ 330 MeV, and m� ¼ 297 MeV. The re-
sults are compared to those obtained with a hybrid action
that uses domain-wall valence quarks on staggered sea
quarks simulated by the MILC Collaboration [3].
The paper is organized as follows: In Sec. II we provide

the definitions of the corresponding multipole form factors
and describe the lattice setup to extract them. In Sec. III we
discuss the results, and in Sec. IV we give the conclusions.

II. LATTICE TECHNIQUES

A. Electromagnetic matrix element

The �� has spin and isospin 3=2, and therefore the
decomposition of the electromagnetic matrix element is
the same as that of the �. The on-shell�� matrix element
of the electromagnetic current V� is decomposed in terms
of four independent Lorentz covariant vertex functions,
a1ðq2Þ, a2ðq2Þ, c1ðq2Þ, and c2ðq2Þ, which depend only on
the squared momentum transfer q2 ¼ �Q2 ¼ ðpi � pfÞ2.
The initial and final four-momentum are given by pi and
pf, respectively. In Minkowski space-time these covariant

vertex functions are given by [4]
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h�ðpf; sfÞjV�j�ðpi; siÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
�

E�ð ~pfÞE�ð ~piÞ

vuut �u�ðpf; sfÞ

�O���u�ðpi; siÞ; (1)

O��� ¼ �g��
�
a1ðq2Þ�� þ a2ðq2Þ

2m�

ðp�
f þ p�

i Þ
�

� q�q�

4m2
�

�
c1ðq2Þ�� þ c2ðq2Þ

2m�

ðp�
f þ p�

i Þ
�
: (2)

The rest mass and the energy of the particle are denoted by
m� and E�, respectively. The initial and final spin projec-
tions are given by si and sf, respectively. Recall also that

every vector component of the spin- 32 Rarita-Schwinger

vector-spinor u� satisfies the Dirac equation, ðp��
� �

m�Þu�ðp; sÞ ¼ 0, along with the auxiliary conditions:
��u

�ðp; sÞ ¼ 0 and p�u
�ðp; sÞ ¼ 0. Additionally, the co-

variant vertex functions are linearly related to the (dimen-
sionless) electric GE0ðq2Þ, GE2ðq2Þ and magnetic GM1ðq2Þ,
GM3ðq2Þ multipole form factors [2,4]. Namely, the expres-
sions relating the multipole form factors and the covariant
vertex functions are given in Ref. [4] and are quoted below
for reference:

GE0 ¼ ð1þ 2
3�Þ½a1 þ ð1þ �Þa2�

� 1
3�ð1þ �Þ½c1 þ ð1þ �Þc2�; (3)

GE2 ¼ a1 þ ð1þ �Þa2 � 1
2ð1þ �Þ½c1 þ ð1þ �Þc2�; (4)

GM1 ¼ ð1þ 4
5�Þa1 � 2

5�ð1þ �Þc1; (5)

GM3 ¼ a1 � 1
2ð1þ �Þc1; (6)

where the positive quantity � ¼ � q2

4m2
�

.

B. Lattice setup

We use gauge configurations generated by the RBC-
UKQCD collaborations using Nf ¼ 2þ 1 domain-wall

fermions [5] and the Iwasaki gauge action. The simulations
are carried out on two lattices of size 243 � 64 at a pion
mass of 330 MeVand 323 � 64 at pion masses of 355 MeV
and 297 MeV, respectively. The latter has a smaller lattice
spacing, and therefore we will refer to it as the fine lattice.
For the 243 � 64 lattice, or coarse lattice, the lattice spac-
ing a, the light u- and d-quark mass as well as the strange
quark mass were fixed by an iterative procedure using the
��, the pion and the kaon masses [5] as inputs. The value
obtained for the lattice spacing is a�1 ¼ 1:729ð28Þ GeV
[5]. For the fine lattice the scale was fixed from the ratio of
the pion decay constant, f� calculated on the fine lattice to
the one computed on the 243 � 64 at the same values of the
ratio m�=f�. The value found is a�1 ¼ 2:34ð3Þ GeV [6].
In addition to these two lattices, we perform the calculation
using a mixed action with domain-wall valence quarks and
staggered sea quarks. The gauge configurations were pro-

duced by the MILC Collaboration [7,8] using two degen-
erate flavors of light staggered sea quarks and a strange
staggered sea quark fixed to about its physical mass. The
lattice size is 283 � 64 and the mass of the light quarks
corresponds to a pion mass of 353MeV. The lattice spacing
is 0.124 fm as determined from the�0 ��mass difference
[7]. For the valence quarks we use domain-wall fermions
(DWF). The valence strange-quark mass was set using the
NF ¼ 3 ensemble by requiring the valence pseudoscalar
mass to be equal to the mass of the Goldstone boson
constructed using staggered quarks [9]. Similarly the light
quark valence mass is tuned by adjusting the DWF pion
mass to the taste-5 staggered Goldstone boson pion. Note
that this matching will not yield agreement for the masses
of all hadrons and deviations among staggered and hybrid
results are observed, for example, in the case of the
�-meson mass [9]. The domain-wall quark masses take
the values given in Table I. Technical details of this tuning
procedure are given in Refs. [9,12,13].
In all cases we used N5 ¼ 16, which is what was used in

the simulation of the dynamical domain-wall fermions. We
note that for the coarse lattice at the pion mass used here
the residual mass is large compared to the bare quark mass
and chiral symmetry breaking is expected. The value of
N5 ¼ 16 is also used in the mixed-action calculation where
it was shown that the residual mass is 10% of the bare
quark mass, ensuring small chiral symmetry breaking [12].
In Table I we provide details of the simulations, along with
the value of the mass of the �� obtained in this work as
well as the value computed by other groups when available.

C. Interpolating fields

In order to calculate the on-shell matrix element we
utilize appropriate two- and three-point correlation func-
tions. An interpolating field operator with the quantum
numbers of the �� baryon is given by

���ðxÞ ¼ 	abcsa�ðsTb
 ½C���
�sc�Þ; (7)

where C ¼ �4�2 is the charge-conjugation matrix and �
represents the vector index of the spin- 32 spinor. To ensure

ground state dominance at the shortest possible Euclidean
time separation, we perform a gauge invariant Gaussian
smearing on the strange quark fields that enter in the
interpolating field, as described in Refs. [14,15]:

s 
ðt; ~xÞ ¼
X
~y

½1þ �Hð ~x; ~y;UÞ�nWs
ðt; ~yÞ; (8)

Hð ~x; ~y;UÞ ¼ X3
�¼1

ðU�ð ~x; tÞ�~x; ~y��̂ þUy
�ð ~x� �̂; tÞ�~x; ~yþ�̂Þ;

(9)

where s is the smeared s-quark field. The links U�ð ~x; tÞ
entering the hopping matrix H are APE-smeared gauge
fields, where one replaces the original thin link with the
sum of 1� 1 nearest neighboring staples, with the staple
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defined as the product of three links S�� ¼ U�ðxÞ�
U�ðxÞUy

�ðxþ �̂Þ.
In particular, for DWF on the coarse lattice we have used

the Gaussian smearing parameters � ¼ 5:026 and nW ¼
40, while for the fine lattice the corresponding smearing
parameters are � ¼ 7:284 and nW ¼ 84. These are the
same parameters as those used to ensure optimal filtering
of the nucleon state [6].

In Fig. 1 we show the results for the �� effective mass

calculated from the two-point function ratio am��
eff ðtÞ ¼

� log½Gðtþ 1; ~0Þ=Gðt; ~0Þ� for the three different sets of
configurations considered in this study. The results are
summarized in Table I.

For the DWF simulations, on both the coarse and fine
lattices considered in this work, the resulting values for the
�� mass are 1.77(3) GeV and 1.76(2) GeV, respectively.
These values agree with the value found in Ref. [5]. The
same agreement is obtained in the case of the hybrid

action. In Ref. [5] it was found that, at the chiral limit,
the �� mass decreases by about 2% its value at amu;d ¼
0:005. In the hybrid case this is less clear with the ��
being consistent with a constant. However, a decrease in
the�� mass by about 1% is observed when the pion mass
decreases from about 350 MeV to 300 MeV and therefore
we may expect a similar decrease in the � mass as that
observed in the DW simulations. Compared to the experi-
mental value of 1.672 GeV [1] the value obtained at the
physical point is about 50 MeV higher, indicating that the
strange quark mass is a few percent larger than the physical
one in both of these simulations. We therefore expect a
small systematic error on the values of the quantities
computed, which, however, for quantities like the quadru-
pole form factor will be within the statistical error.

D. Two- and three-point correlation functions

The electromagnetic form factors can be extracted in
lattice QCD by constructing appropriate combinations of
two- and three-point correlation functions. The corre-
sponding lattice correlation functions are given by

G��ð��; ~p; tÞ ¼X
~xf

e�i ~xf� ~p��
�0�h���ðt; ~xfÞ ����0 ð0; ~0Þi; (10)

G���ð��; ~q; tÞ ¼X
~x; ~xf

ei ~x� ~q��
�0�h���ðtf; ~xfÞV�ðt; ~xÞ ����0 ð0; ~0Þi:

(11)

For our lattice setup we take a frame where the final ��

state is produced at rest i.e. ~pf ¼ ~0. Furthermore lattice

calculations are carried out in a Euclidean space-time, and
hence from here on all expressions are given with
Euclidean conventions [16]. We use the local vector cur-
rent V� carrying a momentum ~q ¼ � ~pi, which is inserted

at time t. The renormalization constant ZV is determined
by the condition GEð0Þ ¼ �1. The �matrices are given by

�4¼1

4
ð1þ�4Þ; �k¼ i

4
ð1þ�4Þ�5�k; k¼1;2;3: (12)

FIG. 1 (color online). The �� effective mass and the fit to a
constant plotted against the time separation for each ensemble
considered. The statistics used to extract the effective masses are
summarized in Table I.

TABLE I. Parameters used in the calculation of the form factors. We give the number of configurations Nsubd
confs used to extract the

subdominant electric quadrupole form factor GE2, as well as the number of configurations used Ndom
confs to extract the dominant form

factors for the various lattices employed in this study. The�� hyperon mass as determined in this work is given in the last column, and
it is compared with the value determined by the RBC-UKQCD Collaboration and the LHPC for the mixed action as given in
parentheses.

L3
s � LT Nsubd

confs Ndom
confs a�1 [GeV] mu;d=ms m� [GeV] mN [GeV] m� [GeV]

NF ¼ 2þ 1 domain-wall fermions [5]

243 � 64 200 200 1.729(28) 0:005=0:04 0.329(1) 1.154(7) [10] 1.77(3) (1.758(9)) [5]

NF ¼ 2þ 1 domain-wall fermions [6]

323 � 64 � � � 105 2.34(3) 0:006=0:03 0.355(6) 1.172(21) 1.79(4)

323 � 64 200 120 2.34(3) 0:004=0:03 0.297(5) 1.109(21) 1.76(2)

Mixed action [11]

DWF valence: amu;d ¼ 0:0138, ams ¼ 0:081
283 � 64 210 120 1.58(3) 0:01=0:05 0.353(2) 1.191(19) 1.78(3) (1.775(5)) [9]
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By inserting into the correlation functions a complete set of
energy momentum eigenstatesX

n;p;


Mn

VEnðpÞ
jnðp; 
Þihnðp; 
Þj ¼ 1; (13)

with 
 denoting all other quantum numbers, such as spin,
one finds that the leading contributions for large Euclidean
times t and tf � t are

G��ð��; ~p; tÞ ¼ M�

E�ðpÞ jZj
2e�E�ðpÞt tr½���E

��ðpÞ�

þ excited states; (14)

G���ð��; ~q; tÞ ¼ M�

E�ðpiÞ
jZj2e�M�ðtf�tÞe�E�ðpiÞt

� tr½���E
��0 ðpfÞOE

�0��0�
E
�0�ðpiÞ�

þ excited states: (15)

The leading time dependence and unknown overlaps of the
�� state with the initial state �J�j0i in the three-point
correlation function can be canceled out by forming ap-
propriate ratios that involve both the two- and three-point
functions. The ratio employed in this work is given by the
following expression:

R���ð�; ~q; tÞ ¼
G���ð��; ~q; tÞ
Gkkð�4; ~0; tfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gkkð�4; ~pi; tf � tÞGkkð�4; ~0; tÞGkkð�4; ~0; tfÞ
Gkkð�4; ~0; tf � tÞGkkð�4; ~pi; tÞGkkð�4; ~pi; tfÞ

vuuut ; (16)

where a summation over the repeated indices k ðk ¼
1; 2; 3Þ is understood. This ratio becomes time-independent
(displays a plateau) for large Euclidean time separations,
that is,

R���ð�; ~q; tÞ !tf�t�1;t�1
����ð�; ~qÞ

¼ C Tr½����0 ðpfÞO�0��0��0�ðpiÞ�; (17)

C ¼
ffiffiffi
3

2

s �
2E�ð ~qÞ
m�

þ 2E2
�ð ~qÞ
m2

�

þ E3
�ð ~qÞ
m3

�

þ E4
�ð ~qÞ
m4

�

��1=2
:

(18)

It is understood that the trace acts in spinor space, while the
Rarita-Schwinger spin sum, expressed in Euclidean space,
is given by

���ðpÞ �
X
s

u�ðp; sÞ �u�ðp; sÞ

¼ ��ip6 þm�

2m�

�
��� � ����

3
þ 2p�p�

3m2
�

� i
p��� � p���

3m�

�
: (19)

The electromagnetic form factors are extracted by fitting
R���ð�; ~q; tÞ in the plateau region determined by
�

�
��ð�; ~qÞ.

Since we are evaluating the correlator of Eq. (11) using
sequential inversions through the sink [17], a separate set
of inversions is necessary for every choice of vector and
Dirac indices. The total of 256 combinations arising from
the vector indices of the �� and the choice of � matrices,
as can be inferred from Eq. (11), is beyond our computa-
tional resources, and hence we concentrate on a few care-
fully chosen combinations given below:

�ð1Þ
� ð ~qÞ ¼ X3

j;k;l¼1

	jkl�j�kð�4; ~qÞ

¼ GM1

5iðE� þM�ÞC
18M2

�

½�1;�ðq3 � q2Þ

þ �2;�ðq1 � q3Þ þ �3;�ðq2 � q1Þ�; (20)

�ð2Þ
� ð ~qÞ ¼ X3

k¼1

�k�kð�4; ~qÞ

¼ �GE0

ðE� þ 2M�ÞC
3M2

�

½ðM� þ E�Þ�4;�

þ iq�ð1� �4;�Þ� �GE2

ðE� �M�Þ2C
9M3

�

� ½ðM� þ E�Þ�4;� þ iq�ð1� �4;�Þ�; (21)

�ð3Þ
� ð ~qÞ ¼ X3

j;k;l¼1

	jkl�j�kð�j; ~qÞ

¼ GE2

�iC
3M2

�ðE� þM�Þ
ðq1q2 þ q2q3 þ q3q1Þ½ðM� þ E�Þ�4;� þ iq�ð1� �4;�Þ�

þGM1

C
6M2

�ðE� þM�Þ
X3
k¼1

�k;�q1q2q3

�
2� q1 þ q2 þ q3 � qk

qk

�

þGM3

C
30M3

�ðE� þM�Þ
X3
k¼1

�k;�

�
ð16E� þ 14M�Þq1q2q3 � 10M�ðq1q2 þ q2q3 þ q3q1Þqk

� ð8E� þ 7M�Þq1q2q3qk
ðq1 þ q2 þ q3 � qkÞ

�
; (22)
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where the kinematical factor C is given in Eq. (18). As
expected, current conservation q��� ¼ 0 is manifest in
the right-hand side of the equations. From these expres-
sions all the multipole form factors can be extracted. For
instance, Eq. (20) is proportional to GM1, while Eq. (22)
isolates GE2 for � ¼ 4. Furthermore, these combinations
are optimal in the sense that all momentum directions, each
of which is statistically different, contributes to a given Q2

value. This symmetric construction yields a better estima-
tor for the ��-matrix elements than methods where only
one momentum vector is accessible.

In this paper, we consider only connected contributions
to the three-point function. These are calculated by per-
forming sequential inversions through the sink, which
necessitates fixing the quantum numbers of the initial and
final states as well as the time separation between the
source and the sink. The optimal combinations given in
Eqs. (20)–(22), from which GE0, GM1, and GE2 are deter-
mined, can be implemented by an appropriate sink con-
struction which requires only one sequential inversion for
each of the three types of combinations. No optimal sink is
considered for the octupole magnetic form factor in this
work. Although it can and has been extracted, the results
exhibit large errors and are consistent with zero. We there-
fore refrain from presenting this specific form factor. The
matrix element for all the different directions of ~q and for
all four directions � of the current can then be computed
yielding an overconstrained system of linear equations
which can be solved for the form factors in the least

squares sense. A singular value decomposition of the co-
efficient matrix is utilized to find the least squares solution.
The statistical errors are found by a jackknife procedure,
which takes care of any possible autocorrelations between
gauge configurations.
As already mentioned, the three-point function of the

connected part is calculated by performing sequential in-
versions through the sink. This requires fixing the temporal
source-sink separation. In order to determine the smallest
time separation that is still sufficiently large to damp
excited state contributions, we perform the calculation at
two values of the sink-source separation. We use tf=a ¼ 8

and tf=a ¼ 10 for the DWF configurations corresponding

to the coarse lattice spacing a ¼ 0:114 fm. We compare in
Fig. 2 the results for the plateaus ����ð�; ~qÞ, for a few

selected directions of the current and for low momentum ~q
values for these two sink-source time separations. As can
be seen, the plateau values at tf=a ¼ 10 are consistent with

the smaller time separation, the latter exhibiting about half
the statistical error. We therefore use tf=a ¼ 8 or tf ¼
0:91 fm as source-sink separation. For the fine DWF lattice
the inversions were performed for tf=a ¼ 12, which cor-

responds to about tf ¼ 1:008 fm. Similarly for the hybrid

scheme the time separation was taken to be at tf=a ¼ 8 or

tf ¼ 0:992 fm.

III. RESULTS

We use the local electromagnetic current, V� ¼
� 1

3
�s��s, which requires a renormalization factor ZV to

be included. The vector current renormalization constant is
determined from the lattice calculation by the requirement
that

ZVGE0ð0Þ ¼ �1; (23)

where �1 is the charge of ��. The values of ZV extracted
using Eq. (23) are given in Table II, where the errors shown
are statistical. For the coarse lattice with DWF, the value of
ZV ¼ 0:7161ð1Þ is calculated [20] from the pion decay
constant. For the fine lattice ZV was fixed using the nucleon
electric form factor [6] with values ZV ¼ 0:7468ð39Þ at
m� ¼ 297 MeV and ZV ¼ 0:7479ð22Þ atm� ¼ 355 MeV.
For the mixed action [11] with m� ¼ 353 MeV the value
of the current renormalization constant ZV ¼ 1:1169 is
obtained by dividing the unrenormalized isovector current
with the forward matrix element. These values differ by
about 1%–2% from the ones found using Eq. (23). This
discrepancy indicates systematic errors on the 2% level.

A. Electric charge form factor

Our results for the electric charge form factor, GE0ðQ2Þ,
are depicted in Fig. 3 for the fine and coarse lattices using
DWF and for the mixed action. Results using the mixed
action have consistently smaller values. This can be attrib-
uted either to cutoff effects or to a small dependence on the

-0.25

-0.2

-0.15

µ=1, n=(0,1,0)

0.1

0.15

0.2

0.25

R

µ=2, n=(1,0,0)

-0.25

-0.2

-0.15

-1 0 1 2 3 4 5 6 7 8 9

µ=3, n=(1,0,0)

FIG. 2 (color online). The ratio R � R���ð�; ~q; tÞ extracted for
temporal source-sink separations tf=a ¼ 8 and tf=a ¼ 10, using

50 gauge configurations. The results for tf=a ¼ 10 are shifted to

the left by one unit. We show results for current directions� ¼ 1
and � ¼ 2, 3 and momenta ~q: ð0; 1; 0Þ 2�L and ð1; 0; 0Þ 2�L , re-

spectively. The bands correspond to the constant form fit errors.
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mass of the light sea quark mass. In order to check, we
perform a calculation using DWF at m� ¼ 355 MeV on
the fine lattice for the magnetic dipole form factor, which
can be directly extracted from Eq. (20), and it will be
discussed in the next section. We have chosen the magnetic
dipole which, unlike the electric form factor, has no con-
straint on the value it takes at Q2 ¼ 0 and therefore pro-
vides a good estimate for finite a effects. In Fig. 3 we show
fits to a dipole. As can be seen, the momentum dependence
of this form factor is adequately described in all cases by a
one-parameter dipole form

GE0ðQ2Þ ¼ � 1

ð1þ Q2

�2
E0

Þ2
: (24)

In the nonrelativistic limit the slope of the above dipole
form evaluated at momentum transfer Q2 ¼ 0 is related to
the electric charge mean square radius by

hr2E0i ¼ � 6

GE0ð0Þ
d

dQ2
GE0ðQ2ÞjQ2¼0: (25)

From the dipole fit to the coarse DWF lattice data we
determine�E0 and obtain a value of hr2E0i ¼ 0:353ð8Þ fm2,

while for the fine DWF lattice the corresponding value
turns out to be hr2E0i ¼ 0:355ð14Þ fm2.1 These values are

slightly greater in magnitude than the one reported in
Ref. [18], which was obtained in a quenched lattice QCD
calculation. The discrepancy may originate from un-
quenching effects or pronounced light quark mass depen-
dence since the pion mass used in the quenched study of
Ref. [18] is larger than what is used here. The results for the
hr2E0i are given in Table II.

B. Magnetic dipole form factor

In order to check for cutoff effects we perform a com-
parison between the hybrid results and the results obtained
at the same pion mass using DWF on our fine lattice. This
comparison is shown in Fig. 4, where we constrained the
two sets of data to have the value of �3:60 at Q2 ¼ 0 in
order to better compare with the corresponding plot for the
electric form factor. This also avoids division with ZV

which also carries cutoff effects. As seen in Fig. 4, the
results using a hybrid action show a smaller slope as
compared to the DWF results. This is the same behavior
as was observed in the case of the electric charge form
factor GE0 in the previous section. Given the fact that the
lattice spacing for the mixed action is the largest, this
points to cutoff effects. In Fig. 5 we show results obtained
using DWF on the coarse and fine lattices, which are in
agreement. This indicates that for these lattice spacings
cutoff effects are small.
The Q2 dependence of the form factors, as in the case of

GE0, can be described by a dipole form as can be seen in
Figs. 4 and 5.
Fitting to the two-parameter exponential, dipole, and

tripole forms

GM1ðQ2Þ ¼ G0 exp

�
� Q2

�2
M1

�
; (26)

GM1ðQ2Þ ¼ G0

ð1þ Q2

�2
M1

Þ2
; (27)

FIG. 3 (color online). The electric charge form factor GE0ðQ2Þ
computed at m� ¼ 330 MeV and at m� ¼ 297 MeV. The lines
describe the dipole fits given by Eq. (24), while the bands show
the corresponding errors to the fits. FIG. 4 (color online). The magnetic form factor GM1ðQ2Þ

comparing the results from the mixed-action approach and the
DWF lattice at m� � 350 MeV. The two data sets are con-
strained to pass through the experimental value of �3:60 at
Q2 ¼ 0 so to make the cutoff effects more visible.

1Note the different sign as compared to Ref. [18] since we here
divide by GEð0Þ ¼ �1.
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GM1ðQ2Þ ¼ G0

ð1þ Q2

�2
M1

Þ3
; (28)

we can obtain a value for the anomalous magnetic moment
of the ��.

By utilizing the lattice computed �� mass from Table I
and the fit parameter G0 � GM1ð0Þ from Table III, we can
evaluate the magnetic moment in nuclear magnetons, via
the relation

��� ¼ G0

�
e

2m�

�
¼ G0

�
mN

m�

�
�N: (29)

Our value of ��� in nuclear magnetons �N is given in
Table II. The values obtained are in accord with two other
recent lattice calculations [18,19]. The calculation in

Ref. [18] is similar to ours in the sense that the three-point
correlation function is also calculated, but the evaluation is
carried out in the quenched theory and only at one value of
Q2. In Ref. [19] a background field method was employed,
where energy shifts were computed using NF ¼ 2þ 1
clover fermions at pion mass of 366 MeVon an anisotropic
lattice.

C. Electric quadrupole form factor

From the perspective of hadron structure, the extraction
of the electric quadrupole form factor is of special interest
since it can be used to provide valuable information re-
garding the deformation of a hadron. In this work we
extract for the first time in unquenched QCD the subdo-
minant GE2 form factor for the �� baryon, to sufficient
accuracy to exclude zero values. This has been achieved by
utilizing two different lattices: namely, the fine DWF lat-
tice and the MILC lattice at lattice spacings of a ¼
0:084 fm and a ¼ 0:124 fm, respectively. We note that
for the coarse DWF lattice the results for GE2 are too noisy
to exclude a zero value, and we therefore do not present
them here. The lattice results forGE2 are depicted in Fig. 6.
The value of the quadrupole electric form factor GE2ðQ2Þ
at Q2 ¼ 0 using the exponential form to fit the lattice
results is 0.756(298) for the hybrid action and 0.882(475)
for the fine DWF lattice. From these results it is readily
deduced that the shape of the �� hyperon must deviate
from the spherical one.
The electric quadrupole moment determined from the

fits as Q� ¼ GE2ð0Þ e
m2

�

can be related to the transverse

charge density in the infinite momentum frame. For in-
stance, the transverse charge density defined in the light
front for spin projection 3=2 is given by [21,22]

Q�
3=2 ¼

1

2
f2½GM1ð0Þ � 3e�� þ ½GE2ð0Þ þ 3e��g

�
e

m2
�

�
:

(30)

FIG. 5 (color online). The magnetic dipole form factor, GM1,
using DWF at m� ¼ 353 MeV, m� ¼ 330 MeV, and m� ¼
297 MeV. These results are shown along with the dipole fit as
given in Eq. (27). The datum for the magnetic dipole form factor
at Q2 ¼ 0 GeV2, Gexp

M1ð0Þ ¼ �3:60ð8Þ, is also included.

TABLE II. The magnetic moment��� , the electric charge and magnetic radii, and the electric quadrupole momentQ�
3=2 as extracted

using Eq. (30). The values of ��� , hr2M1i, hr2E0i, and Q�
3=2 shown above arise from the dipole fit form. Note that hr2M1i ¼ � 6

GM1ð0Þ �
dGM1ðQ2Þ

dQ2 jQ2¼0.

Lattice m� ZV ��� hr2M1i hr2E0i GE2ð0Þ Q�
3=2

[L3
s � Lt] [GeV] [�N] [fm2] [fm2] [e=m2

�]

This work HYB: 283 � 64 0.353 1.121(2) �1:775ð52Þ 0.283(20) 0.338(9) 0.838(19) �1:366ð222Þ
DWF: 243 � 64 0.330 0.727(1) �1:904ð71Þ 0.332(23) 0.353(8) � � � � � �
DWF: 323 � 64 0.355 0.7479(22) �1:868ð78Þ 0.341(37) � � � � � � � � �
DWF: 323 � 64 0.297 0.7543(4) �1:835ð94Þ 0.286(31) 0.355(14) 0.959(41) �1:892ð204Þ
extrapolated 0.140 � � � �1:875ð399Þ 0.321(16) 0.348(52) 0.898(60) �1:651ð262Þ

Ref. [18] 203 � 40 0.697 1 �1:697ð65Þ � � � 0.307(15) � � � � � �
Ref. [19] 243 � 128 0.366 � � � �1:93ð8Þ � � � � � � � � � � � �
Ref. [1] � � � � � � � � � �2:02ð5Þ � � �
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We note that for a spin- 32 particle without internal struc-

ture, for which GM1ð0Þ ¼ 3e� and GE2ð0Þ ¼ �3e�
[21,22], the quadrupole moment of the transverse charge
densities vanishes. We calculate this quantity by using a fit
to the electric quadrupole to obtain the value at Q2 ¼ 0.
The results obtained are shown in Table II and plotted in
Fig. 7 for the dipole fitting Ansatz. Both of the two values

are negative and consistent within statistical errors.
Therefore, they suggest that the quark charge distribution
in the �� must be deformed. In order to investigate the
deformation in more detail, we construct the transverse
charge density in the infinite momentum frame, following
Refs. [21,22]. Considering the spin of the � along the x
axis and states of transverse spin s? ¼ 3=2 and s? ¼ 1=2,

we obtain the transverse charge densities ��
T3=2ð ~bÞ and

��
T1=2ð ~bÞ in terms of the two-dimensional impact parameter

~b. In Fig. 8 we compare ��
T3=2ð ~bÞ and ��

T1=2ð ~bÞ. As can be

seen, in a state of transverse spin projection s? ¼ 3=2 the
�� shows a small elongation along the spin axis (prolate).2

This elongation is less as compared to that seen for the�þ.
As in the case of the �þ, in a state of transverse spin
projection s? ¼ 1=2 the �� is elongated along the axis
perpendicular to the spin.
In Fig. 9 we show the profile of the transverse densities

compared to the monopole field that is symmetric. In
Fig. 10 we show the individual multipole fields for the
state with transverse spin s? ¼ 3=2. The monopole and
dipole fields provide the dominant contribution to the total
transverse density shown in Fig. 8. The quadrupole and
octupole field contributions are small and their field pattern
is clearly displayed separately.

D. Extrapolation to the physical point

In this section we examine the sea quark dependence of
the magnetic moment, the radii, and the quadrupole mo-
ment. They are extracted by fitting the Q2 dependence of

0.0 0.3 0.6 0.9 1.2 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q2 (GeV2)

G
E

2

HYBRID, mπ 353 MeV
DWF, mπ 297 MeV

FIG. 6 (color online). The subdominant electric quadrupole
form factor GE2ðQ2Þ for DWF using the fine lattice at m� ¼
297 MeV, and using the hybrid action at m� ¼ 353 MeV. The
extrapolated values at Q2 ¼ 0 are also depicted. The two results,
apart from being consistent within errors, indicate a nonzero
deformation for the �� baryon.

TABLE III. The fit parameters for the exponential, dipole, and tripole forms extracted from the lattice data. For the fine lattice with
m� ¼ 355 MeV DWF we have performed inversions only for the source type associated with the dominant magnetic dipole form
factor GM1ðQ2Þ [see Eq. (20)].

Type of fit �E0 [GeV] �2
E0=d:o:f G0 �M1 [GeV] �2

M1=d:o:f

NF ¼ 2þ 1 DWF (243 � 64), Nconfs ¼ 200
Exponential �3:264ð89Þ 1.016(27) 0.225

Dipole 1.151(13) 1.500 �3:601ð109Þ 1.187(41) 0.860

Tripole �3:478ð101Þ 1.555(49) 0.435

NF ¼ 2þ 1 DWF (323 � 64), Nconfs ¼ 105; m� ¼ 355 MeV
Exponential �3:246ð96Þ 0.996(43) 0.159

Dipole �3:557ð130Þ 1.171(63) 0.440

Tripole �3:443ð116Þ 1.530(76) 0.240

NF ¼ 2þ 1 DWF (323 � 64), Nconfs ¼ 120; m� ¼ 297 MeV
Exponential �3:199ð155Þ 1.061(48) 0.080

Dipole 1.146(23) 0.887 �3:443ð173Þ 1.277(68) 0.064

Tripole �3:355ð165Þ 1.656(83) 0.040

Hybrid (283 � 64), Nconfs ¼ 120
Exponential �3:154ð69Þ 1.064(30) 1.147

Dipole 1.213(17) 0.168 �3:368ð80Þ 1.285(44) 0.163

Tripole �3:293ð76Þ 1.662(54) 0.053

2Note that this is consistent with the negative sign of Q3=2

since the�� is negatively charged and has included its charge in
the electromagnetic current.
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the form factors to a dipole form. As can be seen from
Fig. 7, the sea quark mass dependence is consistent with a
constant for all quantities confirming that sea quark effects
are small. In particular, the value of the magnetic form
factor at Q2 ¼ 0 is consistent with experiment. On the
other hand, extrapolating the magnetic moment we obtain
the value given in Table II. This is 5% smaller than experi-
ment which is to be expected given the larger value of the
strange quark mass. The reason is that the mass of the ��
is 5% larger than experiment, and this will affect the value
of the magnetic moment when we convert to nuclear
magnetons. In the fits for the magnetic moment and radii
we did not include the results obtained in the hybrid action
because of the small finite-a effects observed. Given the
large statistical errors on quadrupole moments such small
finite-a effects are negligible, and therefore, in this case,
we include the result using the hybrid action to obtain the
value at the physical point. In Table II we give the values
that we find at the physical point for the radii and the dipole
and quadrupole moments of the transverse charge density
obtained from Eq. (30).

IV. CONCLUSIONS

By utilizing properly constructed sequential sources the
dominant �� electromagnetic form factors GE0 and GM1

are calculated with good accuracy using dynamical
domain-wall fermion configurations as well as a hybrid
action.
In addition, we extract the magnetic moment of the ��

by fitting the magnetic dipole form factor GM1 to a two-
parameter dipole form. We find a value that is within errors
to the experimentally measured value [1]. The electric
charge and magnetic radii (hr2E0i and hr2M1i) are computed,

and like the magnetic dipole moment they do not show sea
quark dependence in the range of masses studied in this
work.

FIG. 7 (color online). From top to bottom we showGM1ð0Þ, the
magnetic radius hr2M1i, the electric radius hr2E0i, and the quadru-

pole moment extracted from Eq. (30) as a function of m2
�

extracted from dipole fits. The point shown by the filled square
is the value extracted from the fit at the physical pion mass. In all
cases except for the quadrupole moment the results using the
hybrid action are excluded from the fit.

FIG. 8 (color online). Transverse charge densities in the �� with polarization along the x axis. Left: ��
T3=2ð ~bÞ. Right: ��

T1=2ð ~bÞ. A
circle of radius 0.5 fm is drawn in order to clearly demonstrate the deformation. For the evaluation of the densities we used the dipole
parametrization of the form factors.
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Finally, the subdominant electric quadrupole form factor
GE2 is computed for the first time in an unquenched lattice
calculation to sufficient accuracy to exclude a zero value.
This has been accomplished by constructing an appropriate
sink that isolates it from the two dominant form factors. We
find consistent results with DWF and using a hybrid action.
The positive nonzero values of GE2 at Q

2 ¼ 0 suggest that

the structure of the�� baryon is nonspherical. In the light-
front frame we find that the quark charge density in a ��
for a state of transverse spin projection þ3=2 shows an
elongation along the axis of the spin (prolate deformation).
As compared to the �þ in the same state, the amount of
deformation seen in the �� is smaller.

FIG. 10 (color online). The individual multipoles contributing to the transverse charge density ��
T3=2ð ~bÞ in the �� with polarization

along the x axis. Upper left: monopole field. Upper right: dipole field. Lower left: quadrupole field. Lower right: octupole field.
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FIG. 9 (color online). Comparison of the transverse charge densities ��
T3=2ð ~bÞ (left) and ��

T1=2ð ~bÞ (right) along the y axis to the
monopole field (symmetric) shown by the dashed line.
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