23 research outputs found

    Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans

    Get PDF
    It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized

    Barriers to effective discharge planning: a qualitative study investigating the perspectives of frontline healthcare professionals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have shown that effective discharge planning is one of the key factors related to the quality of inpatient care and unnecessary hospital readmission. The perception and understanding of hospital discharge by health professionals is important in developing effective discharge planning. The aims of this present study were to explore the perceived quality of current hospital discharge from the perspective of health service providers and to identify barriers to effective discharge planning in Hong Kong.</p> <p>Methods</p> <p>Focus groups interviews were conducted with different healthcare professionals who were currently responsible for coordinating the discharge planning process in the public hospitals. The discussion covered three main areas: current practice on hospital discharge, barriers to effective hospital discharge, and suggested structures and process for an effective discharge planning system.</p> <p>Results</p> <p>Participants highlighted that there was no standardized hospital-wide discharge planning and policy-driven approach in public health sector in Hong Kong. Potential barriers included lack of standardized policy-driven discharge planning program, and lack of communication and coordination among different health service providers and patients in both acute and sub-acute care provisions which were identified as mainly systemic issues. Improving the quality of hospital discharge was suggested, including a multidisciplinary approach with clearly identified roles among healthcare professionals. Enhancement of health professionals' communication skills and knowledge of patient psychosocial needs were also suggested.</p> <p>Conclusions</p> <p>A systematic approach to develop the structure and key processes of the discharge planning system is critical in ensuring the quality of care and maximizing organization effectiveness. In this study, important views on barriers experienced in hospital discharge were provided. Suggestions for building a comprehensive, system-wide, and policy-driven discharge planning process with clearly identified staff roles were raised. Communication and coordination across various healthcare parties and provisions were also suggested to be a key focus.</p

    Neuropsychiatric risk in children with intellectual disability of genetic origin: IMAGINE - The UK National Cohort Study

    Get PDF
    Background: Children with intellectual disability (ID) frequently have multiple co-morbid neuropsychiatric conditions and poor physical health. Genomic testing is increasingly recommended as a first-line investigation for these children. We aimed to determine the impact of genomics, inheritance and socioeconomic deprivation on neuropsychiatric risk in children with intellectual disability of genetic origin as compared to the general population. Methods: IMAGINE is a prospective study using online mental health and medical assessments in a cohort of 2770 children with ID and pathogenic genomic variants, identified by the UK’s National Health Service. Outcomes: Assessments completed on 2397 young people with ID (4-19 years, M 9·2, SD 3·9) with a rare pathogenic genomic variant. 1339 (55·9%) were male. 1771 (73·9%) of participants had a pathogenic copy number variant (CNV), 626 (26·1%) a pathogenic single nucleotide variant (SNV). Participants were representative of the socioeconomic spectrum of the UK general population. The relative risk of co-occurring neuropsychiatric diagnoses, compared with the UK national population, was high: Autism Spectrum Disorder 29·2 (95% CI 23·9 to 36·5), Attention Deficit Hyperactivity Disorder 13·5 (95% CI 11·1 to 16·3). In children with a CNV, those with a familial variant tended to live in more socioeconomically deprived areas. Both inheritance and socioeconomic deprivation contributed to neuropsychiatric risk in those with a CNV. Interpretation: Children with genomic variants and ID are at a greatly enhanced risk of neuropsychiatric difficulties. CNV variant inheritance and socioeconomic deprivation also contribute to the risk

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and control in large-scale multi-day events

    Get PDF
    The emergence of highly transmissible SARS-CoV-2 variants has created a need to reassess the risk posed by increasing social contacts as countries resume pre-pandemic activities, particularly in the context of resuming large-scale events over multiple days. To examine how social contacts formed in different activity settings influences interventions required to control Delta variant outbreaks, we collected high-resolution data on contacts among passengers and crew on cruise ships and combined the data with network transmission models. We found passengers had a median of 20 (IQR 10–36) unique close contacts per day, and over 60% of their contact episodes were made in dining or sports areas where mask wearing is typically limited. In simulated outbreaks, we found that vaccination coverage and rapid antigen tests had a larger effect than mask mandates alone, indicating the importance of combined interventions against Delta to reduce event risk in the vaccine era

    Neuropsychiatric risk in children with intellectual disability of genetic origin: IMAGINE, a UK national cohort study

    Get PDF
    Background Children with intellectual disability frequently have multiple co-morbid neuropsychiatric conditions and poor physical health. Genomic testing is increasingly recommended as a first-line investigation for these children. We aim to determine the effect of genomics, inheritance, and socioeconomic deprivation on neuropsychiatric risk in children with intellectual disability of genetic origin as compared with the general population. Methods IMAGINE is a prospective cohort study using online mental health and medical assessments in a cohort of 3407 UK participants with intellectual disability and pathogenic genomic variants as identified by the UK's National Health Service (NHS). Our study is on a subset of these participants, including all children aged 4–19 years. We collected diagnostic genomic reports from NHS records and asked primary caregivers to provide an assessment of their child using the Development and Well-Being Assessment (DAWBA), the Strengths and Difficulties Questionnaire (SDQ), the Adaptive Behaviour Assessment System 3 (ABAS-3), and a medical history questionnaire. Each child was assigned a rank based on their postcode using the index of multiple deprivation (IMD). We compared the IMAGINE cohort with the 2017 National Survey of Children's Mental Health in England. The main outcomes of interest were mental health and neurodevelopment according to the DAWBA and SDQ. Findings We recruited 2770 children from the IMAGINE study between Oct 1, 2014 and June 30, 2019, of whom 2397 (86·5%) had a basic assessment of their mental health completed by their families and 1277 (46·1%) completed a medical history questionnaire. The mean age of participants was 9·2 years (SD 3·9); 1339 (55·9%) were boys and 1058 (44·1%) were girls. 355 (27·8%) of 1277 reported a seizure disorder and 814 (63·7%) reported movement or co-ordination problems. 1771 (73·9%) of 2397 participants had a pathogenic copy number variant (CNV) and 626 (26·1%) had a pathogenic single nucleotide variant (SNV). Participants were representative of the socioeconomic spectrum of the UK general population. The relative risk (RR) of co-occurring neuropsychiatric diagnoses, compared with the English national population, was high: autism spectrum disorder RR 29·2 (95% CI 23·9–36·5), ADHD RR 13·5 (95% CI 11·1–16·3). In children with a CNV, those with a familial variant tended to live in more socioeconomically deprived areas than those with a de novo variant. Both inheritance and socioeconomic deprivation contributed to neuropsychiatric risk in those with a CNV. Interpretation Children with genomic variants and intellectual disability are at an increased risk of neuropsychiatric difficulties. CNV variant inheritance and socioeconomic deprivation also contribute to the risk. Early genomic investigations of children with intellectual disability could facilitate the identification of the most vulnerable children. Additionally, harnessing parental expertise using online DAWBA assessments could rapidly identify children with exceptional needs to child mental health services

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore