369 research outputs found

    David Cesarani (1956–2015)

    Get PDF

    Redundant Mesh Trees for Robust Scalable Low-latency P2P Media Distribution

    Get PDF
    A redundant mesh (RMS) tree structure is proposed as a P2P network topology for reducing network latency. The RMS tree structure may enable low-latency network scalability through redundant connections within tree nodes, and a fully connected mesh cluster at each node of the tree structure. When compared to a traditional P2P or client-server network topology, bandwidth demands may be reduced at every node of the network. Thus, latent network capabilities may be utilized, and overall system latency may decrease

    Rainfall Variability along the Southern Flank of the Bambouto Mountain(West-Cameroon)

    Get PDF
    This paper presents the rainfall variability along the southern flank of the Bambouto mountain. Data were collected from rain gauges, while spatial variability was estimated through daily recorded data. Monthly and annual data were used to draw isohyetes via the triangular method, with linear interpolations between observation points. Results show that rainfall is highly variable along the slope. Daily rainfall amounts range from 0.1 mm to 120 mm. Mean yearly rainfall is 1918.1 mm. Rainfall amount does not have a linear relationship with altitude. Dschang is characterised by abnormally high rainfall. Following a North-South direction, rainfall decreases from Dschang to a Melang-Loung-Djuttitsa axis. From this axis, the gradient reverses as rainfall increases rapidly towards the Mélétan mountain. The existence of the relatively dry zone within the hillside seems to be due to the influence of two air masses. The first is cold and very wet which moves from the Mamfe basin to the summit zone where it starts to warm up as it flows towards Melang and Loung where temperature increases. The second comes from the south to south-east monsoon which is also impoverished during the ascension to higher altitudes. It is also likely that a third air mass from the dry harmattan is involved depending on the position of the ITCZ

    Rapid inoculation of single bacteria into parallel picoliter fermentation chambers

    Get PDF
    Probst C, GrĂĽnberger A, Braun N, et al. Rapid inoculation of single bacteria into parallel picoliter fermentation chambers. Analytical methods. 2015;7(1):91-98.Microfluidic single-cell cultivation devices have been successfully utilized in a variety of biological research fields. One major obstacle to the successful implementation of high throughput single-cell cultivation technology is the requirement for a simple, fast and reliable cell inoculation procedure. In the present report, an air-bubble-based cell loading methodology is described and validated for inoculating single bacteria into multiple picoliter sized growth chambers arranged in a highly parallel manner. It is shown that the application of the injected air bubble can serve as a reproducible mechanism to modify laminar flow conditions. In this way, convective flow was temporarily induced in more than 1000 cultivation chambers simultaneously, which under normal conditions operate exclusively under diffusive mass transport. Within an inoculation time of 100 s, Corynebacterium glutamicum cells were inoculated by convection at minimal stress level and single bacteria remain successfully trapped by cell-wall interactions. The procedure is easy, fast, gentle and requires only minimal fluidic control and equipment. The technique is well suited for microbial cell loading into commonly used microfluidic growth sites arranged in parallel intended for high throughput single-cell analysis

    Radiosynthesis of [18F]-Labelled Pro-Nucleotides (ProTides).

    Get PDF
    Phosphoramidate pro-nucleotides (ProTides) have revolutionized the field of anti-viral and anti-cancer nucleoside therapy, overcoming the major limitations of nucleoside therapies and achieving clinical and commercial success. Despite the translation of ProTide technology into the clinic, there remain unresolved in vivo pharmacokinetic and pharmacodynamic questions. Positron Emission Tomography (PET) imaging using [18F]-labelled model ProTides could directly address key mechanistic questions and predict response to ProTide therapy. Here we report the first radiochemical synthesis of [18F]ProTides as novel probes for PET imaging. As a proof of concept, two chemically distinct radiolabelled ProTides have been synthesized as models of 3'- and 2'-fluorinated ProTides following different radiosynthetic approaches. The 3'-[18F]FLT ProTide was obtained via a late stage [18F]fluorination in radiochemical yields (RCY) of 15-30% (n = 5, decay-corrected from end of bombardment (EoB)), with high radiochemical purities (97%) and molar activities of 56 GBq/ÎĽmol (total synthesis time of 130 min.). The 2'-[18F]FIAU ProTide was obtained via an early stage [18F]fluorination approach with an RCY of 1-5% (n = 7, decay-corrected from EoB), with high radiochemical purities (98%) and molar activities of 53 GBq/ÎĽmol (total synthesis time of 240 min)

    Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria

    Get PDF
    Probst C, GrĂĽnberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria. Micromachines. 2013;4(4):357-369.Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired

    A systematic review of methods to immobilise breast tissue during adjuvant breast irradiation

    Get PDF
    Greater use of 3D conformal, Intensity Modulated Radiotherapy (IMRT) and external beam partial breast irradiation following local excision (LE) for breast cancer has necessitated a review of the effectiveness of immobilisation methods to stabilise breast tissue. To identify the suitability of currently available breast (rather than thorax) immobilisation techniques an appraisal of the literature was undertaken. The aim was to identify and evaluate the benefit of additional or novel immobilisation approaches (beyond the standard supine, single arm abducted and angled breast board technique adopted in most radiotherapy departments). A database search was supplemented with an individual search of key radiotherapy peer-reviewed journals, author searching, and searching of the grey literature. A total of 27 articles met the inclusion criteria. The review identified good reproducibility of the thorax using the standard supine arm-pole technique. Reproducibility with the prone technique appears inferior to supine methods (based on data from existing randomised controlled trials). Assessing the effectiveness of additional breast support devices (such as rings or thermoplastic material) is hampered by small sample sizes and a lack of randomised data for comparison. Attention to breast immobilisation is recommended, as well as agreement on how breast stability should be measured using volumetric imaging. Keywords: Breast, immobilisation, positioning, reproducibility, review.</p

    Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation

    Get PDF
    GrĂĽnberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D. Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation. Journal of visualized experiments. Bioengineering. 2013;82(82): e50560.In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs

    A novel radiochemical approach to 1-(2 '-deoxy-2 '-[F-18] fluoro-beta-D-arabinofuranosyl)cytosine (F-18-FAC)

    Get PDF
    18F-FAC (1-(2'-deoxy-2'-[18F]fluoro-β-D-arabinofuranosyl)-cytosine) is an important 2'-fluoro-nucleoside-based positron emission tomography (PET) tracer that has been used for in vivo prediction of response to the widely used cancer chemotherapy drug gemcitabine. Previously reported synthetic routes to 18F-FAC have relied on early introduction of the 18F radiolabel prior to attachment to protected cytosine base. Considering the 18F radiochemical half-life (110 min) and the technical challenges of multi-step syntheses on PET radiochemistry modular systems, late-stage radiofluorination is preferred for reproducible and reliable radiosynthesis with in vivo applications. Herein, we report the first late-stage radiosynthesis of 18F-FAC. Cytidine derivatives with leaving groups at the 2'-position are particularly prone to undergo anhydro side-product formation upon heating because of their electron density at the 2-carbonyl pyrimidone oxygen. Our rationally developed fluorination precursor showed an improved reactivity-to-stability ratio at elevated temperatures. 18F-FAC was obtained in radiochemical yields of 4.3–5.5% (n = 8, decay-corrected from end of bombardment), with purities ≥98% and specific activities ≥63 GBq/µmol. The synthesis time was 168 min
    • …
    corecore