136 research outputs found

    Wheels within Wheels: Making Fault Management Cost-Effective

    Get PDF
    Local design and optimization of the components of a fault management system results in sub-optimal decisions. This means that the target system will likely not meet its objectives (under-performs) or cost too much if conditions, objectives, or constraints change. We can fix this by applying a nested, management system for the fault-management system itself. We believe that doing so will produce a more resilient, self-aware, system that can operate more effectively across a wider range of conditions, and provide better behavior at closer to optimal cost. This document summarizes the results of the Working Group 7 - ``Cost-Effective Fault Management\u27\u27 - at the Dagstuhl Seminar 09201 ``Self-Healing and Self-Adaptive Systems\u27\u27 (organized by A. Andrzejak, K. Geihs, O. Shehory and J. Wilkes). The seminar was held from May 10th 2009 to May 15th 2009 in Schloss Dagstuhl~--~Leibniz Center for Informatics

    Transparent system call based performance debugging for cloud computing

    Get PDF
    Abstract Problem diagnosis and debugging in distributed environments such as the cloud and popular distributed systems frameworks has been a hard problem. We explore an evaluation of a novel way of debugging distributed systems, such as the MapReduce framework, by using system calls. Performance problems in such systems can be hard to diagnose and to localize to a specific node or a set of nodes. Additionally, most debugging systems often rely on forms of instrumentation and signatures that sometimes cannot truthfully represent the state of the system (logs or application traces for example). We focus on evaluating the performance debugging of these frameworks using a low level of abstraction -system calls. By focusing on a small set of system calls, we try to extrapolate meaningful information on the control flow and state of the framework, providing accurate and meaningful automated debugging

    Retinal vessel segmentation using multi-scale textons derived from keypoints

    Get PDF
    This paper presents a retinal vessel segmentation algorithm which uses a texton dictionary to classify vessel/non-vessel pixels. However, in contrast to previous work where filter parameters are learnt from manually labelled image pixels our filter parameters are derived from a smaller set of image features that we call keypoints. A Gabor filter bank, parameterised empirically by ROC analysis, is used to extract keypoints representing significant scale specific vessel features using an approach inspired by the SIFT algorithm. We first determine keypoints using a validation set and then derive seeds from these points to initialise a k-means clustering algorithm which builds a texton dictionary from another training set. During testing we use a simple 1-NN classifier to identify vessel/non-vessel pixels and evaluate our system using the DRIVE database. We achieve average values of sensitivity, specificity and accuracy of 78.12%, 96.68% and 95.05% respectively. We find that clusters of filter responses from keypoints are more robust than those derived from hand-labelled pixels. This, in turn yields textons more representative of vessel/non-vessel classes and mitigates problems arising due to intra and inter-observer variability

    Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Get PDF
    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments
    • …
    corecore