2,319 research outputs found

    The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity

    Get PDF
    We present Chandra X-ray Observatory and Submillimeter Array (SMA) imaging of HBC 515, a system consisting of multiple young stellar objects (YSOs). The five members of HBC 515 represent a remarkably diverse array of YSOs, ranging from the low-mass Class I/II protostar HBC 515B, through Class II and transition disk objects (HBC 515D and C, respectively), to the "diskless", intermediate- mass, pre-main sequence binary HBC 515A. Our Chandra/ACIS imaging establishes that all five components are X-ray sources, with HBC 515A - a subarcsecond-separation binary that is partially resolved by Chandra - being the dominant X-ray source. We detect an X-ray flare associated with HBC 515B. In the SMA imaging, HBC 515B is detected as a strong 1.3 mm continuum emission source; a second, weaker mm continuum source is coincident with the position of the transition disk object HBC 515C. These results strongly support the protostellar nature of HBC 515B, and firmly establish HBC 515A as a member of the rare class of relatively massive, X-ray luminous "weak-lined T Tauri stars" that are binaries and have shed their disks at very early stages of pre-MS evolution. The coexistence of two such disparate objects within a single, presumably coeval multiple YSO system highlights the influence of pre- MS star mass, binarity, and X-ray luminosity in regulating the lifetimes of circumstellar, planet-forming disks and the timescales of star-disk interactions.Comment: Accepted for publication in A&A; 11 pages, 5 figure

    The ALMA Early Science View of FUor/EXor objects. III. The Slow and Wide Outflow of V883 Ori

    Get PDF
    We present Atacama Large Millimeter/ sub-millimeter Array (ALMA) observations of V883 Ori, an FU Ori object. We describe the molecular outflow and envelope of the system based on the 12^{12}CO and 13^{13}CO emissions, which together trace a bipolar molecular outflow. The C18^{18}O emission traces the rotational motion of the circumstellar disk. From the 12^{12}CO blue-shifted emission, we estimate a wide opening angle of \sim 150^{^{\circ}} for the outflow cavities. Also, we find that the outflow is very slow (characteristic velocity of only 0.65 km~s1^{-1}), which is unique for an FU Ori object. We calculate the kinematic properties of the outflow in the standard manner using the 12^{12}CO and 13^{13}CO emissions. In addition, we present a P Cygni profile observed in the high-resolution optical spectrum, evidence of a wind driven by the accretion and being the cause for the particular morphology of the outflows. We discuss the implications of our findings and the rise of these slow outflows during and/or after the formation of a rotationally supported disk.Comment: 12 pages, 7 figures, 2 tables. Accepte

    A Chemical Map of the Outbursting V883 Ori system: Vertical and Radial Structures

    Full text link
    We present the first results of a pilot program to conduct an Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 (211-275 GHz) spectral line study of young stellar objects (YSO) that are undergoing rapid accretion episodes, i.e. FU Ori objects (FUors). Here, we report on molecular emission line observations of the FUor system, V883 Ori. In order to image the FUor object with full coverage from ~0.5 arcsec to the map size of ~30 arcsec, i.e. from disc to outflow scales, we combine the ALMA main array (the 12-m array) with the Atacama Compact Array (7-m array) and the total power (TP) array. We detect HCN, HCO+^{+}, CH3_{3}OH, SO, DCN, and H2_{2}CO emissions with most of these lines displaying complex kinematics. From PV diagrams, the detected molecules HCN, HCO+^{+}, CH3_{3}OH, DCN, SO, and H2_{2}CO probe a Keplerian rotating disc in a direction perpendicular to the large-scale outflow detected previously with the 12^{12}CO and 13^{13}CO lines. Additionally, HCN and HCO+^{+} reveal kinematic signatures of infall motion. The north outflow is seen in HCO+^{+}, H2_{2}CO, and SO emissions. Interestingly, HCO+^{+} emission reveals a pronounced inner depression or "hole" with a size comparable to the radial extension estimated for the CH3_{3}OH and 230 GHz continuum. The inner depression in the integrated HCO+^{+} intensity distribution of V883 Ori is most likely the result of optical depth effects, wherein the optically thick nature of the HCO+^{+} and continuum emission towards the innermost parts of V883 Ori can result in a continuum subtraction artifact in the final HCO+^{+} flux level

    Optical Spectral Variability of the Very-High-Energy Gamma-Ray Blazar 1ES 1011+496

    Full text link
    We present results of five years of optical (UBVRI) observations of the very-high-energy gamma-ray blazar 1ES 1011+496 at the MDM Observatory. We calibrated UBVRI magnitudes of five comparison stars in the field of the object. Most of our observations were done during moderately faint states of 1ES 1011+496 with R > 15.0. The light curves exhibit moderate, closely correlated variability in all optical wavebands on time scales of a few days. A cross-correlation analysis between optical bands does not show significant evidence for time lags. We find a positive correlation (Pearson's r = 0.57; probability of non-correlation P(>r) ~ 4e-8) between the R-band magnitude and the B - R color index, indicating a bluer-when-brighter trend. Snap-shot optical spectral energy distributions (SEDs) exhibit a peak within the optical regime, typically between the V and B bands. We find a strong (r = 0.78; probability of non-correlation P (>r) ~ 1e-15) positive correlation between the peak flux and the peak frequency, best fit by a relation νFνpkνpkk\nu F_{\nu}^{\rm pk} \propto \nu_{\rm pk}^k with k = 2.05 +/- 0.17. Such a correlation is consistent with the optical (synchrotron) variability of 1ES 1011+496 being primarily driven by changes in the magnetic field.Comment: Accepted for publication in ApJ. 16 pages, including 7 figure

    Human hippocampal theta oscillations reflect sequential dependencies during spatial planning

    Get PDF
    Movement-related theta oscillations in rodent hippocampus coordinate ‘forward sweeps’ of location-specific neural activity that could be used to evaluate spatial trajectories online. This raises the possibility that increases in human hippocampal theta power accompany the evaluation of upcoming spatial choices. To test this hypothesis, we measured neural oscillations during a spatial planning task that closely resembles a perceptual decision-making paradigm. In this task, participants searched visually for the shortest path between a start and goal location in novel mazes that contained multiple choice points, and were subsequently asked to make a spatial decision at one of those choice points. We observed ~4–8 Hz hippocampal/medial temporal lobe theta power increases specific to sequential planning that were negatively correlated with subsequent decision speed, where decision speed was inversely correlated with choice accuracy. These results implicate the hippocampal theta rhythm in decision tree search during planning in novel environments

    Hubble Space Telescope Observations of an Outer Field in Omega Centauri: A Definitive Helium Abundance

    Full text link
    We revisit the problem of the split main sequence (MS) of the globular cluster omega Centauri, and report the results of two-epoch Hubble Space Telescope observations of an outer field, for which proper motions give us a pure sample of cluster members, and an improved separation of the two branches of the main sequence. Using a new set of stellar models covering a grid of values of helium and metallicity, we find that the best possible estimate of the helium abundance of the bluer branch of the MS is Y = 0.39 +/- 0.02. For the cluster center we apply new techniques to old observations: we use indices of photometric quality to select a high-quality sample of stars, which we also correct for differential reddening. We then superpose the color-magnitude diagram of the outer field on that of the cluster center, and suggest a connection of the bluer branch of the MS with one of the more prominent among the many sequences in the subgiant region. We also report a group of undoubted cluster members that are well to the red of the lower MS.Comment: 26 pages, 10 figures (4 in low resolution. AJ accepted on March 21, 201

    Alma Survey Of Circumstellar Disks In The Young Stellar Cluster IC 348

    Get PDF
    We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348, which lies at a distance of 310 pc, and is dominated by low-mass stars (M_{\star} \sim 0.1-0.6 M_{\odot}). We observed 136 Class II sources (disks that are optically thick in the infrared) at 0.8'' (200 au) resolution with a 3σ\sigma sensitivity of \sim 0.45 mJy (Mdust_{\rm dust} \sim 1.3 M_{\oplus}). We detect 40 of the targets and construct a mm-continuum luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon~I, (2-3 Myr) and σ\sigma Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (\sim5%\% of the cluster members) have estimated masses (dust ++ gas) >>1 MJup_{\rm Jup} and hence might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From a stacking analysis of the 96 non-detections, we find that these disks have a typical dust mass of just \lesssim 0.4 M_{\oplus}, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks may be the precursors of the small rocky planets found by \emph{Kepler} around M-type stars.Comment: 19 pages, 12 figure
    corecore