308 research outputs found

    Enantioselective Functionalization of Radical Intermediates in Redox Catalysis: Copper-Catalyzed Asymmetric Oxytrifluoromethylation of Alkenes

    Get PDF
    Something radical: An efficient enantioselective oxytrifluoromethylation of alkenes has been developed using a copper catalyst system. Mechanistic studies are consistent with a metal-catalyzed redox radical addition mechanism in which a C[BOND]O bond is formed by the copper-mediated enantioselective trapping of a prochiral alkyl radical intermediate derived from the initial trifluoromethyl radical addition.National Institutes of Health (U.S.) (Award GM46059

    A protein functionalization platform based on selective reactions at methionine residues.

    Get PDF
    Nature has a remarkable ability to carry out site-selective post-translational modification of proteins, therefore enabling a marked increase in their functional diversity1. Inspired by this, chemical tools have been developed for the synthetic manipulation of protein structure and function, and have become essential to the continued advancement of chemical biology, molecular biology and medicine. However, the number of chemical transformations that are suitable for effective protein functionalization is limited, because the stringent demands inherent to biological systems preclude the applicability of many potential processes2. These chemical transformations often need to be selective at a single site on a protein, proceed with very fast reaction rates, operate under biologically ambient conditions and should provide homogeneous products with near-perfect conversion2-7. Although many bioconjugation methods exist at cysteine, lysine and tyrosine, a method targeting a less-explored amino acid would considerably expand the protein functionalization toolbox. Here we report the development of a multifaceted approach to protein functionalization based on chemoselective labelling at methionine residues. By exploiting the electrophilic reactivity of a bespoke hypervalent iodine reagent, the S-Me group in the side chain of methionine can be targeted. The bioconjugation reaction is fast, selective, operates at low-micromolar concentrations and is complementary to existing bioconjugation strategies. Moreover, it produces a protein conjugate that is itself a high-energy intermediate with reactive properties and can serve as a platform for the development of secondary, visible-light-mediated bioorthogonal protein functionalization processes. The merger of these approaches provides a versatile platform for the development of distinct transformations that deliver information-rich protein conjugates directly from the native biomacromolecules

    A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations

    Full text link
    Here we report the use of 10-phenylphenothiazine (PTH) as an inexpensive, highly reducing metal-free photocatalyst for the reduction of carbon-halogen bonds via the trapping of carbon-centered radical intermediates with a mild hydrogen atom donor. Dehalogenations were carried out on various substrates with excellent yields at room temperature in the presence of air

    Photo-induced thiolate catalytic activation of inert Caryl-hetero bonds for radical borylation

    Get PDF
    Substantial effort is currently being devoted to obtaining photoredox catalysts with high redox power. Yet, it remains challenging to apply the currently established methods to the activation of bonds with high bond dissociation energy and to substrates with high reduction potentials. Herein, we introduce a novel photocatalytic strategy for the activation of inert substituted arenes for aryl borylation by using thiolate as a catalyst. This catalytic system exhibits strong reducing ability and engages non-activated Caryl–F, Caryl–X, Caryl–O, Caryl–N, and Caryl–S bonds in productive radical borylation reactions, thus expanding the available aryl radical precursor scope. Despite its high reducing power, the method has a broad substrate scope and good functional-group tolerance. Spectroscopic investigations and control experiments suggest the formation of a charge-transfer complex as the key step to activate the substrates

    Genetically programmed chiral organoborane synthesis

    Get PDF
    Recent advances in enzyme engineering and design have expanded nature’s catalytic repertoire to functions that are new to biology. However, only a subset of these engineered enzymes can function in living systems. Finding enzymatic pathways that form chemical bonds that are not found in biology is particularly difficult in the cellular environment, as this depends on the discovery not only of new enzyme activities, but also of reagents that are both sufficiently reactive for the desired transformation and stable in vivo. Here we report the discovery, evolution and generalization of a fully genetically encoded platform for producing chiral organoboranes in bacteria. Escherichia coli cells harbouring wild-type cytochrome c from Rhodothermus marinus8 (Rma cyt c) were found to form carbon–boron bonds in the presence of borane–Lewis base complexes, through carbene insertion into boron–hydrogen bonds. Directed evolution of Rma cyt c in the bacterial catalyst provided access to 16 novel chiral organoboranes. The catalyst is suitable for gram-scale biosynthesis, providing up to 15,300 turnovers, a turnover frequency of 6,100 h^(–1), a 99:1 enantiomeric ratio and 100% chemoselectivity. The enantiopreference of the biocatalyst could also be tuned to provide either enantiomer of the organoborane products. Evolved in the context of whole-cell catalysts, the proteins were more active in the whole-cell system than in purified forms. This study establishes a DNA-encoded and readily engineered bacterial platform for borylation; engineering can be accomplished at a pace that rivals the development of chemical synthetic methods, with the ability to achieve turnovers that are two orders of magnitude (over 400-fold) greater than those of known chiral catalysts for the same class of transformation. This tunable method for manipulating boron in cells could expand the scope of boron chemistry in living systems

    Reply to “Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism”

    No full text
    Spectroscopic measurements and estimated thermodynamic values are important tools for the investigation of photocatalytic reaction mechanisms. However, data derived under idealized conditions fail to capture the complexity of reaction mixtures in preparative organic synthesis.Fil: Ghosh, Indrajit. Universitat Regensburg; AlemaniaFil: Bardagi, Javier Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Regensburg; AlemaniaFil: König, Burkhard. Universitat Regensburg; Alemani
    • …
    corecore