Genetically programmed chiral organoborane synthesis

S. B. Jennifer Kan,[†] Xiongyi Huang,[†] Yosephine Gumulya, Kai Chen, and Frances H. Arnold*

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, CA 91125, United States

Email: frances@cheme.caltech.edu [†] = These authors contributed equally to this work.

This PDF includes:

I.	Materials and Methods	2
II.	Kinetics Studies	3–4
III.	Inhibition Studies	4
IV.	Substrate Synthesis and Characterization	4-6
V.	Synthesis and Characterization of Authentic Organoborane Products	6–9
VI.	GC-MS Standard Curves for Organoborane Products	10-15
VII.	Determination of Enantioselectivity	16–25
VIII.	Preparative Scale Enzymatic Reactions	26-27
IX.	Derivatization of Enzymatic Borylation Product 18	28-30
X.	NMR Spectra	31–56
XI.	X-ray Crystallography and the Assignments of Absolute Configuration	57-63
XII.	Supplemental References	64–65

I. Materials and Methods

Unless otherwise noted, all chemicals and reagents were obtained from commercial suppliers (Sigma-Aldrich, VWR, Alfa Aesar, Acros) and used without further purification. Bovine serum albumin (BSA) was purchased from Sigma-Aldrich. Silica gel chromatography was carried out using AMD Silica Gel 60, 230-400 mesh. ¹H and ¹³C NMR spectra were recorded on a Bruker Prodigy 400 MHz instrument (400 MHz for ¹H and 100 MHz for ¹³C). Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane, using the solvent resonance as the internal standard (¹H NMR: $\delta = 7.26$, ¹³C NMR: $\delta = 77.36$ for CDCl₃). ¹⁹F NMR and ¹¹B NMR data were collected on a VARIAN 300 MHz spectrometer (101 MHz for ¹⁹F NMR) and a Bruker Prodigy 400 MHz instrument (128 MHz for ¹¹B NMR), respectively. Sonication was performed using a Osonica Q500 sonicator. High-resolution mass spectra were obtained at the California Institute of Technology Mass Spectral Facility. Chemical reactions were monitored using thin layer chromatography (Merck 60 gel plates) using a UV-lamp for visualization. Gas chromatography (GC) analyses were carried out using a Shimadzu GC-17A gas chromatograph, a FID detector, and J&W HP-5 column (30 m x 0.32 mm, 0.25 µm film). Gas chromatography-mass spectrometry (GC-MS) analyses were carried out using Shimadzu GCMS-QP2010SE system and J&W HP-5ms column. Analytical chiral supercritical fluid chromatography (SFC) was performed with a JACSO 2000 series instrument using *i*-PrOH and supercritical CO_2 as the mobile phase. Chiral normalphase HPLC analyses were performed using an Agilent 1200 series instrument with *i*-PrOH and hexanes as the mobile phase. Chiral GC was performed on an Agilent 6850 GC with FID detector using a Chiraldex GTA column (30.0 m \times 0.25 mm) at 1.0 mL/min He carrier gas flow.

Biological materials and methods are described in the Methods section of the manuscript.

II. Kinetic Studies

Comparison of carbon–boron bond forming rates of BOR^{WT} and BOR^{R1} as whole-cell catalysts, cell lysates, or purified proteins.

$\begin{bmatrix} N + \bar{B}H_3 + Me \end{bmatrix} \xrightarrow{N_2} OEt$	<i>E. coli</i> harbouring <i>Rma</i> cyt c variant	∑ĒH₂ ↓OEt
NHC-borane (1) Me-EDA (2)	M9-N buffer (pH 7.4) Me ² room temperature	₩ 3
Biocatalysts	turnover frequency (TOF) / h ⁻¹	
BOR ^{WT} purified protein	3 ± 2	
BOR ^{w1} cell lysate	4 ± 1	
BOR ^{WT} whole cell	410 ± 250	
BOR ^{R1} purified protein	30 ± 2	
BOR ^{R1} cell lysate	160 ± 100	
BOR ^{R1} whole cell	6100 ± 700	

TOFs reported represent mean values averaged over four experiments. Errors quoted indicate one standard deviation.

Whole cell-catalysed reaction: Experiments were performed using whole *E. coli* cells harbouring BOR^{WT} or BOR^{R1} (with the BOR protein concentration normalised to 10 μ M), 10 mM borane, 10 mM diazo ester, 5 vol% MeCN, M9-N buffer at room temperature under anaerobic conditions for various time intervals.

Cell lysate-catalysed reaction: Experiments were performed using cell lysate of *E. coli* harbouring BOR^{WT} or BOR^{R1} (with the BOR protein concentration normalised to 10 μ M), 10 mM borane, 10 mM diazo ester, 10 mM Na₂S₂O₄, 5 vol% MeCN, M9-N buffer at room temperature under anaerobic conditions for various time intervals. See Methods section of the manuscript for cell lysate preparation procedure.

Purified protein-catalysed reaction: Experiments were performed using purified BOR^{WT} or BOR^{R1} (10 μ M), 10 mM borane, 10 mM diazo ester, 10 mM Na₂S₂O₄, 5 vol% MeCN, M9-N buffer at room temperature under anaerobic conditions for various time intervals. See Methods section of the manuscript for purified protein preparation procedure

General procedure for carrying out timed experiments: In an anaerobic chamber, 3.8 mL of whole *E. coli* cells harboring BOR variant, or a solution of 3.4 mL of BOR variant cell lysate / purified protein and 0.4 mL Na₂S₂O₄ (100 mM in M9-N buffer), was added to a 10 mL glass vial. After charging NHC-borane 1 (100 μ L, 400 mM in MeCN) and Me-EDA 2 (100 μ L, 400 mM in MeCN), the vial was capped and the reaction was shaken at 600 rpm on an orbital shaker. At regular time intervals (see table below), 400 μ L of the reaction mixture was removed from the vial and added to a 2 mL microcentrifuge tube containing 600 μ L cyclohexane / EtOAc

(1:1 v/v) and internal standard (20 μ L, 20 mM 1,2,3-trimethoxybenzene in toluene). After vortexing for 20 seconds, 200 μ L of the organic layer was immediately removed for GC analysis.

Biocatalysts	Sampling time
BOR ^{WT} purified protein	Every hour from $t = 1$ to 4 h
BOR ^{WT} cell lysate	Every hour from $t = 1$ to 4 h
BOR ^{WT} whole cell	Every minute from $t = 1$ to 4 min
BOR ^{R1} purified protein	Every minute from $t = 1$ to 4 min
BOR ^{R1} cell lysate	Every minute from $t = 0.5$ to 3.5 min
BOR ^{R1} whole cell	Every minute from $t = 0.5$ to 3.5 min

Table above shows time points at which the biocatalytic reaction was sampled to determine the reaction initial rate.

III. Inactivation Studies

Inactivation studies of BOR^{R1} were carried out using purified protein or whole cell *E. coli* harbouring BOR^{R1}. Effects of NHC-borane **1**, Me-EDA **2**, or organoborane **3** were determined by preincubating the biocatalyst with either one of these reagents (10 mM) for 15 min before the catalyst was used for borylation, and by comparing the TTN of the resulting catalyst (TTN^{incub}) with that of an untreated biocatalyst (TTN^{control}), as described in Figure 2f.

Purified protein-catalysed reactions were performed using purified BOR^{R1} (10 μ M), 10 mM borane, 10 mM diazo ester, 10 mM Na₂S₂O₄, 5 vol% MeCN, M9-N buffer at room temperature under anaerobic conditions for 30 min. See Methods section of the manuscript for purified protein preparation procedure

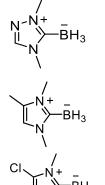
Whole cell-catalysed reactions were performed using whole *E. coli* cells harboring BOR^{R1} (with the BOR protein concentration normalised to 10 μ M), 10 mM borane, 10 mM diazo ester, 5 vol% MeCN, M9-N buffer at room temperature under anaerobic conditions for 30 min.

IV. Substrate Synthesis and Characterization

Picoline borane substrate was obtained from Sigma-Aldrich. Ethyl 2-diazopropanoate (Me-EDA) was obtained from Arch Bioscience. All commercially available reagents were used as received. The following diazo compounds are known and prepared according to literature procedures: methyl 2-diazopropanoate¹, isopropyl 2-diazopropanoate², benzyl 2-diazopropanoate³, ethyl 2-phenyldiazoacetate (Ph-EDA)⁴, ethyl 2-diazo-3,3,3-trifluoropropanoate (CF₃-EDA)⁵, and (1-diazo-2,2,2-trifluoroethyl)benzene (CF₃-DMB)⁶.

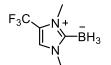
Other NHC-BH₃ substrates were synthesized from corresponding imidazolium iodide salts as reported⁷. Namely, imidazolium iodide salts (5 mmol) were resuspended in 5 mL THF. A solution of NaHMDS (1M in THF, 1.05 equiv.) was then added at -78 °C under Ar and shaken for 1 h at -78 °C. Afterwards, a solution of BH₃-THF (1M in THF, 1 equiv.) was added to the reaction

and the reaction mixture was allowed to warm from -78 °C to rt and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography to give the NHC-BH₃ complexes. The ¹H NMR resonances of the B–H protons are broad (due to geminal coupling with boron) and generally in the range of 0.4 – 1.6 ppm. The ¹³C NMR resonances of the boron-binding NHC quarternary carbons usually appear at around 170 ppm and are typically broad (due to germinal coupling with boron) and weak; these signals are sometimes not visible in the ¹³C NMR spectra.


This compound is known⁸. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.91 – 6.66 (m, 2H), 3.71 (s, 6H), 0.99 (dd, *J* = 172.7, 86.3 Hz, 3H).

This compound is known⁹. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.87 – 6.65 (m, 2H), 4.00 (q, *J* = 7.3 Hz, 2H), 3.57 (s, 3H), 1.22 (t, *J* = 7.3 Hz, 3H), 1.44 – 0.30 (m, 3H).

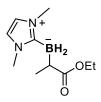
This compound is known⁸. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.84 – 6.79 (m, 2H), 5.91 (ddt, *J* = 17.1, 10.2, 6.1 Hz, 1H), 5.30 – 5.06 (m, 2H), 4.71 (dt, *J* = 6.1, 1.5 Hz, 2H), 3.71 (s, 3H), 1.43 – 0.35 (m, 3H).


¹H NMR (400 MHz, Chloroform-*d*) δ 6.82 – 6.76 (m, 2H), 4.13 – 3.97 (m, 2H), 3.69 (s, 3H), 1.83 – 1.63 (m, 2H), 1.42 – 1.19 (m, 6H), 0.97 – 0.75 (m, 3H), 1.46 – 0.41 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 119.9, 118.7, 48.8, 35.8, 31.3, 30.1, 26.1, 22.5, 14.0; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –37.4 (q, *J* = 86 Hz); MS (FAB) *m*/*z* [(M + H)⁺ – H₂] calcd for C₁₀H₂₀N₂B: 179.1720, found: 179.1707.

This compound is known⁸. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 3.94 (s, 3H), 3.74 (s, 3H), 1.45 – 0.42 (m, 3H).

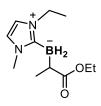
This compound is known¹⁰. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.49 (q, J = 1.2 Hz, 1H), 3.56 (s, 3H), 3.50 (s, 3H), 2.07 (d, J = 1.3 Hz, 3H), 1.31 – 0.43 (m, 3H).

This compound is known¹¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.72 (s, 6H), 1.44 – 0.41 (m, 3H).


¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (q, J = 1.5 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 1.49 – 0.54 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 122.2, 121.8, 119.40 (q, J = 267.3 Hz), 36.5, 34.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ –37.4 (q, J = 88 Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –61.2 (d, J = 3 Hz); MS (FAB) m/z [(M+H)⁺–H₂] calcd for C₆H₉F₃N₂B: 177.0811, found: 177.0815.

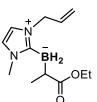
¹H NMR (400 MHz, Chloroform-*d*) δ 6.78 (s, 1H), 3.71 (s, 3H), 3.67 (s, 3H), 1.45 – 0.51 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 119.3, 116.9, 36.4, 33.0. ¹¹B NMR (128 MHz, Chloroform-*d*) δ –36.9 (q, *J* = 87 Hz); MS (FAB) *m/z* [(M+H)⁺–H₂] calcd for C₅H₉N₂BCl: 143.0547, found: 143.0547.

V. Synthesis and Characterization of Authentic Organoborane Products


Racemic standard references of organoborane products were prepared *via* Rh-catalyzed B– H insertion reactions with procedures slightly modified from a previously reported method⁸. Namely, a 4 mL vial with screw cap and PTFE septum was charged with a borane substrate (1.0 mmol, 1 equiv.) and Rh₂(OAc)₄ (11 mg, 2.5 mol%). The vial was evacuated and backfilled with Ar three times and 2 mL of anhydrous CH₂Cl₂ was added. The vial was placed in a 38 °C water bath. A CH₂Cl₂ solution (1 mL) of diazo compound (1.0 mmol) was slowly added to the reaction mixture over 4 hours. Afterwards, the reaction mixture was allowed to further react overnight. The crude reaction mixture was purified by flash chromatography (dry loading) using EtOAc and hexanes as eluents and afforded organoborane products in 30 - 75% yield. The ¹H NMR resonances of the B–H protons are broad (due to geminal coupling with boron) and generally in the range of 0.4 - 1.6 ppm. The ¹³C NMR resonances of the boron-binding NHC quarternary carbons usually appear at around 170 ppm and are typically broad (due to germinal coupling with boron) and weak; these signals are sometimes not visible in the ¹³C NMR spectra.

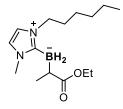
(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (3)

¹H NMR (400 MHz, Chloroform-*d*) δ 6.82 (s, 2H), 3.98 – 3.78 (m, 2H), 3.75 (s, 6H), 1.95 – 1.10 (m, 2H), 1.88 (br s, 1H), 1.10 (d, *J* = 6.2 Hz, 3H), 1.06 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.5, 120.4, 58.7, 36.2, 30.5, 17.8, 14.6. The boron-bound NHC quarternery carbon was not resolved; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.6 (t, *J* = 90 Hz); MS (FAB) *m/z* [(M + H) ⁺ – H₂] calcd for C₁₀H₁₈O₂N₂B: 209.1461, found: 209.1456.


(1-Ethoxy-1-oxopropan-2-yl)(3-ethyl-1-methyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (4)

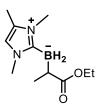
¹H NMR (400 MHz, Chloroform-*d*) δ 6.91 – 6.82 (m, 2H), 4.28 – 3.97 (m, 2H), 3.93 – 3.73 (m, 2H), 3.70 (s, 3H), 1.84 (br s, 1H), 1.95 – 1.10 (br m, 2H), 1.34 (t, *J* = 7.3 Hz, 3H), 1.05 (d, *J* = 6.7 Hz, 3H), 0.98 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.3, 170.0, 120.7, 118.2, 58.4, 43.5, 35.9, 30.4, 17.6,

15.8, 14.4; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.5 (t, *J* = 89 Hz). MS (FAB) *m/z* [M⁺] calcd for C₁₁H₂₁O₂N₂B: 224.1696, found: 224.1693.

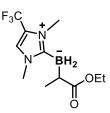

(3-Allyl-1-methyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (5)

¹H NMR (400 MHz, Chloroform-*d*) δ 6.85 (AB q, J = 2.0 Hz, 2H), 5.94 (ddt, J = 17.1, 10.2, 6.1 Hz, 1H), 5.39 – 5.17 (m, 2H), 4.82 (ddt, J = 15.3, 6.0, 1.5 Hz, 1H), 4.68 (ddt, J = 15.3, 6.2, 1.4 Hz, 1H), 3.99 – 3.78 (m, 2H), 3.76 (s, 3H), 1.92 – 1.05 (m, 2H), 1.87 (br s, 1H), 1.09 (d, J = 6.6 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.6, 132.9, 120.9, 119.7, 119.0, 58.8, 51.4, 36.4, 32.0, 17.9, 14.8. The boron-bound NHC quarternery carbon was not resolved; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.6 (t, J = 90 Hz). MS (FAB) m/z [M +

 H^+] calcd for $C_{12}H_{22}O_2N_2B$: 237.1774, found: 237.1783.

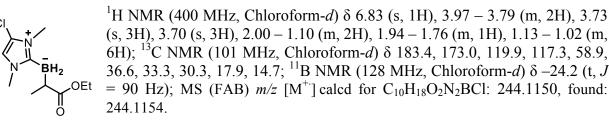

(1-Ethoxy-1-oxopropan-2-yl)(3-hexyl-1-methyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (6)

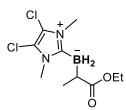
¹H NMR (400 MHz, Chloroform-*d*) δ 6.88 – 6.79 (m, 2H), 4.20 – 4.06 (m, 1H), 3.99 (m, 1H), 3.93 – 3.74 (m, 2H), 3.72 (s, 3H), 1.93 – 1.79 (m, 1H), 1.72 (dt, *J* = 13.8, 6.9 Hz, 2H), 1.71 – 1.20 (m, 8H), 1.12 – 1.05 (m, 3H), 1.01 (td, *J* = 7.2, 2.4 Hz, 3H), 0.90 – 0.80 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.6, 120.7, 119.0, 58.7, 48.9, 36.2, 31.6, 30.8, 30.5, 26.5, 22.7, 17.9, 14.7, 14.2. The boron-bound NHC quarternery carbon was not


resolved; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.5 (t, *J* = 90 Hz); MS (FAB) *m/z* [M⁺] calcd for C₁₅H₂₉O₂N₂B: 280.2322, found: 280.2330.

(1-Ethoxy-1-oxopropan-2-yl)(1,3,4-trimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (7)

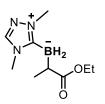
¹H NMR (400 MHz, Chloroform-*d*) δ 6.55 (q, J = 1.2 Hz, 1H), 3.95 – 3.77 (m, 2H), 3.66 (s, 3H), 3.61 (s, 3H), 2.16 (d, J = 1.1 Hz, 3H), 1.84 (br s, 1H), 1.93 – 1.10 (m, 2H), 1.07 (s, 3H), 1.12 – 1.02 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.7, 170.0, 128.3, 117.6, 58.7, 35.9, 32.7, 32.0 – 29.5 (m), 17.9, 14.7, 9.7; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.2 (t, J = 89 Hz); MS (FAB) m/z [M⁺⁻] calcd for C₁₁H₂₁O₂N₂B: 224.1696, found: 224.1695.


(1,3-Dimethyl-4-(trifluoromethyl)-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (8)

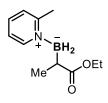

¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (q, J = 1.3 Hz, 1H), 4.00 – 3.70 (m, 2H), 3.85 (s, 3H), 3.81 (s, 3H), 1.88 (br s, 1H), 1.85 – 1.05 (m, 2H), 1.12 (d, J = 6.6 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.2, 123.6, 122.8 – 122.5 (m), 119.6 (q, J = 267.6 Hz), 59.0, 36.9, 34.4, 30.0, 17.9, 14.7. The boron-bound NHC quarternery carbon was not resolved; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.7 (t, J = 91 Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –61.1; MS (FAB) m/z [M⁺] calcd for C₁₁H₁₈O₂N₂BF₃: 278 1405

278.1414, found: 278.1405.

(4-Chloro-1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (9)

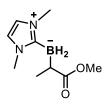


(4,5-Dichloro-1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (10)

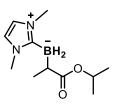

¹H NMR (400 MHz, Chloroform-*d*) δ 3.95 – 3.78 (m, 2H), 3.72 (s, 6H), 1.83 (br s, 1H), 1.99 – 1.05 (m, 2H), 1.10 (d, *J* = 11.9 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.1, 172.0, 116.6, 59.0, 34.1, 30.0, 17.8, 14.7; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –23.9 (t, *J* = 91 Hz); MS (FAB) *m/z* [M + H⁺] calcd for C₁₀H₁₈O₂N₂BCl₂: 279.0838, found: 279.0846.

(1,4-Dimethyl-4*H*-1,2,4-triazol-1-ium-5-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (11)

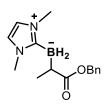
¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 3.95 (s, 3H), 3.94 – 3.79 (m, 2H), 3.78 (s, 3H), 1.89 (br s, 1H), 2.00 – 1.05 (m, 2H), 1.13 – 1.09 (m, 3H), 1.05 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.2, 141.7, 59.0 (d, J = 8.0 Hz), 38.6, 34.1, 30.0, 17.9, 14.7. The boron-bound NHC quarternery carbon was not resolved; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –25.0 (t, J = 91 Hz). MS (FAB) m/z [M + H⁺] calcd for C₉H₁₉O₂N₃B: 212.1570, found: 212.1570.


Ethyl 2-((2-methyl-pyridin-1-yl)boraneyl)propanoate (12)

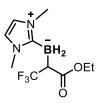
¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (dd, J = 6.0, 1.6 Hz, 1H), 7.84 (td, J = 7.7, 1.7 Hz, 1H), 7.42 – 7.36 (m, 1H), 7.33 – 7.28 (m, 1H), 3.79 (AB qq, J = 10.8, 7.1 Hz, 2H), 3.30 – 2.15 (m, 2H), 2.77 (s, 3H), 2.05 – 1.92 (m, 1H), 1.05 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 182.1, 157.9, 149.4, 140.2, 127.7, 122.6, 58.8, 32.8, 22.8, 15.2, 14.6; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –5.1 (t, J = 103 Hz); MS (FAB) m/z [M⁺⁻] calcd 207 1431 found: 207 1431


for C₁₁H₁₈O₂NB: 207.1431, found: 207.1431.

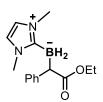
(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-methoxy-1-oxopropan-2-yl)dihydroborate (13)


¹H NMR (400 MHz, Chloroform-*d*) δ 6.82 (s, 1H), 3.72 (s, 6H), 3.43 (s, 2H), 1.99 – 1.08 (m, 3H), 1.06 (d, J = 6.8 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.9, 170.0, 120.6, 50.7, 36.2, 30.5, 17.8; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.6 (t, J = 90 Hz); MS (FAB) m/z [M⁺⁻] calcd for C₉H₁₇O₂N₂B: 196.1383, found: 196.1388.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-isopropoxy-1-oxopropan-2-yl)dihydroborate (14)


¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 (s, 2H), 4.76 (hept, J = 6.2 Hz, 1H), 3.75 (s, 6H), 1.86 (br s, 1H), 2.00 – 1.10 (m, 2H), 1.09 (d, J = 6.2 Hz, 6H), 0.94 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.3, 170.0, 120.6, 65.1, 36.4, 30.7, 22.5, 22.2, 18.1; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.5 (t, J = 90 Hz); MS (FAB) m/z [M⁺⁻] calcd for C₁₁H₂₁O₂N₂B: 224.1696, found: 224.1703.

(1-(Benzyloxy)-1-oxopropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (15)


¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.17 (m, 5H), 6.71 (s, 2H), 4.92 (s, 2H), 3.62 (s, 6H), 2.10 – 1.15 (m, 2H), 1.97 (br s, 1H), 1.16 (d, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.2, 170.0, 137.6, 128.4, 128.1, 127.7, 120.5, 64.7, 36.1, 30.8, 17.9; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –24.5 (t, J = 88 Hz); MS (FAB) m/z [(M + H)⁺ – H₂] calcd for C₁₅H₂₀O₂N₂B: 271.1618, found: 271.1616.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-ethoxy-1,1,1-trifluoro-3-oxopropan-2-yl)dihydroborate (16)

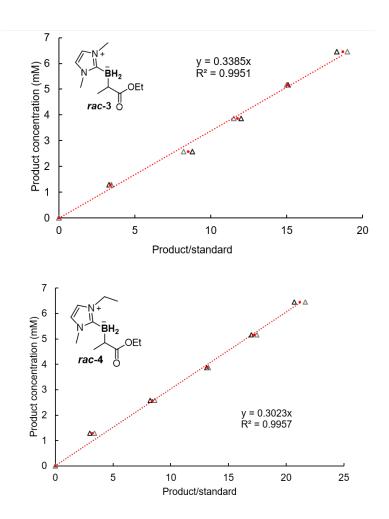
¹H NMR (400 MHz, Chloroform-*d*) δ 6.88 (s, 2H), 4.15 – 3.97 (m, 2H), 3.76 (s, 6H), 2.65 (s, 1H), 2.10 – 1.25 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.2 (d, *J* = 5.2 Hz), 168.0, 128.7 (q, *J* = 276.2 Hz), 121.2, 60.0, 42.6, 36.3, 14.6; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –28.6 (t, *J* = 92 Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –62.5 (d, *J* = 10 Hz); MS (FAB) *m*/*z* [(M + H)⁺ – H₂] calcd for C₁₀H₁₅O₂N₂BF₃: 263.1179, found: 263.1167.

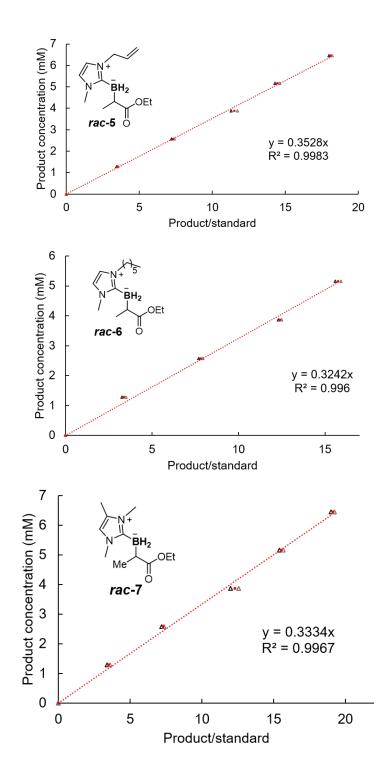
(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(2-ethoxy-2-oxo-1-phenylethyl)dihydroborate (17)

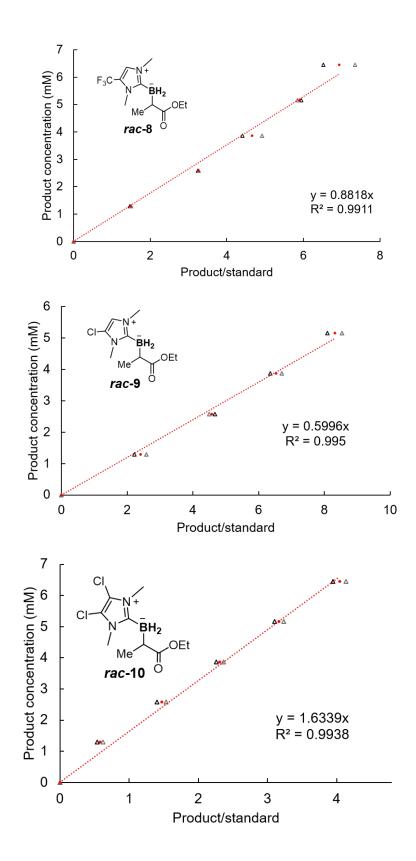
¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.24 (m, 2H), 7.19 – 7.11 (m, 2H), 7.07 – 6.99 (m, 1H), 6.77 (s, 2H), 4.24 – 3.93 (m, 2H), 3.46 (s, 6H), 3.35 – 3.22 (m, 1H), 2.34 – 1.41 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.7, 145.8, 127.9, 127.8, 124.1, 120.7, 120.2, 59.3, 45.6 (d, J = 44.3 Hz), 36.0, 14.8, (the NHC quarternary carbon was too broad to be visible due to coupling with B); ¹¹B NMR (128 MHz, Chloroform-*d*) δ –23.2 (t, J = 93 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.1 Hz, 3.22 (t, J = 9.3 Hz); 1.21 (t, J = 7.2 169.5 (t, J = 7.2 (t, J = 7.2 169.5 (t, J = 7.2 (t, J = 7.2 169.5 (t, J = 7.2 (t,

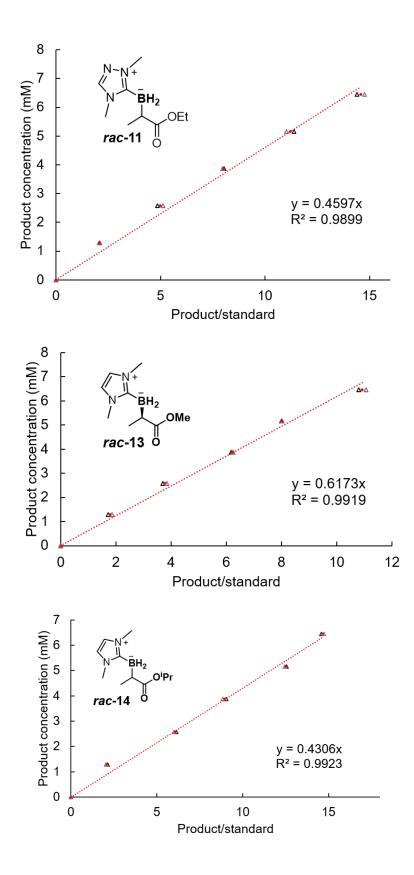
MS (FAB) m/z [M⁺⁻] calcd for C₁₅H₂₁O₂N₂B: 272.1696, found: 272.1687.

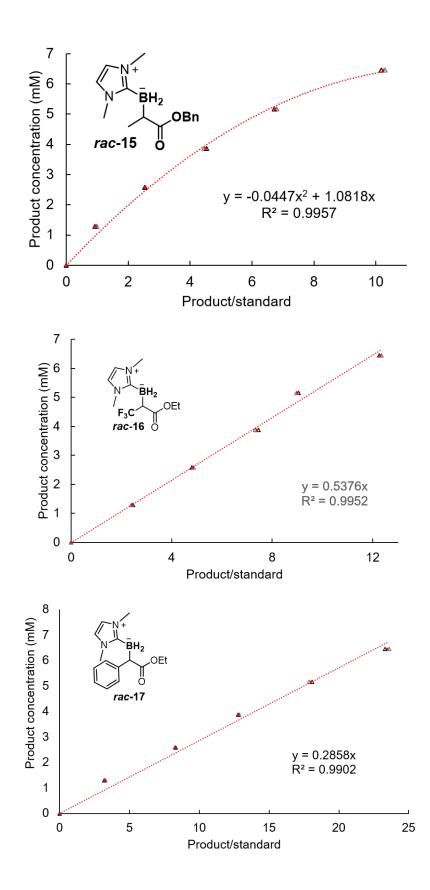
(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(2,2,2-trifluoro-1-phenylethyl)dihydroborate (18)

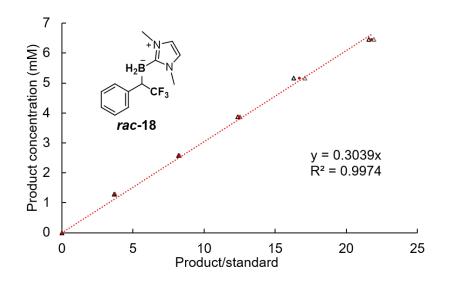


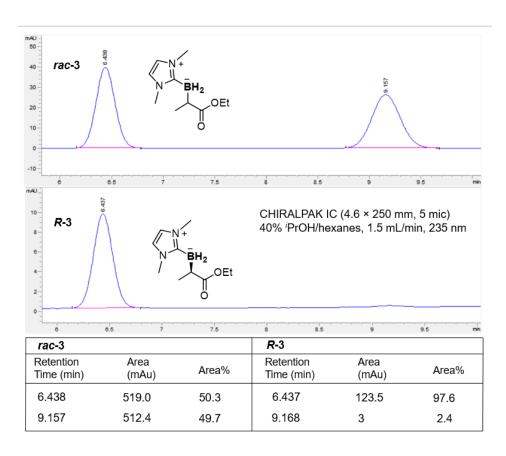

¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.05 (m, 5H), 6.76 (s, 2H), 3.52 (s, 6H), 2.90 – 2.60 (m, 1H), 2.25 – 1.40 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.1, 143.7 (d, *J* = 3.5 Hz), 131.4 (q, *J* = 278.0 Hz), 128.4, 128.3, 125.2, 120.8, 43.5, 36.0; ¹¹B NMR (128 MHz, Chloroform-*d*) δ –26.7 (t, *J* = 90 Hz); ¹⁹F NMR (282 MHz, Chloroform-*d*) δ –61.8 (d, *J* = 13 Hz); MS (ESI) *m/z* [M + H⁺] calcd for C₁₃H₁₇N₂BF₃;

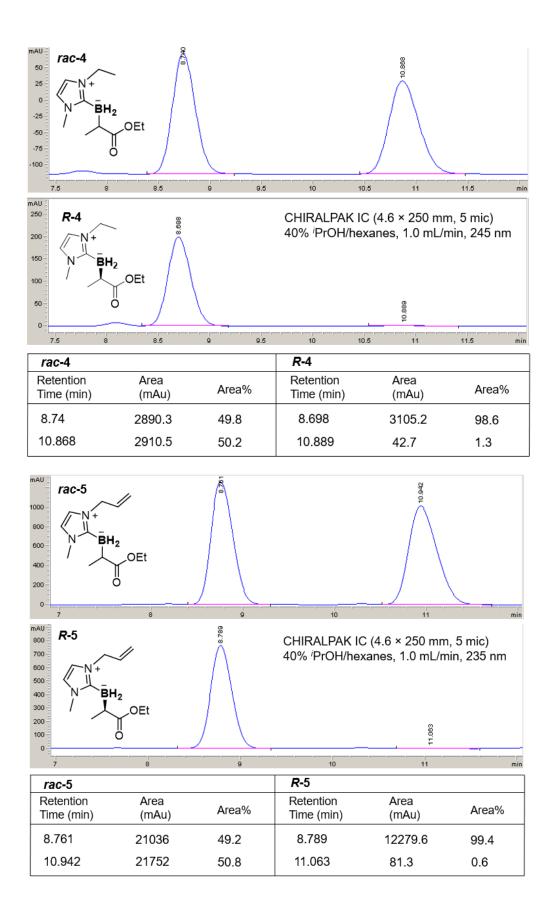

269.1437, found: 269.1440.

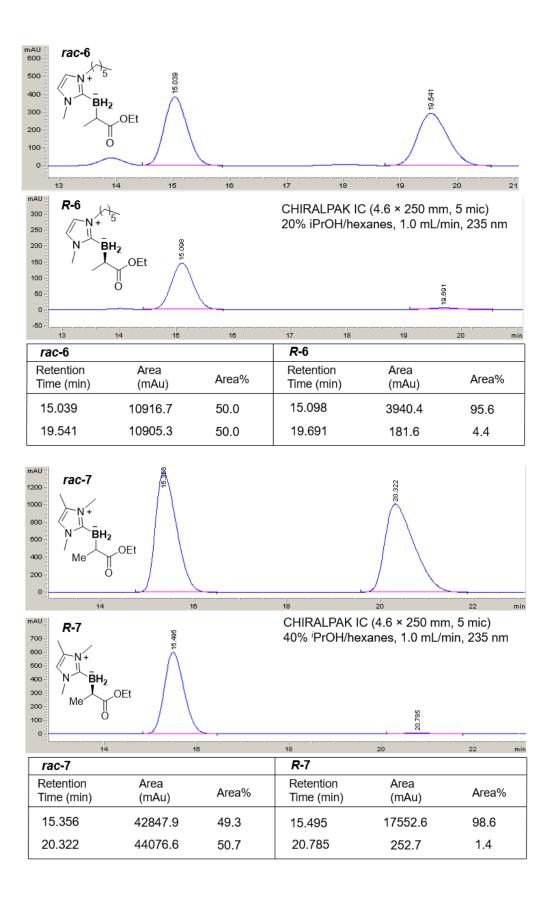

VI. GC-MS Standard Curves for Organoborane Products


Product formation in enzymatic reactions was quantified by GC-MS based on standard curves. To determine the standard calibration curves, stock solutions of chemically synthesized organoborane products were prepared at various concentrations (1 - 7 mM in 4:6 hexanes/EtOAc) with added internal standard 1,2,3-trimethoxybenzene with a final concentration of 6.45 mM in the stock solutions of organoborane products. Individual data point for each duplicate run is marked as triangle, the average of duplicate runs is marked as red dot. The standard curves plot product concentration in mM (y-axis) against the average ratio of product area to internal standard area on GC-MS (x-axis). The quantification of organoborane **12** was determined by preparative scale reactions as this compound cannot be identified by GC-MS.

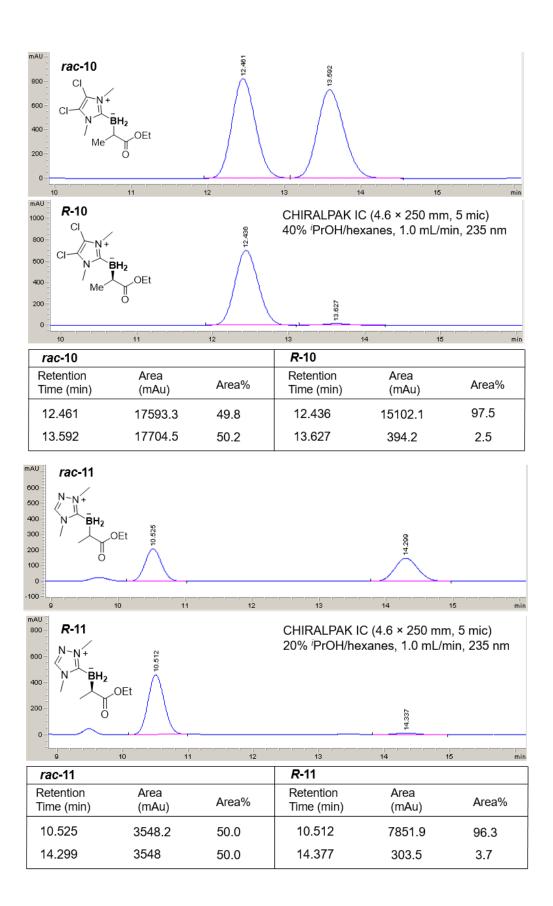


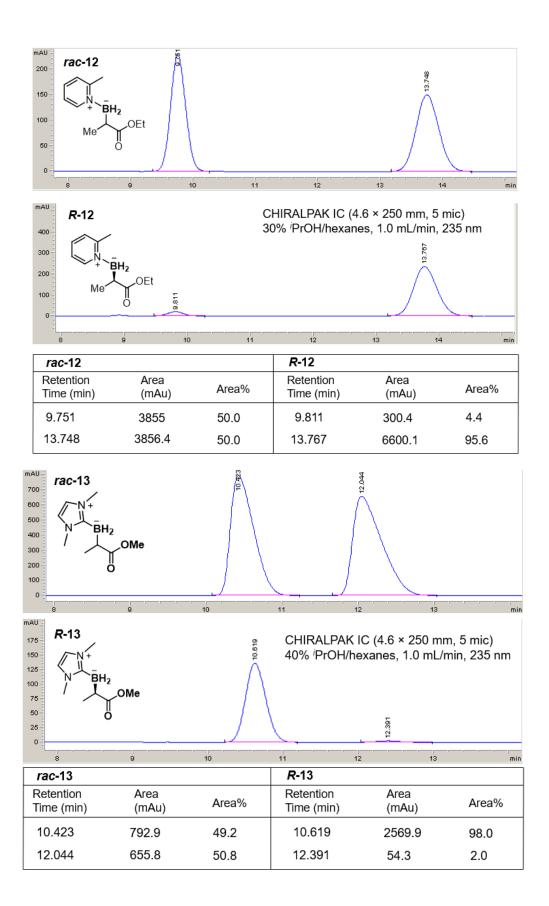


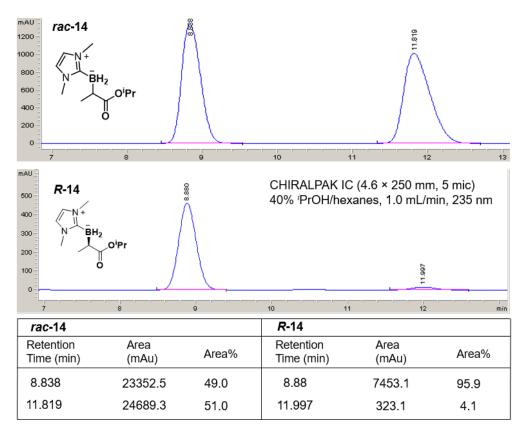


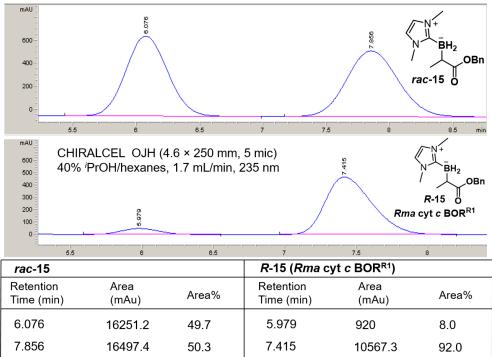


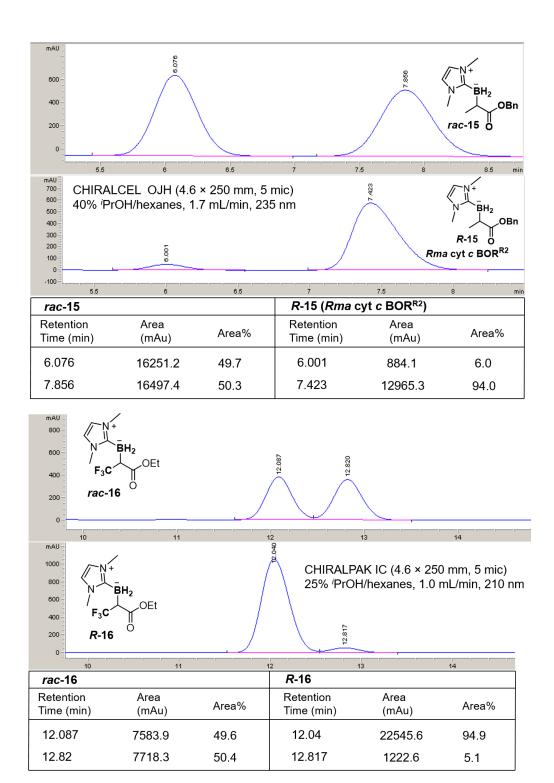

VII. Determination of Enantioselectivity

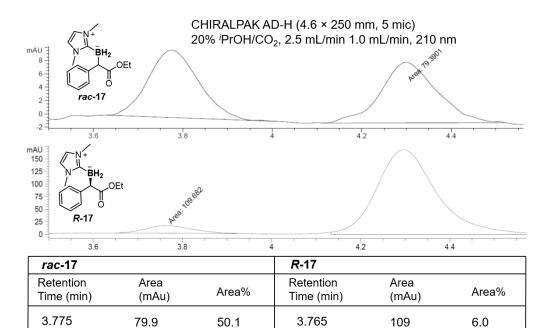

All e.r. values of enzymatically synthesized borane products were determined using chiral SFC or normal-phase chiral HPLC. The absolute configurations of enzymatically synthesized borane products **3**, **12**, and **18** were determined to be *R via* X-ray crystallography. The absolute configurations of organoborane products **4-11**, **13-16** were inferred by analogy, assuming the facial selectivity of the diazo reagents from which these products were made remains the same as that of Me-EDA.

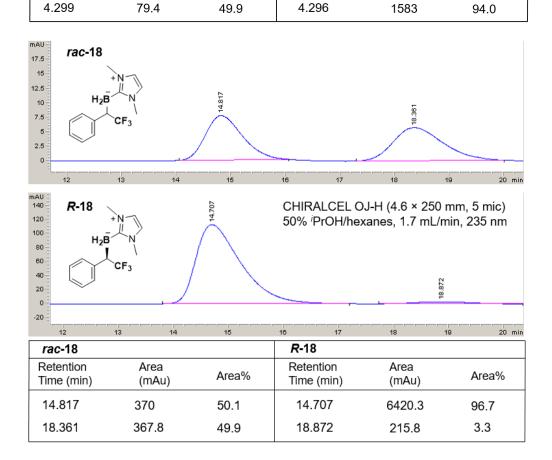


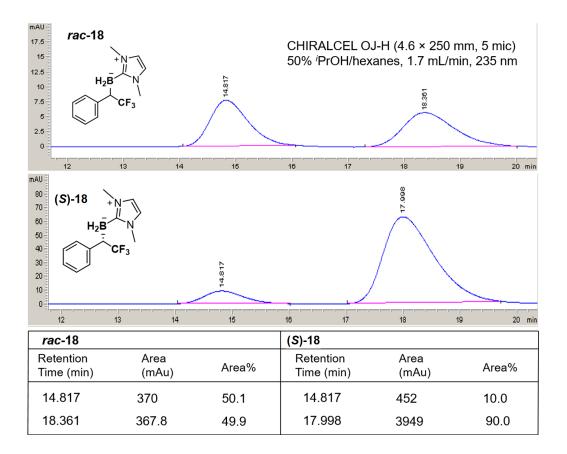


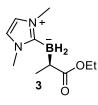


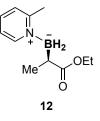






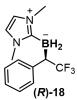




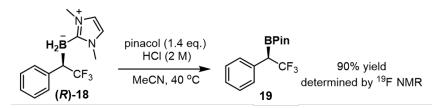

VIII. Preparative Scale Enzymatic Reactions

Preparation of whole-cell suspensions for borylation reactions: HB_{amp/chlor} (200 mL) in a 1 L flask was inoculated with an overnight culture (4 mL, LB_{amp/chlor}) of recombinant *E. cloni*[®] EXPRESS BL21(DE3) cells containing a pET22b(+) plasmid encoding *Rma* cyt *c* variant, and the pEC86 plasmid. The culture was shaken at 37 °C and 250 rpm (no humidity control) until the OD₆₀₀ was 0.7 (typically 2 - 3 hours). The culture was placed on ice for 30 minutes, and IPTG and ALA were added to final concentrations of 20 μ M and 200 μ M, respectively. The incubator temperature was reduced to 20 °C, and the culture was allowed to shake for 22 hours at 140 rpm. Cells were pelleted by centrifugation (4 °C, 5 min, 4,000xg), resuspended in M9-N buffer and adjusted to OD₆₀₀ = 30. The whole-cell suspension was placed on ice and bubbled with Ar for 30 min.

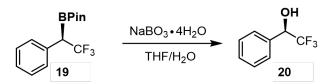
Biocatalytic synthesis of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)(1-ethoxy-1-oxopropan-2-yl)dihydroborate (3) (0.5 mmol scale reaction). Under anaerobic conditions, to a 40 mL vial were added 12 mL*Rma*cyt*c*BOR^{R1} whole-cell suspension (OD₆₀₀ = 30), 3 mL glucose solution (250 mM),*di*MeNHC-BH₃ solution (125 µL, 2 M in MeCN) and Me-EDA (125 µL, 2 M in MeCN). The vial was capped and shaken at 520 rpm in an anaerobic chamber at


room temperature. After 4 hours, another portion of diMeNHC-BH₃ (125 µL, 2 M in MeCN) and Me-EDA (125 µL, 2 M in MeCN) were added and the vial was shaken for 8 more hours at 520 rpm. The reaction mixture was then transferred to a 50 mL Falcon tube and extracted by 30 mL 3:7 hexanes/EtOAc via vortexing (30 s for three times). Centrifugation (5,000xg, 5 min) was used to completely separate the organic and aqueous layers. After removal of the organic layers, two additional rounds of extraction were performed. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated, and purified by flash chromatography (dry loading) with EtOAc/hexanes (5% to 60% EtOAc/hexanes gradient) to afford pure organoborane product 3 (79 mg, 0.376 mmol, 75% yield). The protein concentration of $OD_{600} = 30$ whole-cell solution was determined to be 10.41 µM by hemochrome assay after cell lysis by sonication. The total turnover number for this reaction was 3000. The stereoselectivity of the product was determined as 97.5:2.5 e.r. by normal-phase chiral HPLC. $\left[\alpha\right]_{D}^{23} = +114.5$ (c 0.19, EtOAc). ¹H NMR (400 MHz, Chloroform-d) δ 6.82 (s, 2H), 3.98 – 3.78 (m, 2H), 3.75 (s, 6H), 1.95 – 1.10 (m, 2H), 1.88 (br s, 1H), 1.10 (d, J = 6.2 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 183.5, 120.4, 58.7, 36.2, 30.5, 17.8, 14.6. The boron-bound NHC quarternery carbon was not resolved; ¹¹B NMR (128 MHz, Chloroform-d) δ –24.55 (t, J = 90 Hz).

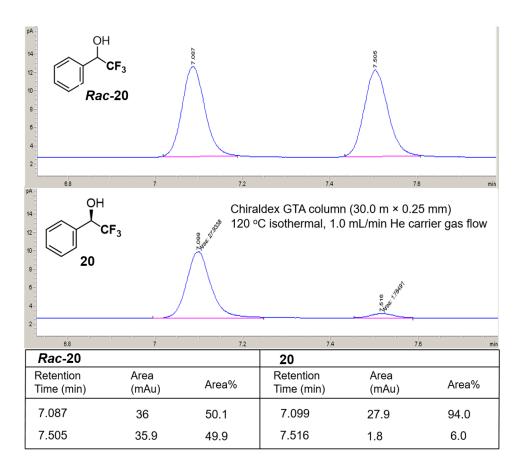
Biocatalytic synthesis of ethyl 2-((2-methyl-pyridin-1yl)boraneyl)propanoate (12) on gram scale. Under anaerobic conditions, to a 250 mL conical flask were added 50 mL *Rma* cyt *c* BOR^{R1} whole-cell solution ($OD_{600} = 30$), glucose (2.6 mL, 1 M), picoline borane (1.4 mL, 2 M in MeCN) and Me-EDA (1.4 M in MeCN). The flask was shaken at 240 rpm in an anaerobic chamber. At 3 h intervals, two additional batches of whole-cell solution (50 mL), glucose (2.6 mL, 1 M), picoline borane (1.4 mL, 2 M in MeCN) and Me-EDA

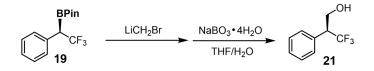

(1.4 M in MeCN) were added. The reaction mixture was shaken for a total of 24 hours and then divided between six 50 mL Falcon tubes. 25 mL 3:7 hexanes/EtOAc was added to each tube to

extract the borylation product via vortexing (30 s for three times) and centrifugation (5,000xg, 5 min). After removal of the organic layers, two additional rounds of extraction were performed. The combined organic extracts were dried over anhydrous Na_2SO_4 , concentrated, and purified by flash chromatography (dry loading) with EtOAc/hexanes (5% to 40% EtOAc/hexanes gradient) to afford pure organoborane product 12 (0.74 g, 3.57 mmol, 42% yield). The protein concentration of $OD_{600} = 30$ whole-cell solution was determined to be 8.18 μ M by hemochrome assay after cell lysis by sonication. The total turnover number for this reaction was 2910. The stereoselectivity of the product was determined as 96:4 e.r. by normal-phase chiral HPLC. $\left[\alpha\right]_{D}^{23} = +117.2$ (c 0.37, EtOAc). ¹H NMR (400 MHz, Chloroform-d) δ 8.53 (dd, J = 6.0, 1.6 Hz, 1H), 7.84 (td, J = 7.7, 1.7Hz, 1H), 7.42 – 7.36 (m, 1H), 7.33 – 7.28 (m, 1H), 3.79 (AB qq, J = 10.8, 7.1 Hz, 2H), 3.30 – 2.15 (m, 2H), 2.77 (s, 3H), 2.05 - 1.92 (m, 1H), 1.05 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) & 182.13, 157.92, 149.35, 140.26, 127.67, 122.60, 58.83, 32.78, 22.76, 15.16, 14.61. ¹¹B NMR (128 MHz, Chloroform-d) δ –5.10 (t, J = 103 Hz).



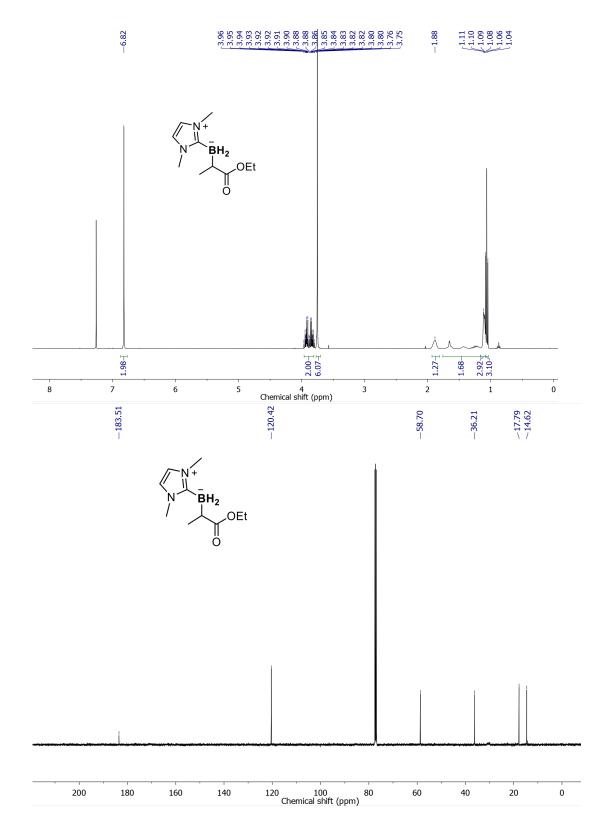
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2,2,2-**Biocatalytic** synthesis of trifluoro-1-phenylethyl)dihydroborate ((R)-18) at (1 mmol scale reaction). To a 250 mL conical flask were added 40 mL Rma cyt c BOR^{P1} whole-cell solution (OD₆₀₀ = 30), glucose (2.6 mL, 1 M), *di*MeNHC-BH₃ (1.2 mL, 0.6 M in MeCN) and CF₃-DMB (1.0 mL, 0.6 M in MeCN). The flask was shaken at 240 rpm in the anaerobic chamber. After 6 hours, another batch of whole-cell solution (40 mL, $OD_{600} = 30$, glucose (2.6 mL, 1 M), diMeNHC-BH₃ (1.2 mL, 0.6 M in MeCN) and CF₃-DMB (1.0 mL, 0.6 M in MeCN) were added to the reaction mixture. The reaction mixture was shaken for a total of 30 hours and then divided between four 50 mL Falcon tubes. 25 mL 3:7 hexanes/EtOAc was added to each tube to extract the borylation product via vortexing (30 s for three times) and centrifugation (5,000xg, 5 min). After removal of the organic layers, two additional rounds of extraction were performed. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated, and purified by silica column chromatography (dry loading) with EtOAc/hexanes (5% to 50% EtOAc/hexanes gradient) to afford pure organoborane product (R)-18 (130 mg, 0.485 mmol, 40% vield). Recovered borane starting material is 82 mg. The vield based on consumed starting material is 70%. The protein concentration of $OD_{600} = 30$ whole-cell solution was determined to be 6.06 µM by hemochrome assay after cell lysis by sonication. The total turnover number (TTN) for this reaction was 1000. The stereoselectivity of the product was determined as 96:4 e.r. by normal-phase chiral HPLC. $\left[\alpha\right]_{D}^{23} = -81.3$ (c 0.67, EtOAc). ¹H NMR (400 MHz, Chloroform-d) δ 7.23 – 7.05 (m, 5H), 6.76 (s, 2H), 3.52 (s, 6H), 2.90 – 2.60 (m, 1H), 2.25 - 1.40 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.1, 143.7 (d, J = 3.5 Hz), 131.4 (g, J = 278.0 Hz), 128.4, 128.3, 125.2, 120.8, 43.5, 36.0; ¹¹B NMR (128 MHz, Chloroform-*d*) δ – 26.72 (t, J = 90 Hz); ¹⁹F NMR (282 MHz, Chloroform-d) δ –61.80 (d, J = 13 Hz).

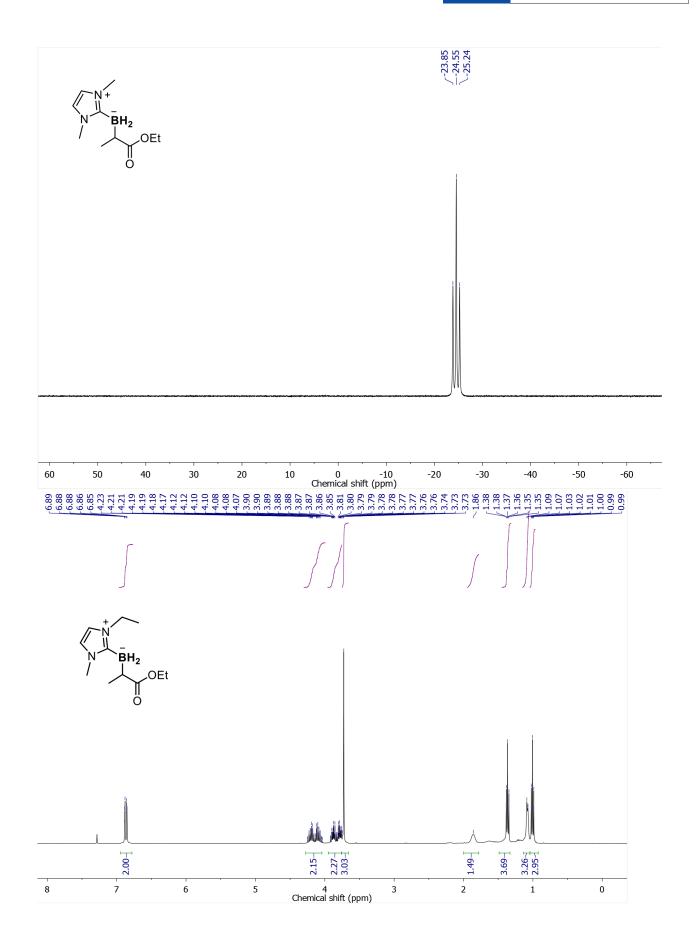

IX. Derivatization of Enzymatic Borylation Product (R)-18

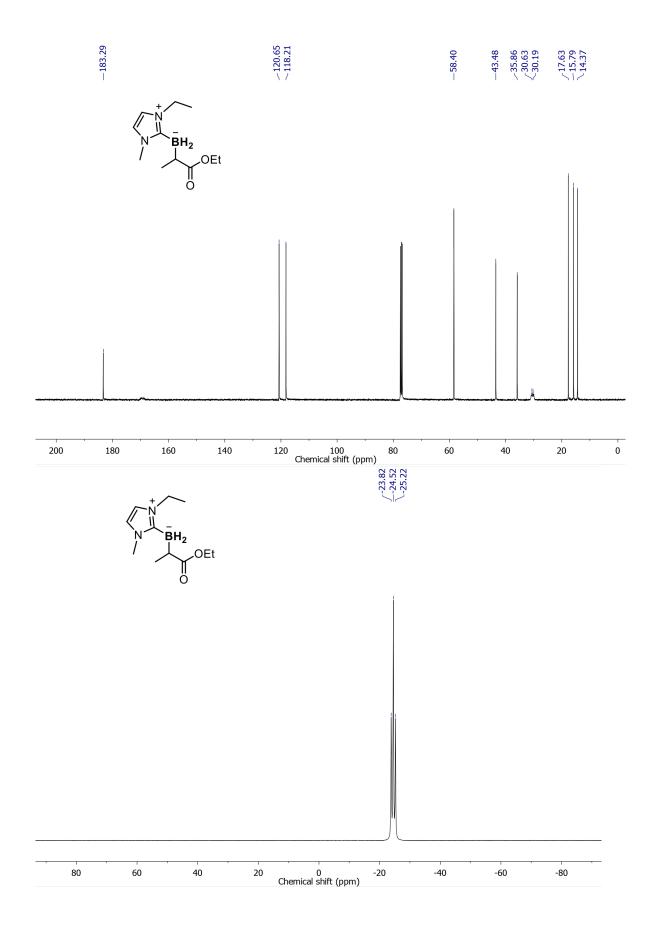


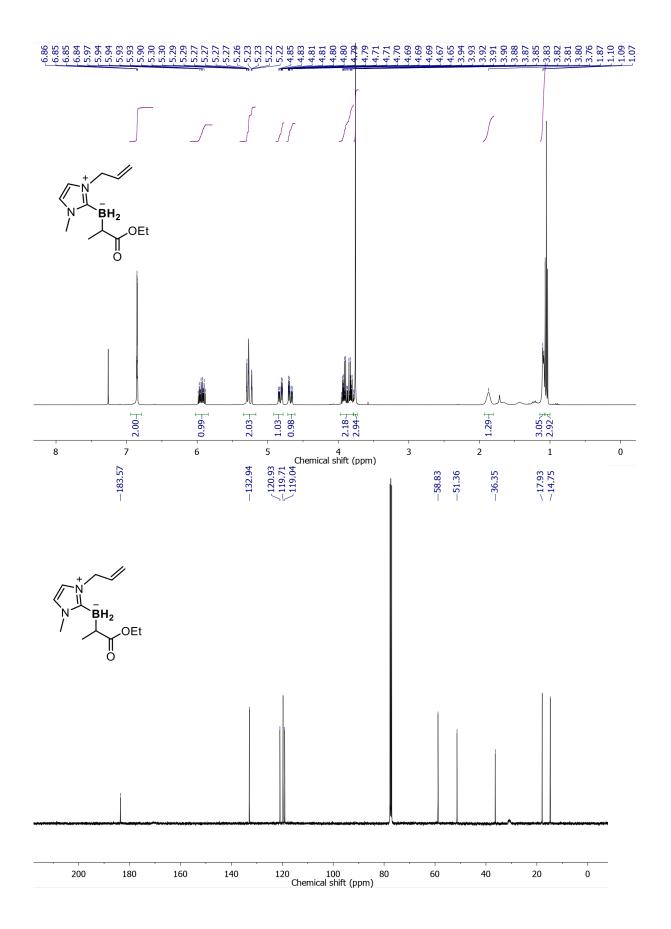
(A) Conversion of (*R*)-18 to the corresponding pinacol boronate ester 19. The protocol was modified from that reported by Zhou *et al.*¹². To a 40 mL vial with screw cap were added 54 mg enzymatic product (*R*)-18 (0.2 mmol) and a stir bar. The vial was evacuated and backfilled with argon three times. 4 mL acetonitrile solution of pinacol (33 mg, 0.28 mmol, 1.4 eq.) was added to the vial *via* syringe. The resulting solution was stirred for 5 min for (*R*)-18 to dissolve, followed by the addition of 300 μ L of 2 M HCl. The vial was stirred at 40 °C. The reaction can be monitored by GC-MS (usual reaction time is 10 - 12 hours) or ¹⁹F NMR (19 has a chemical shift at δ –62.75 ppm (d, *J* = 12 Hz)). After reaction completion, 10 μ L fluorobenzene was added to the vial ¹⁹F NMR. The formation of 19 was confirmed by GC-MS, and by conversion of 19 to alcohol 20 (see section B below).

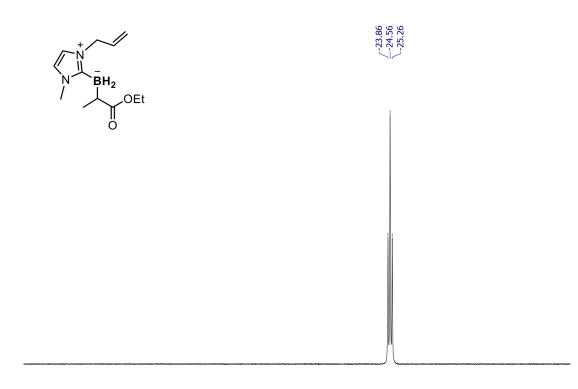
(B) Conversion of 19 to alcohol 20. To the reaction mixture obtained after ligand exchange with pinacol in step A, 5 mL of water was added, and the mixture was extracted with 15 mL of 1:1 hexanes: EtOAc three times. The solvent was removed under reduced pressure and the vial was backfilled with argon. The crude product 19 was dissolved in 15 mL of pentane and passed through a syringe filter to remove the insoluble materials. This process was repeated two additional times to ensure all soluble materials were extracted. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Under argon, THF (1 mL) was added to the vial to dissolve the crude product 19 followed by the addition of $H_2O(1 \text{ mL})$ and 154 mg of NaBO₃•4H₂O. The reaction mixture was stirred for 6 hours and extracted with EtOAc (15 mL) three times. The combined organic extracts were concentrated under reduced pressure and purified by flash column chromatography to yield alcohol 20 (0 - 30% hexanes/EtOAc). 27.4 mg alcohol 1 was obtained (78% yield). The e.r. was confirmed by chiral GC with FID detector using a Chiraldex GTA column (30.0 m × 0.25 mm) (conditions: 120 °C isothermal at 1.0 mL/min He carrier gas flow). Retention time: 7.09 min for R enantiomer, 7.52 min for S enantiomer). This compound is known¹³. ¹H NMR (400 MHz, Chloroform-d) δ 7.56 – 7.34 (m, 5H), 5.03 (qd, J = 6.7, 4.4 Hz, 1H), 2.57 (dd, J = 4.5, 1.5 Hz, 1H) ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.3, 130.0, 129.0, 127.8, 124.6 (g, J = 282.1) Hz, 73.2 (g, J = 32.0 Hz). ¹⁹F NMR (282 MHz, Chloroform-d) $\delta - 78.40$ (d, J = 7 Hz).

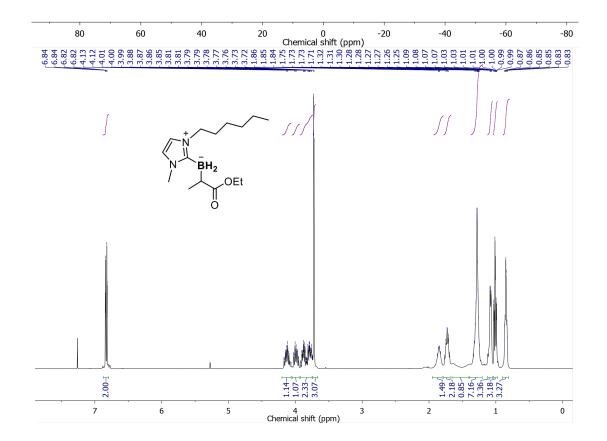


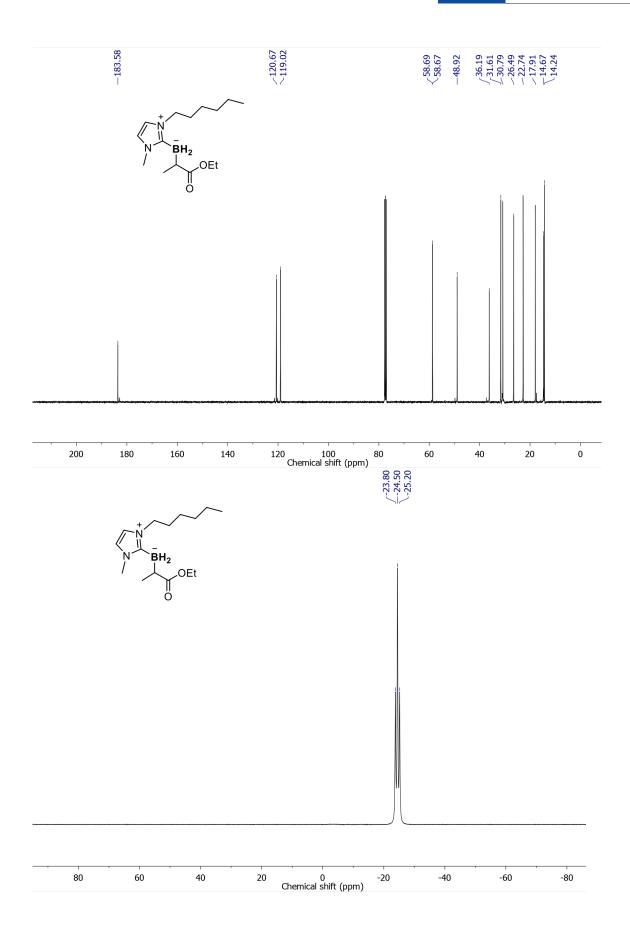


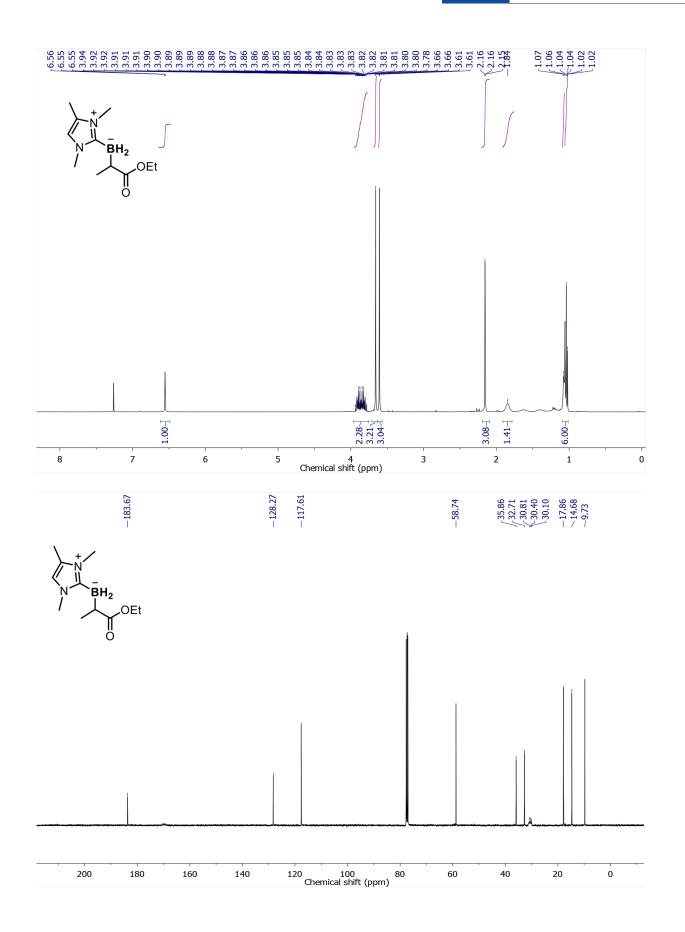

(C) Conversion of 19 to alcohol 21 *via* Matteson homologation and oxidation. To the reaction mixture obtained after ligand exchange with pinacol in step A, 5 mL of water was added and the mixture was extracted with 15 mL of 1:1 hexanes:EtOAc three times. The solvent was removed under reduced pressure and the vial was backfilled with argon. The crude product 19 was dissolved in 15 mL of pentane and passed through a syringe filter to remove the insoluble materials. This process was repeated two additional times to ensure all soluble materials were extracted. The combined organic extracts were concentrated under reduced pressure. Under argon, 2 mL of anhydrous THF and dibromomethane (35 µL, 2.5 eq.) were added and the vial was cooled in a dry ice/acetone bath. n-BuLi (160 µL, 2.5 M in hexanes, 2.0 eq.) was added dropwise over 30 min. The solution was allowed to warm to room temperature slowly. The reaction mixture was then diluted with 3 mL sat. NH₄Cl and extracted with EtOAc (15 mL) for three times. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude mixture was dissolved in THF (1 mL). 1 mL of H₂O and NaBO₃•4H₂O (154 mg) were then added and the reaction mixture was stirred for 6 hours. The reaction was then extracted with EtOAc. The organic extracts were dried, concentrated under reduced pressure, and purified by flash column chromatography to yield alcohol 21 (0 - 30%) hexanes/EtOAc). 12.6 mg alcohol **21** was obtained (33% overall yield, 38% for the Matteson homologation and oxidation steps). The e.r. was confirmed by chiral GC with FID detector using a Chiraldex GTA column (30.0 m × 0.25 mm) (conditions: 110 °C isothermal at 1.0 mL/min He carrier gas flow). Retention time: 11.625 min for *S* enantiomer, 12.443 min for *R* enantiomer). This compound is known¹⁴. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.31 (m, 5H), 4.20 (dd, J = 11.7, 5.7 Hz, 1H), 4.04 (dd, J = 11.4, 7.8 Hz, 1H), 3.56 (qdd, J = 9.4, 7.8, 5.8 Hz, 1H), 1.57 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.8 (d, J = 2.2 Hz), 129.5, 129.4, 129.0, 126.4 (q, J = 280.5 Hz), 61.7 (q, J = 2.9 Hz), 52.9 (q, J = 25.5 Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) $\delta - 67.47$ (d, J = 9 Hz).

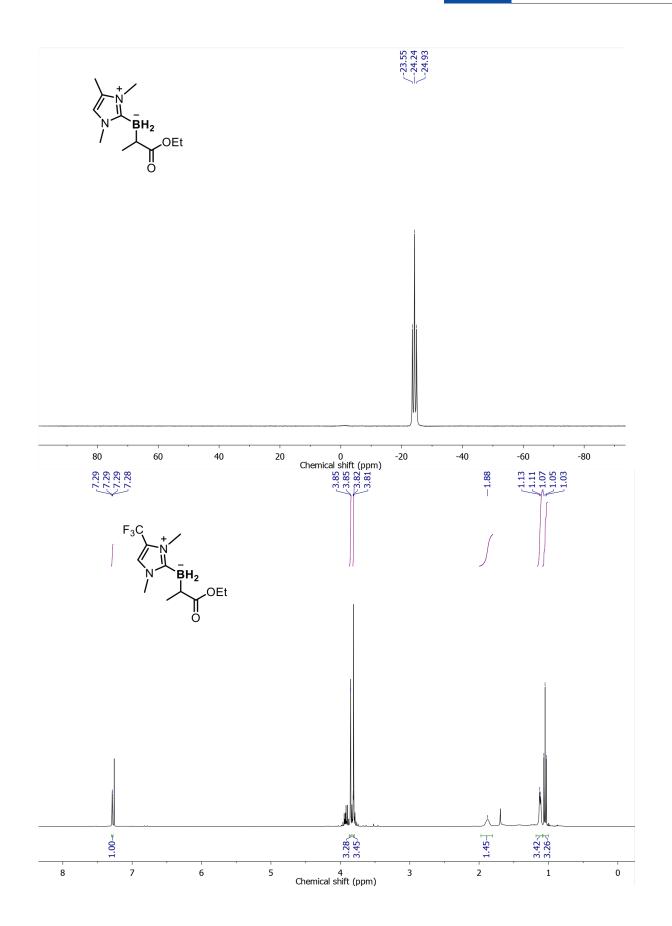


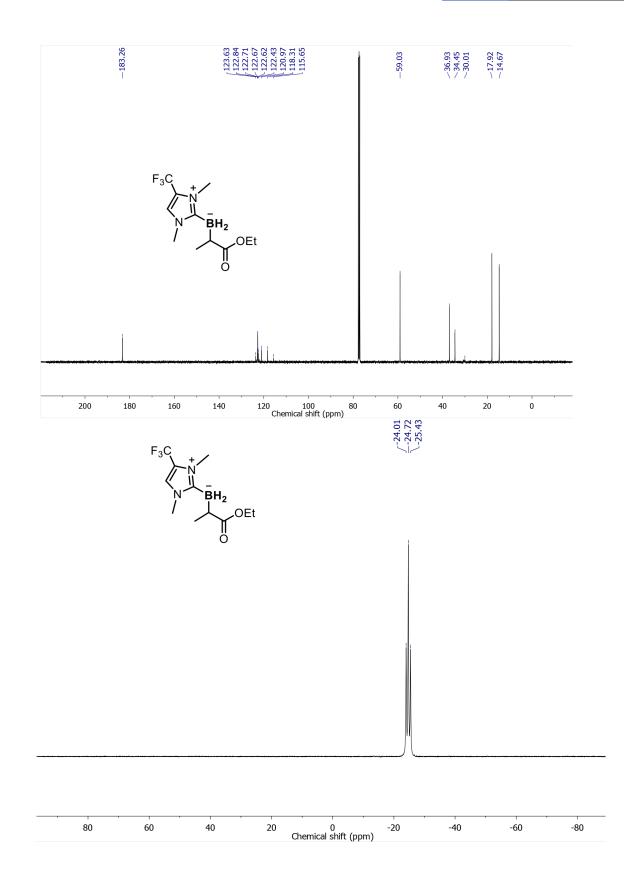

X. NMR Spectra

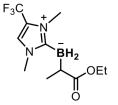


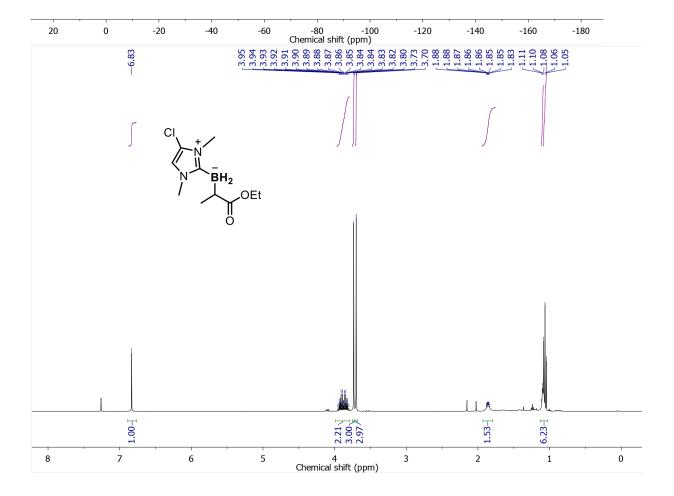


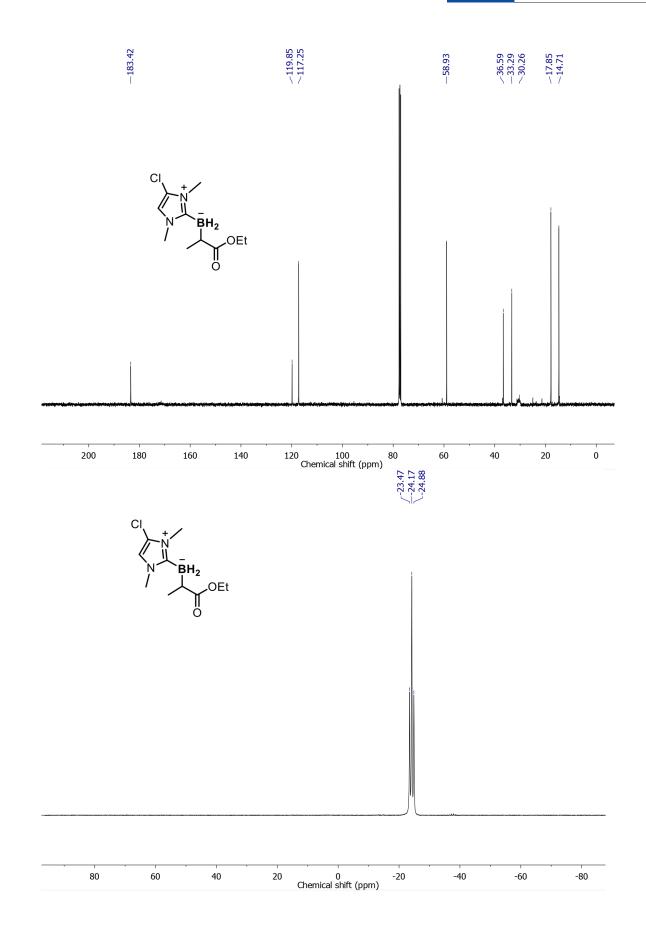


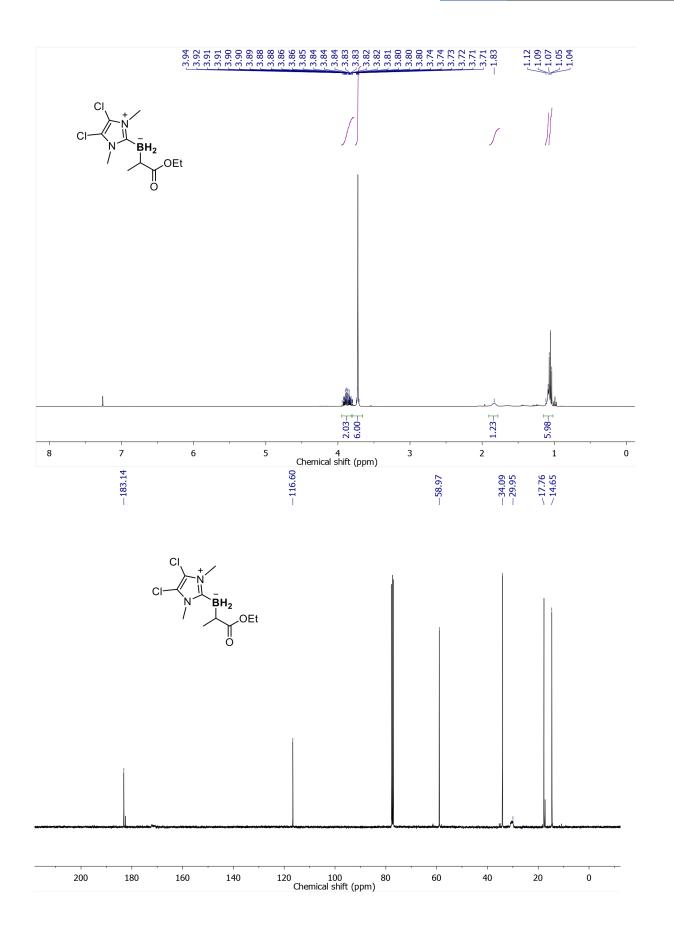


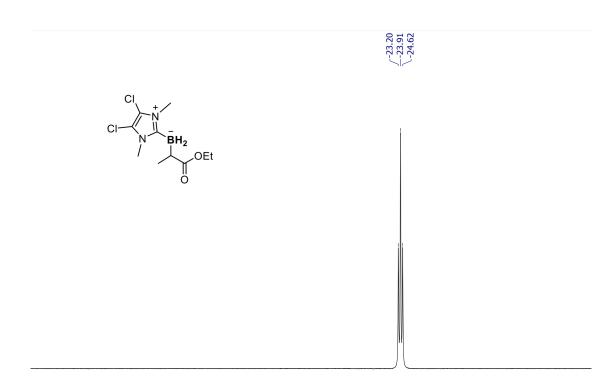


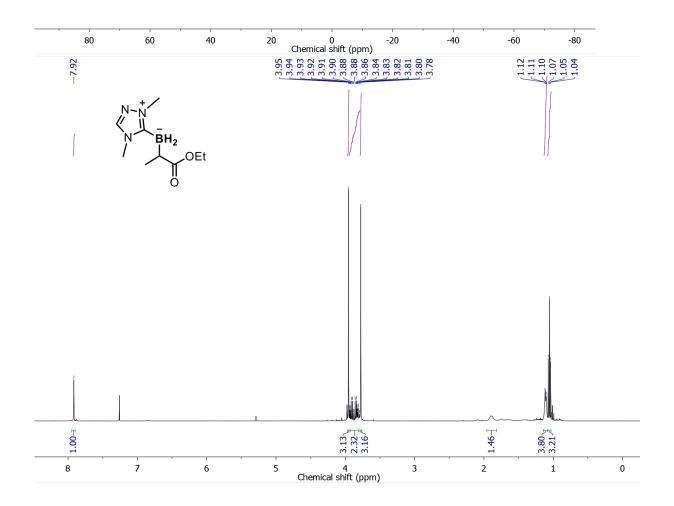


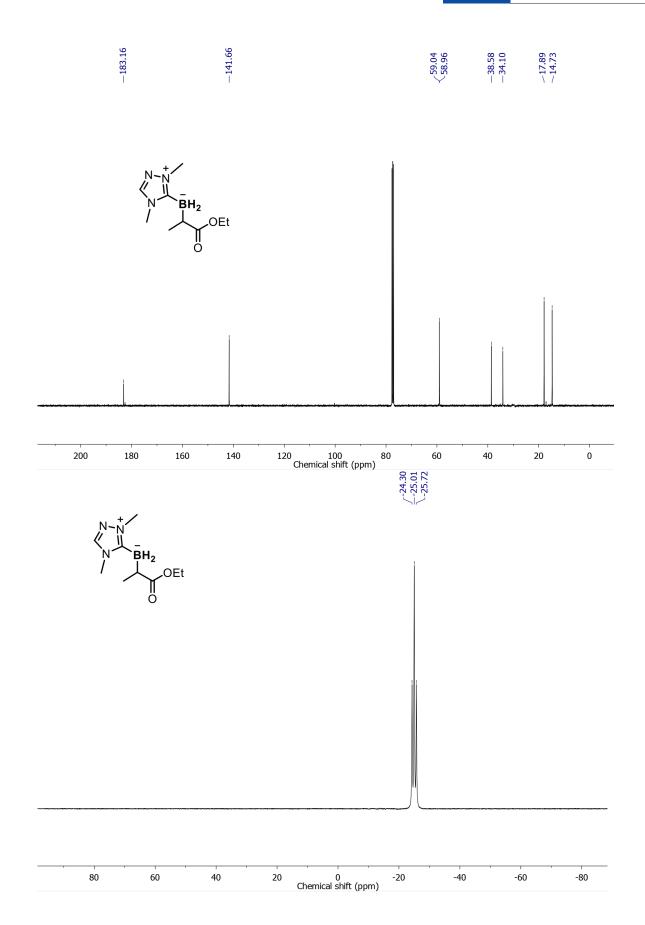


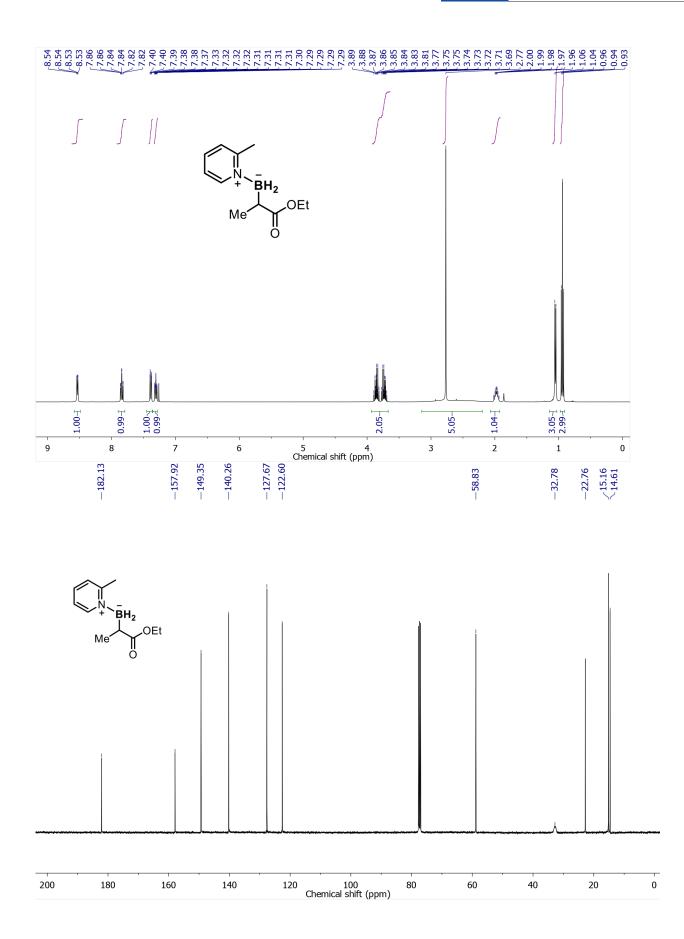


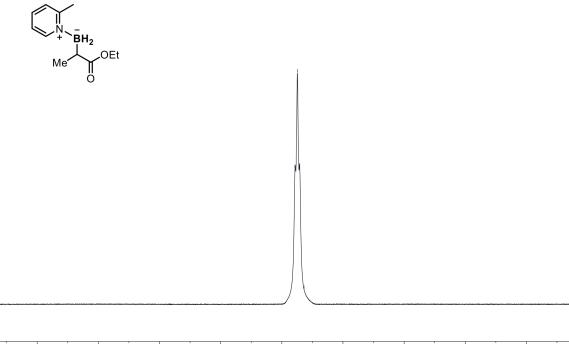


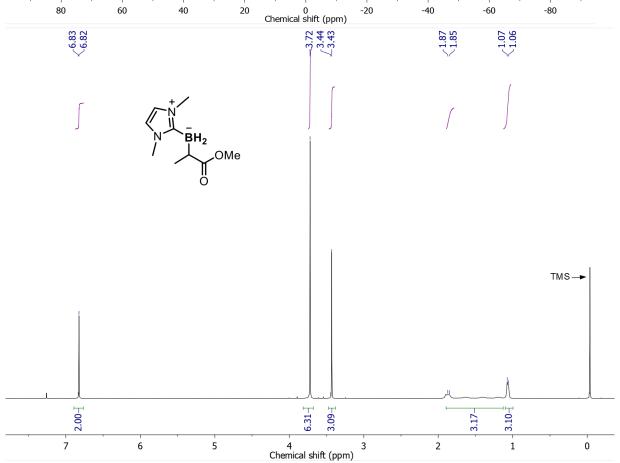

---61.10

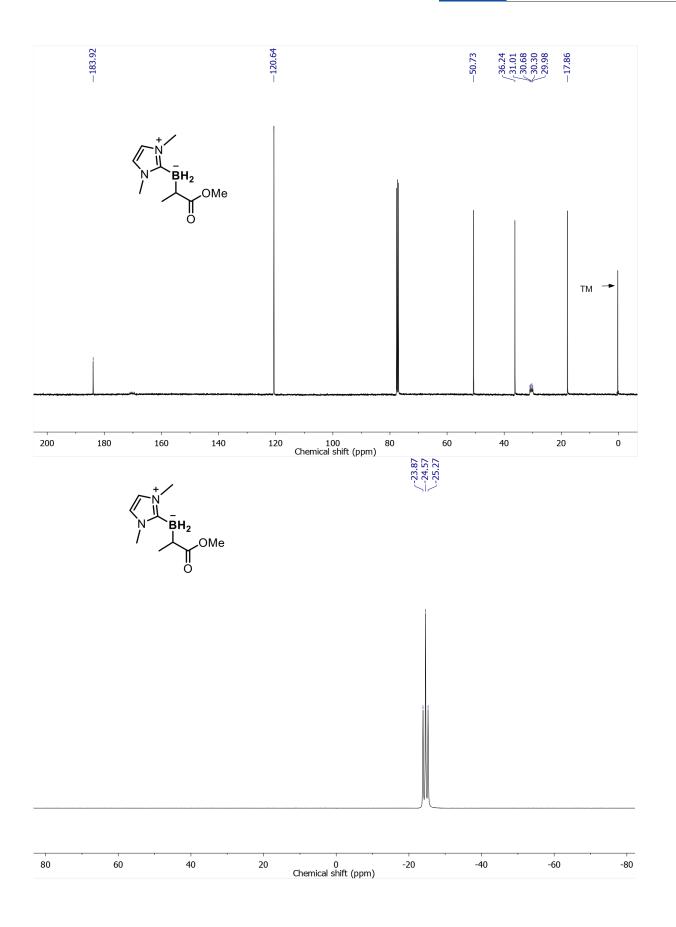


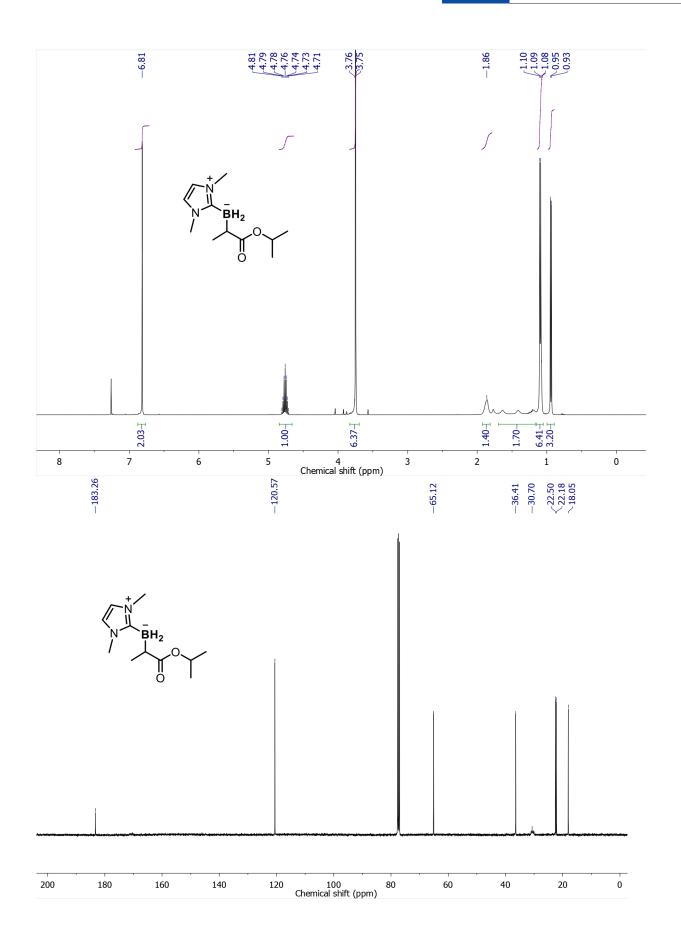


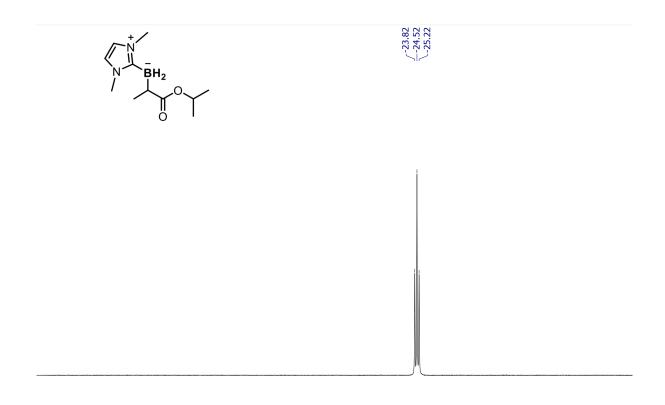


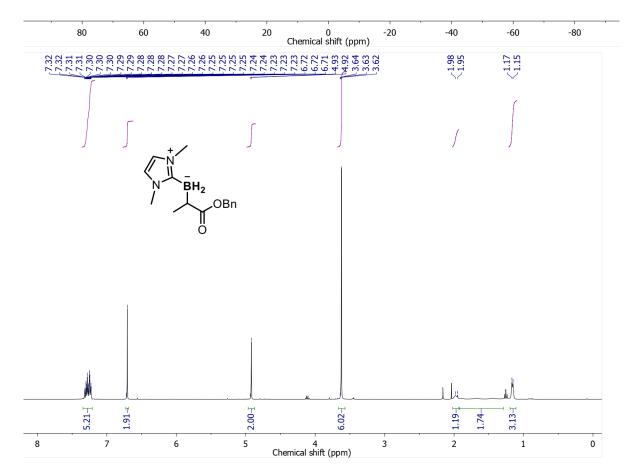


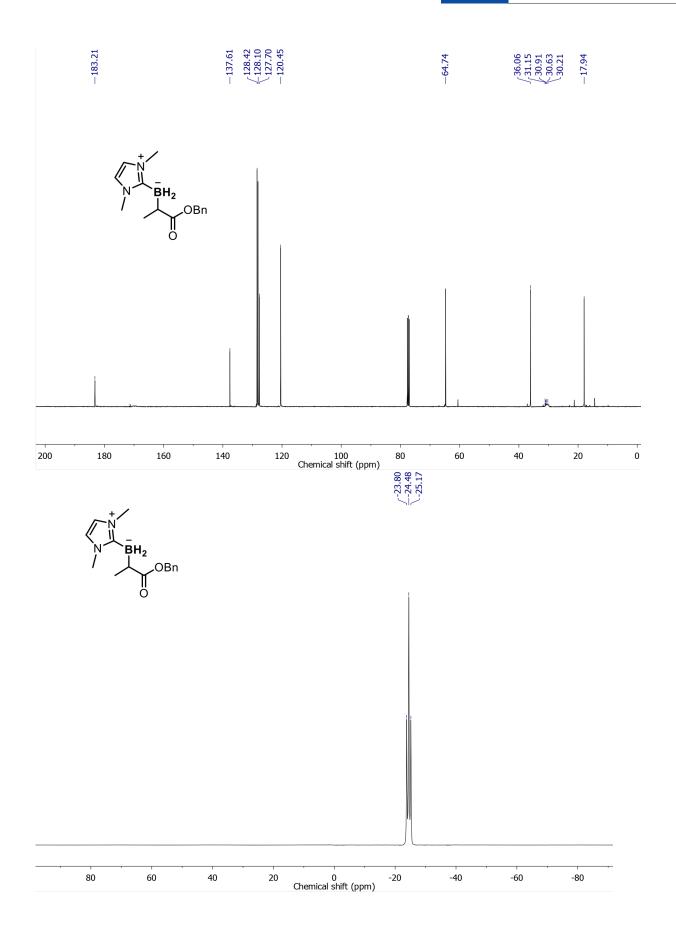


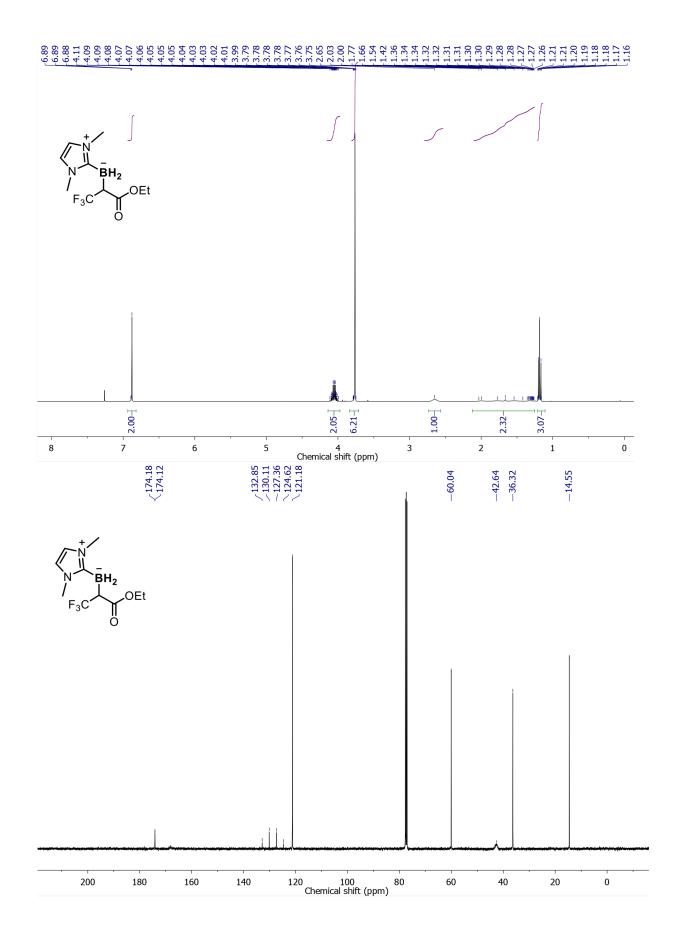


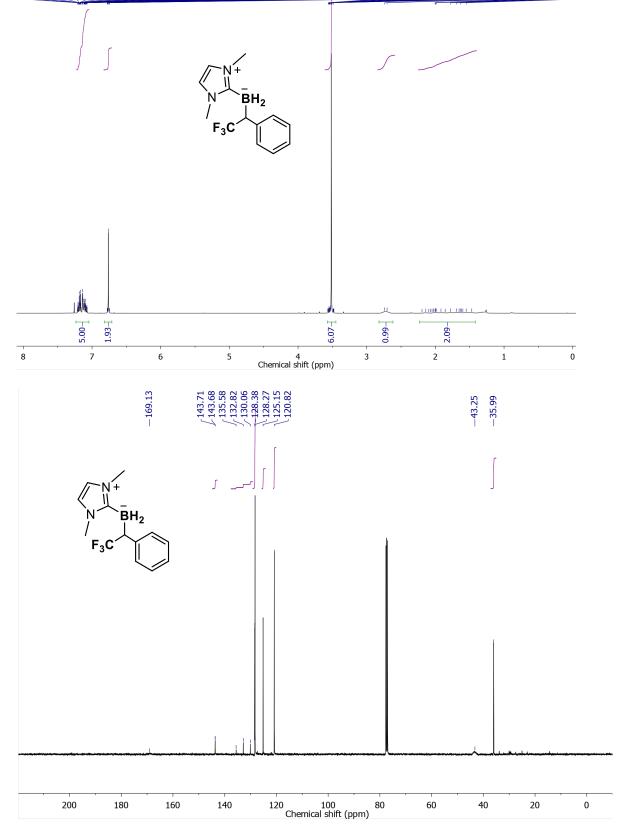


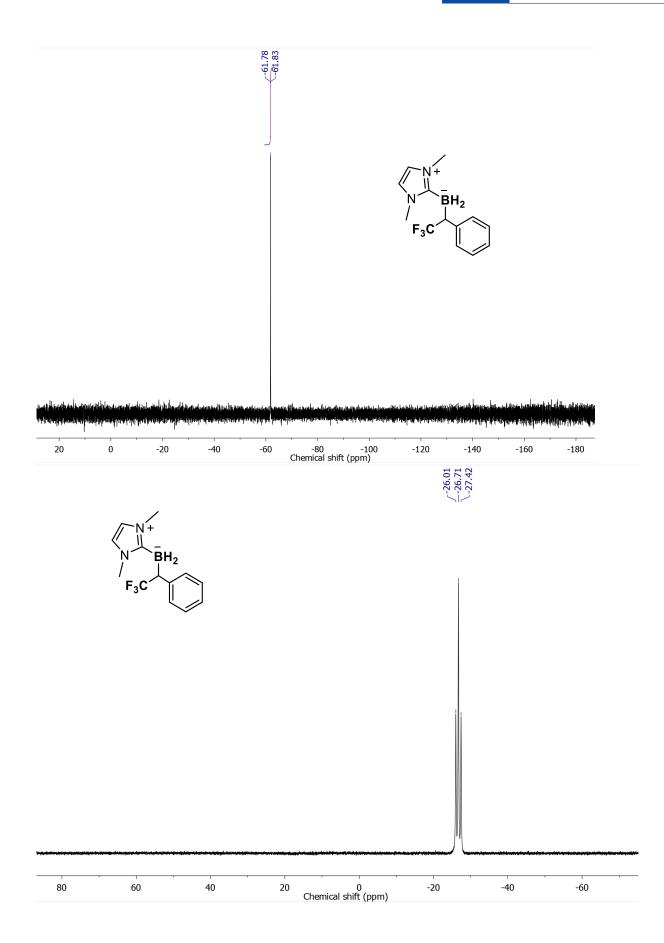


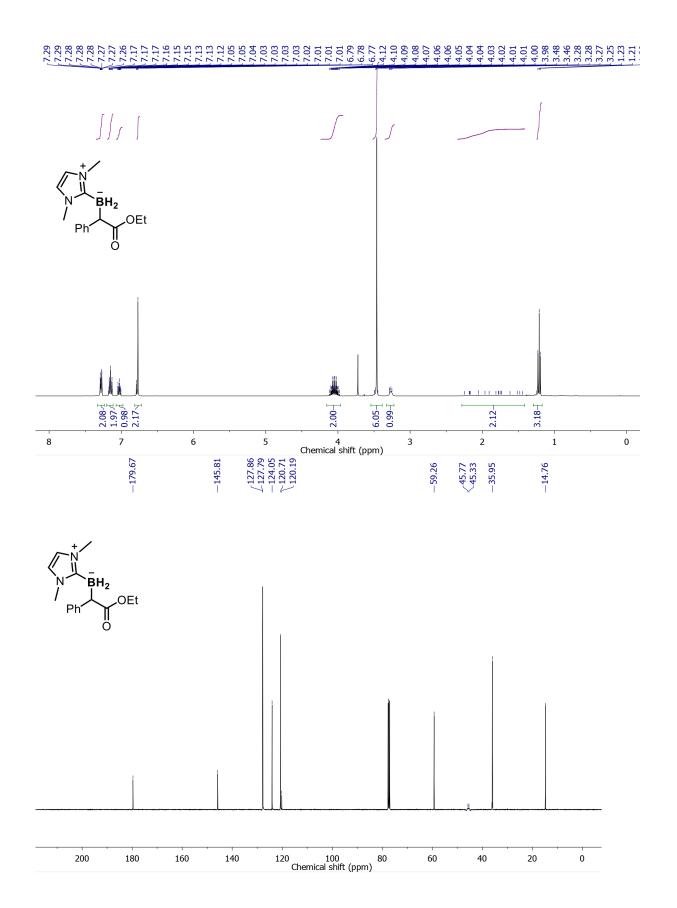


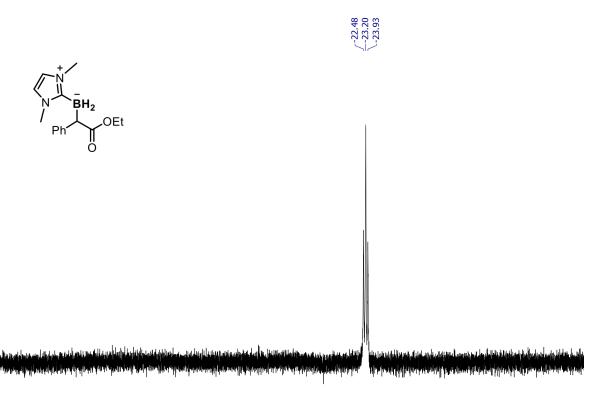




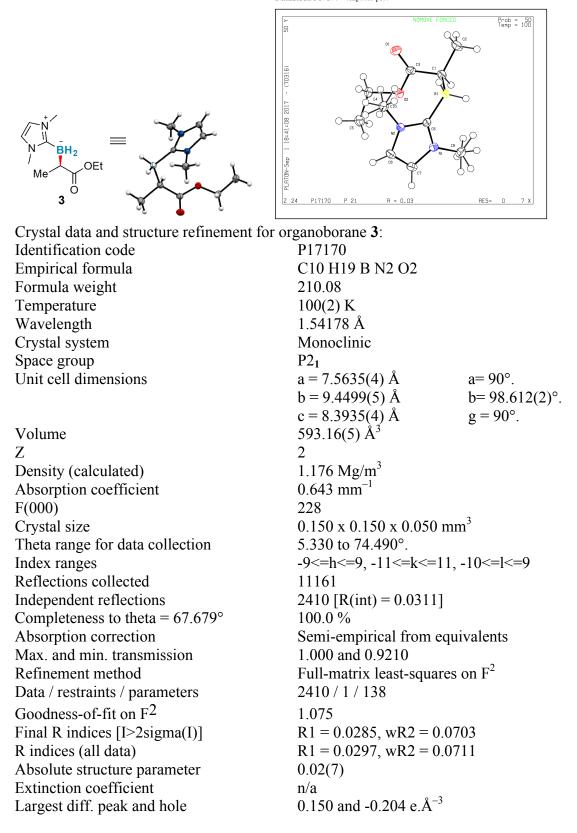







	80	60	40	20	0 Chemical shift (p	-20 pm)	-40	-60	-8
				62.45					
-	+/			φ Υ					
Į	N ∬			1					
Ň	N BH₂								
1	F ₃ C	OEt							
	ů II								
المربعين فالمراجع	Um . #	and shalles be discussed in the second	un that has a base of set the state of the		a a construction of the state o		hand de mare des silleren en este angelen	and the state place to the state of black black, etc. and	and a shakely set of
		al for all descent and the second descent					and a constraint of a second	- Fileneleriki - Antonio Antonio - Antoppe Incontra	and a state

4.15 4


 · · ·	1		1		1		· · ·		
80	60	40	20	0	-20	-40	-60	-80	
			(Chemical shift (ppr	m)				

XI. X-ray Crystallography and the Assignments of Absolute Configuration

For products **3** and **18**, 10 mg of pure compound was dissolved in 0.5 mL ethylacetate and added to a 4 mL vial, which was then placed in a 20 mL vial containing 10 mL *n*-pentane. The 20 mL vial was capped, sealed with parafilm, and left undisturbed for three days at 4 °C. A suitable crystal was selected and mounted in a nylon loop in immersion oil. All measurements were made on a Bruker photon diffractometer with filtered Cu-K α radiation. Crystals of compound **12** were obtained via slow evaporation of an ethylacetate solution of **12** at room temperature.

Low-temperature diffraction data (ϕ - and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu K_{α} radiation ($\lambda = 1.54178$ Å) from an I μ S micro-source. The structure was solved by direct methods using SHELXS¹⁵ and refined against F^2 on all data by full-matrix least squares with SHELXL-2016¹⁶ using established refinement techniques¹⁷. All non-hydrogen atoms were refined aniso-tropically. Unless otherwise noted, all hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Compound **18** (sample No. P17253) crystallizes in the monoclinic space group $P2_1$ with two molecules in the asymmetric unit. The coordinates for the hydrogen atoms bound to B1 and B2 were located in the difference Fourier synthesis and refined as a two-component twin.

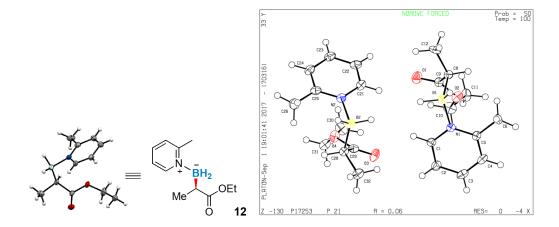
The absolute configurations of compounds **3**, **12** and **18** were established by anomalousdispersion effects using Cu K_{α} radiation ($\lambda = 1.54178$ Å). For P17170 (compound **3**), the Flack *x* parameter of 0.02(7) was determined using 1062 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$. For P17207 (compound **18**), the Flack *x* parameter of 0.08(3) was determined using 2543 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ and the Hooft *y* is 0.06(2). For P17253 (a two component twin, compound **12**), the Flack *x* parameter of 0.07(10) was determined using 2069 quotients $[(I^+)-(I^-)]/[((I^+)+(I^-)],$ the Hooft *y* is 0.16(9), and the PLATON P3 is 0.997. The Flack and van Hooft parameters are measures of the confidence of the absolute structure determination (zero (within several estimated standard deviation) for correct enantiomer, one for incorrect, intermediate for racemic twinning)^{18,19}. PLATON version of 13/08/2017; check.def file version of 27/07/201 Datablock P17170 - ellipsoid plot

Datablock: P17170

Bond precision:		0.0020 A	Wavelength=1.54	+1/0		
	635(4)	b=9.4499(5)	c=8.3935(4)			
alpha		beta=98.612(2)	gamma=90			
Temperature:100 K						
	Calculat	ted	Reported			
Volume	593.16(5	5)	593.16(5)			
Space group	P 21		P 21			
Hall group	P 2yb		P 2yb			
Moiety formula	C10 H19	B N2 O2	?			
Sum formula	C10 H19	B N2 O2	C10 H19 B N2	02		
Mr	210.08		210.08			
Dx,g cm-3	1.176		1.176			
z	2		2			
Mu (mm-1)	0.643		0.643			
F000	228.0		228.0			
F000'	228.66					
h,k,lmax	9,11,10		9,11,10			
Nref	2425[12	290]	2410			
Tmin,Tmax	0.908,0	968	0.921,1.000			
Tmin'	0.908					
Correction method AbsCorr = MULTI-S		d T Limits: Tmin=0	.921 Tmax=1.000			
Data completeness		Theta(max)=	74 499			
	- 1.0//0.33	The ca(max)=	/4.490			
	0205/ 2241	-02/nof1	actions) - 0 0711/ 2410)			
R(reflections)= 0			ections)= 0.0711(2410))		
) wR2(refl = 138	ections)= 0.0711(2410))		
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C	Npar ALERT_alert- links for m Short Inter	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2	T has the format e test. 2A H9F	2.09		
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978_ALERT 2 C	Npar ATS were gen ALERT_alert- rlinks for m Short Inter Number C-C	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2	has the format	2.09	ing. Info	
R(reflections)= 0 S = 1.075 The following ALEF test-name / Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site O	= 138 erated. Each ALERT type_alert-level. more details of the XH3 XHn H2 Bonds with Positiv	T has the format e test. 2A H9F	2.09	Info	
R(reflections)= 0 S = 1.075 The following ALEF test-name/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978_ALERT 2 C Alert level (PLAT300_ALERT_4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site O	= 138 erated. Each ALERT type_alert-level. more details of the XH3 XHn H2 Bonds with Positiv	T has the format e test. 2A H9F ve Residual Density.	2.09 / 0 1	Info	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G And 11 other PLATS	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 3000 Alerts	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv	T has the format e test. 2A H9F ve Residual Density. is Constrained at	2.09 / 0 1 0.5 (info Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G And 11 other PLATS PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A	T has the format e test. 2A H9F ve Residual Density.	2.09 / 0 1	info Check Check	
R(reflections)= 0 S = 1.075 The following ALEM test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 300 Alerts Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9B Occupancy of H9C	T has the format e test. 2A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (info Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT413 ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 3000 Alerts Atom Site 0 Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv occupancy of H9A Occupancy of H9B Occupancy of H9B Occupancy of H9D	T has the format e test. 2A H9F ve Residual Density. is Constrained at is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (0.5 (info Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978_ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- clinks for m Short Inter Number C-C Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0	= 138 erated. Each ALERI type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9B Occupancy of H9B Occupancy of H9B Occupancy of H9B Occupancy of H9B Occupancy of H9B	T has the format a test. A H9F re Residual Density. is Constrained at is Constrained at	2.09 / 0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978_ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C G Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. ore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9A Occupancy of H9B Occupancy of H9D Occupancy of H9E Occupancy of H9E Occupancy of H9E Occupancy of H9E	T has the format a test. A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (Check Check Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. bore details of the XH3 XHn H2 Bonds with Positiv Decupancy of H9A Decupancy of H9B Decupancy of H9D Decupancy of H9E Decupancy of H9E Decupancy of H9E Decupancy of H9E Decupancy of H10A Decupancy of H10A	T has the format a test. A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (0.5))))))))))))))))))))))))))))))))))))	Check Check Check Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEM test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9A Occupancy of H9D Occupancy of H9D Occupancy of H9E Occupancy of H9E Occupancy of H10A Occupancy of H10B Occupancy of H10B	T has the format e test. 2A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (0.5))))))))))))))))))))))))))))))))))))	Check Check Check Check Check Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALER test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT300 ALERT 4 G PLAT300 AL	Npar ALERT_alert- links for m Short Inter Number C-C Solution Site 0 Atom Sit	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9B Occupancy of H9D Occupancy of H9D Occupancy of H9E Occupancy of H9E Occupancy of H10A Occupancy of H10A Occupancy of H10A	T has the format a test. A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 5 (0.5 (0.5))))))))))))))))))))))))))))))))))))	Check Check Check Check Check Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT413 ALERT 2 C PLAT413 ALERT 2 C Alert level (PLAT413 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9B Occupancy of H9D Occupancy of H9D Occupancy of H9E Occupancy of H9E Occupancy of H10A Occupancy of H10B Occupancy of H10B Occupancy of H10B	T has the format a test. A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (0.5))))))))))))))))))))))))))))))))))))	Check Check Check Check Check Check Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978_ALERT 2 C	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9B Occupancy of H9D Occupancy of H9D Occupancy of H9E Occupancy of H9E Occupancy of H10A Occupancy of H10B Occupancy of H10B Occupancy of H10B	T has the format a test. A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 5 (0.5 (0.5))))))))))))))))))))))))))))))))))))	Check Check Check Check Check Check Check Check Check Check Check Check Check	
R(reflections)= 0 S = 1.075 The following ALEF test-name_/ Click on the hyper Alert level (PLAT413 ALERT 2 C PLAT978 ALERT 2 C PLAT978 ALERT 2 C Alert level (PLAT300 ALERT 4 G PLAT300 ALERT 4 G	Npar ALERT_alert- links for m Short Inter Number C-C Atom Site 0 Atom Site 0	= 138 erated. Each ALERT type_alert-level. hore details of the XH3 XHn H2 Bonds with Positiv Occupancy of H9A Occupancy of H9B Occupancy of H9D Occupancy of H9D Occupancy of H9E Occupancy of H9E Occupancy of H10A Occupancy of H10B Occupancy of H10B Occupancy of H10B	T has the format a test. A H9F ve Residual Density. is Constrained at is Constrained at	2.09 / 0 1 0.5 (0.5 (0.5))))))))))))))))))))))))))))))))))))	Check Check Check Check Check Check Check Check Check Check Check Check Check	

	~	NOMOVE FORCED	$P_{cob} = 50$
	68	NONOVE TONCED	Prob = 50 Temp = 100
$ \begin{array}{c} & & \\ & & $	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C118 C108	C58 C18 C18 C18 C19 C19 C19 C19 C19 C19 C19 C19 C19 C19
Crystal data and structure refinem	e		
Identification code	p17207 C13 H16 B F3	N10	
Empirical formula Formula weight	268.09	INZ	
Temperature	100 K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 1 21 1		
Unit cell dimensions	a = 5.6677(7) A		a= 90°
×7.1	b = 15.3928(16) c = 15.4429(18)	6) Å	$b = 98.957(6)^{\circ}$ $g = 90^{\circ}$
Volume	$1330.8(3) \text{ Å}^3$		
Z Density (aslaulated)	4 1 228 Ma/m^3		
Density (calculated) Absorption coefficient	1.338 Mg/m^3 0.920 mm^{-1}		
F(000)	560		
Crystal size	0.21 x 0.18 x 0	05 mm^3	
Theta range for data collection	2.897 to 78.467		
Index ranges	-7<=h<=7, -19		19<=l<=19
Reflections collected	53323		
Independent reflections	5657 [R(int) =	0.0403]	
Completeness to theta = 67.000°	100.0 %		_
Absorption correction	Semi-empirical	-	valents
Max. and min. transmission	1.0000 and 0.8		\mathbf{r}^2
Refinement method	Full-matrix lea	st-squares of	n F
Data / restraints / parameters	5657 / 1 / 375		
Goodness-of-fit on F^2	1.058 P1 = 0.0207 ==	$-D_{2} = 0.076$	- 7
Final R indices [I>2sigma(I)] R indices (all data)	R1 = 0.0307, W R1 = 0.0318, W		
R indices (all data) Absolute structure parameter	$R_1 = 0.0518$, w 0.08(3)	$1X_2 = 0.070$	טו
Extinction coefficient	n/a		
Largest diff. peak and hole	0.150 and -0.23	36 e.Å ⁻³	

Datablock: p17207


Bond precisi	ion:	C-C =	0.0031 A	Wavelength=1.54178
Cell:	a=5.6677	(7)	b=15.3928(16)	c=15.4429(18)
	alpha=90)	beta=98.957(6)	gamma=90
Temperature	:100 K			
		Calculat	ed	Reported
Volume		1330.8(3)	1330.8(3)
Space group		P 21		P 1 21 1
Hall group		P 2yb		P 2yb
Moiety formu	ula	C13 H16	B F3 N2	C13 H16 B F3 N2
Sum formula		C13 H16	B F3 N2	C13 H16 B F3 N2
Mr		268.09		268.09
Dx,g cm-3		1.338		1.338
Z		4		4
Mu (mm-1)		0.920		0.920
F000		560.0		560.0
F000'		562.00		
h,k,lmax		7,19,19		7,19,19
Nref		5722[29	71]	5657
Tmin,Tmax		0.824,0.	955	0.892,1.000
Tmin'		0.824		
Correction m AbsCorr = ML			T Limits: Tmin=0.	.892 Tmax=1.000
Data complet	teness= 1	.90/0.99	Theta(max)=	78.467
R(reflection	ns)= 0.03	07(5508)	wR2(refle	ections)= 0.0763(5657)
S = 1.058		Npar=	= 375	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B <u>PLAT410 ALERT 2 B</u> Short Intra H...H Contact H12B .. H6C . 1.84 Ang.

Author Response: H6C is a 15% occupied disordered site. There is presumably some accomodation by the phenyl ring part of the time.

♀Alert level G	
<u>PLAT301 ALERT 3 G</u> Main Residue Disorder(Resd 1)	16% Note
<u>PLAT720 ALERT 4 G</u> Number of Unusual/Non-Standard Labels	10 Note
<u>PLAT791 ALERT 4 G</u> The Model has Chirality at C6 (Chiral SPGR)	R Verify
<u>PLAT791 ALERT 4 G</u> The Model has Chirality at C6B (Chiral SPGR)	R Verify
PLAT912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600	5 Note
<u>PLAT978 ALERT 2 G</u> Number C-C Bonds with Positive Residual Density.	2 Info

Crystal data and structure refinement for organoborane 12:

Identification code	P17253	
Empirical formula	C11 H18 B N O2	
Formula weight	207.07	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P2 ₁	
Unit cell dimensions	a = 8.0292(3) Å	a= 90°.
	b = 19.3346(8) Å	$b = 106.631(2)^{\circ}$.
	c = 8.0293(3) Å	g = 90°.
Volume	1194.34(8) Å ³	0
Z	4	
Density (calculated)	1.152 Mg/m^3	
Absorption coefficient	0.611 mm^{-1}	
F(000)	448	
Crystal size	0.250 x 0.200 x 0.100 mr	n ³
Theta range for data collection	2.285 to 74.659°.	
Index ranges	-9<=h<=10, -24<=k<=24	, - 10<=l<=10
Reflections collected	15764	
Independent reflections	4783 [R(int) = 0.0592]	
Completeness to theta = 67.679°	100.0 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.7538 and 0.6598	2
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	4783 / 5 / 290	
Goodness-of-fit on F ²	1.109	
Final R indices [I>2sigma(I)]	R1 = 0.0592, wR2 = 0.14	53
R indices (all data)	R1 = 0.0624, wR2 = 0.14	96
Absolute structure parameter	0.07(10)	
Extinction coefficient	n/a	
Largest diff. peak and hole	$0.624 \text{ and } -0.287 \text{ e.}\text{\AA}^{-3}$	

Datablock: P17253

Bond precis	ion:	C-C =	0.0083 A		V	Vavelength=1.54178
Cell:	a=8.0292	2(3)	b=19.3346(8)	c=8.029	3(3)
)				
Temperature	:100 к				-	
		Calculat	ed			Reported
Volume		1194.34(8)			1194.34(8)
Space group		P 21				P 21
Hall group		P 2yb				P 2yb
Moiety form	ula	C11 H18	B N 02			?
Sum formula		C11 H18	B N 02			C11 H18 B N O2
Mr		207.07				207.07
Dx,g cm-3		1.152				1.152
Z		4				4
Mu (mm-1)		0.611				0.611
F000		448.0				448.0
F000'		449.28				
h,k,lmax		10,24,10				10,24,10
Nref		4856[25	03]			4783
Tmin,Tmax		0.864,0.	941			0.660,0.754
Tmin'		0.858				
Correction AbsCorr = M			T Limits:	Tmin=0.	660 Tmax	=0.754
Data comple						
R(reflectio	ns)= 0.05	92(4582)	wF	R2(refle	ctions)=	0.1496(4783)
S = 1.109		Npar=	290			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

●Alert level C

DIFMX02 ALERT 1 C The maximum difference density is > 0.1*ZMAX*0.75		
The relevant atom site should be identified.		
PLAT094 ALERT 2 C Ratio of Maximum / Minimum Residual Density	2.17	Report
PLAT097 ALERT 2 C Large Reported Max. (Positive) Residual Density	0.62	eA-3
PLAT340 ALERT 3 C Low Bond Precision on C-C Bonds	0.00831	Ang.
PLAT480 ALERT 4 C Long HA H-Bond Reported H1 03	2.61	Ang.
PLAT480 ALERT 4 C Long HA H-Bond Reported H2 03	2.62	Ang.
PLAT911 ALERT 3 C Missing # FCF Refl Between THmin & STh/L= 0.600	4	Report
·		
♀Alert level G		
Alert level G PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite	6	Note
		Note Report
PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite	1	
<u>PLAT002 ALERT 2 G</u> Number of Distance or Angle Restraints on AtSite <u>PLAT172 ALERT 4 G</u> The CIF-Embedded .res File Contains DFIX Records <u>PLAT720 ALERT 4 G</u> Number of Unusual/Non-Standard Labels	1 4	Report
PLAT002ALERT 2 GNumber of Distance or Angle Restraints on AtSitePLAT172ALERT 4 GThe CIF-Embedded .res File Contains DFIX RecordsPLAT720ALERT 4 GNumber of Unusual/Non-Standard LabelsPLAT791ALERT 4 GThe Model has Chirality at C8(Chiral SPGR)	1 4 R	Report Note
<u>PLAT002 ALERT 2 G</u> Number of Distance or Angle Restraints on AtSite <u>PLAT172 ALERT 4 G</u> The CIF-Embedded .res File Contains DFIX Records <u>PLAT720 ALERT 4 G</u> Number of Unusual/Non-Standard Labels	1 4 R R	Report Note Verify
PLAT002ALERT 2 GNumber of Distance or Angle Restraints on AtSitePLAT172ALERT 4 GThe CIF-Embedded .res File Contains DFIX RecordsPLAT720ALERT 4 GNumber of Unusual/Non-Standard LabelsPLAT791ALERT 4 GThe Model has Chirality at C8(Chiral SPGR)PLAT791ALERT 4 GThe Model has Chirality at C28(Chiral SPGR)PLAT860ALERT 3 GNumber of Least-Squares Restraints	1 4 R R	Report Note Verify Verify Note
PLAT002ALERT 2 GNumber of Distance or Angle Restraints on AtSitePLAT172ALERT 4 GThe CIF-Embedded .res File Contains DFIX RecordsPLAT720ALERT 4 GNumber of Unusual/Non-Standard LabelsPLAT791ALERT 4 GThe Model has Chirality at C8(Chiral SPGR)PLAT791ALERT 4 GThe Model has Chirality at C28(Chiral SPGR)	1 4 R 5 !	Report Note Verify Verify Note

XII. Supplemental References

L. Gao, B. C. Kang, D. H. Ryu, Catalytic asymmetric insertion of diazoesters into aryl– CHO bonds: highly enantioselective construction of chiral all-carbon quaternary centers. *J. Am. Chem. Soc.* **135**, 14556–14559 (2013).

2 C. Peng, Y. Wang, J. Wang, Palladium-catalyzed cross-coupling of α -diazocarbonyl compounds with arylboronic acids. *J. Am. Chem. Soc.* **130**, 1566–1567 (2008).

3 X. Gao, B. Wu, W.-X. Huang, M-W. Chen, Y-G. Zhou, Enantioselective palladiumcatalyzed C–H functionalization of indoles using an axially chiral 2,2'-bipyridine ligand. *Angew. Chem. Int. Ed.* **54**, 11956–11960 (2015).

4 Y. Tang, Q. Chen, X. Liu, G. Wang, L. Lin, X. Feng, Direct synthesis of chiral allenoates from the asymmetric C–H insertion of α -diazoesters into terminal alkynes. *Angew. Chem. Int. Ed.* **54**, 9512–9516 (2015).

5 G. Shi, Y. Xu, Trifluoromethyl-substituted carbethoxy carbene as a novel CF₃-containing a² synthon equivalent for the preparation of 2-(trifluoromethyl)-4-oxo carboxylic ester derivatives: highly functionalized synthetic building blocks bearing a CF₃ group. *J. Org. Chem.* **55**, 3383–3386 (1990).

6 E. Emer, J. Twilton, M. Tredwell, S. Calderwood, T. L. Collier, B. Liégault, M. Taillefer, V. Gouverneur, Diversity-oriented approach to CF_3CHF -, CF_3CFBr -, CF_3CF_2 -, $(CF_3)_2CH$ -, and $CF_3(SCF_3)CH$ -substituted arenes from 1-(diazo-2,2,2-trifluoroethyl)arenes. *Org. Lett.* **16**, 6004–6007 (2014).

7 A. Solovyev, S.-H. Ueng, J. Monot, L. Fensterbank, M. Malacria, E. Lacôte, D. P. Curran, Estimated rate constants for hydrogen abstraction from *N*-heterocyclic carbene–borane complexes by an alkyl radical. *Org. Lett.* **12**, 2998–3001 (2010).

8 X. Li, D. P. Curran, Insertion of reactive rhodium carbenes into boron–hydrogen bonds of stable *N*–heterocyclic carbene boranes. *J. Am. Chem. Soc.* **135**, 12076–12081 (2013).

9 S. Huang, X. Qi, T. Liu, K. Wang, W. Zhang, J. Li, Q. Zhang, Towards safer rocket fuels: hypergolic imidazolylidene-borane compounds as replacements for hydrazine derivatives. *Chem. Eur. J.* **22**, 10187–10193 (2016).

10 M.-H. Wang, L.-Y. Chen, An efficient FeCl₃-mediated approach for reduction of ketones through *N*-heterocyclic carbene boranes. *Tetrahedron Lett.* **58**, 732–735 (2017).

11 S.-C. Ren, F.-L. Zhang, J. Qi, Y.-S. Huang, A.-Q. Xu, H.-Y. Yan, Y-F. Wang, Radical borylation/cyclization cascade of 1,6-enynes for the synthesis of boron-handled hetero- and carbocycles. *J. Am. Chem. Soc.* **139**, 6050–6053 (2017).

12 J.-M. Yang, Z.-Q. Li, M.-L. Li, Q. He, S.-F. Zhu, Q.-L. Zhou, Catalytic B–H bond insertion reactions using alkynes as carbene precursors. *J. Am. Chem. Soc.* **139**, 3784–3789 (2017).

13 D. Sterk, M. Stephan, B. Mohar, Highly enantioselective transfer hydrogenation of fluoroalkyl ketones. *Org. Lett.* **8**, 5935–5938 (2006).

14 J. Y. Hamilton, B. Morandi, E. M. Carreira, Homologative trifluoromethylation of acetals. *Synthesis* **45**, 1857–1862 (2013).

15 G. M. Sheldrick, Phase annealing in SHELX-90: Direct methods for larger structures. *Acta Cryst.* **A46**, 467–473 (1990).

16 G. M. Sheldrick, Crystal structure refinement with SHELXL. *Acta Cryst.* **C71**, 3–8 (2015).

17 P. Müller, Practical suggestions for better crystal structures. *Crystallogr. Rev.* **15**, 57–83 (2009).

18 S. Parsons, H. D. Flack, T. Wagner, Use of intensity quotients and differences in absolute structure refinement. *Acta Cryst.* **B69**, 249–259 (2013).

19 R. W. W. Hooft, L. H. Straver, A. L. Spek, Using the *t*-distribution to improve the absolute structure assignment with likelihood calculations. *J. Appl. Cryst.* **43**, 665–668 (2010).