145 research outputs found

    Prediction of Traffic Complexity and Controller Workload in Mixed Equipage NextGen Environments

    Get PDF
    Controller workload is a key factor in limiting en route air traffic capacity. Past efforts to quantify and predict workload have resulted in identifying objective metrics that correlate well with subjective workload ratings during current air traffic control operations. Although these metrics provide a reasonable statistical fit to existing data, they do not provide a good mechanism for estimating controller workload for future air traffic concepts and environments that make different assumptions about automation, enabling technologies, and controller tasks. One such future environment is characterized by en route airspace with a mixture of aircraft equipped with and without Data Communications (Data Comm). In this environment, aircraft with Data Comm will impact controller workload less than aircraft requiring voice communication, altering the close correlation between aircraft count and controller workload that exists in current air traffic operations. This paper outlines a new trajectory-based complexity (TBX) calculation that was presented to controllers during a human-in-the-loop simulation. The results showed that TBX accurately estimated the workload in a mixed Data Comm equipage environment and the resulting complexity values were understood and readily interpreted by the controllers. The complexity was represented as a "modified aircraft account" that weighted different complexity factors and summed them in such a way that the controllers could effectively treat them as aircraft count. The factors were also relatively easy to tune without an extensive data set. The results showed that the TBX approach is well suited for presenting traffic complexity in future air traffic environments

    Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    Get PDF
    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts

    Esterases in marine dinoflagellates and resistance to the organophosphate insecticide parathion

    Get PDF
    Esterases are involved in the susceptibility or resistance of organisms to organophosphate pesticides. We have examined the action of parathion on the marine dinoflagellates Crypthecodinium cohnii and Prorocentrum micans by looking at their esterases. One-dimensional gel electrophoresis, immunoblotting and cytochemistry plus image analysis were used to characterize the nature and distribution of the enzymes. Esterases were found in both species, but there appeared to be no particular intracellular localization. The esterase activity of the heterotrophic species Crypthecodinium cohnii was 30-fold greater than that of the autotrophic Prorocentrum micans and had an antigenic site in common with mosquito esterase. The resistance of Crypthecodinium cohnii to parathion was specific and reversible. Less parathion entered the parathion-resistant Crypthecodinium cohnii cells than the untreated control cells. Parathion-resistant cell extracts of Crypthecodinium cohnii analyzed after immunoblotting also contained an additional band of esterase activity. These results confirm the importance of esterases in toxicological studies of organophosphate insecticides, especially those of marine dinoflagellates

    Physico-Chemical Characteristics of Lipoplexes Influence Cell Uptake Mechanisms and Transfection Efficacy

    Get PDF
    Background: Formulation of DNA/cationic lipid complexes (lipoplexes) designed for nucleic acid delivery mostly results in positively charged particles which are thought to enter cells by endocytosis. We recently developed a lipoplex formulation called Neutraplex that allows preparation of both cationic and anionic stable complexes with similar lipid content and ultrastructure. Methodology/Principal Findings: To assess whether the global net charge could influence cell uptake and activity of the transported oligonucleotides (ON), we prepared lipoplexes with positive and negative charges and compared: (i) their physicochemical properties by zeta potential analysis and dynamic light scattering, (ii) their cell uptake by fluorescence microscopy and flow cytometry, and (iii) the biological activity of the transported ON using a splicing correction assay. We show that positively or negatively charged lipoplexes enter cells cells using both temperature-dependent and-independent uptake mechanisms. Specifically, positively charged lipoplexes predominantly use a temperature-dependent transport when cells are incubated OptiMEM medium. Anionic lipoplexes favour an energy-independent transport and show higher ON activity than cationic lipoplexes in presence of serum. However, lipoplexes with high positive global net charge and OptiMEM medium give the highest uptake and ON activity levels. Conclusions: These findings suggest that, in addition to endocytosis, lipoplexes may enter cell via a temperatureindependen

    A Human-in-the Loop Exploration of the Dynamic Airspace Configuration Concept

    Get PDF
    An exploratory human-in-the-loop study was conducted to better understand the impact of Dynamic Airspace Configuration (DAC) on air traffic controllers. To do so, a range of three progressively more aggressive algorithmic approaches to sectorizations were chosen. Sectorizations from these algorithms were used to test and quantify the range of impact on the controller and traffic. Results show that traffic count was more equitably distributed between the four test sectors and duration of counts over MAP were progressively lower as the magnitude of boundary change increased. However, taskload and workload were also shown to increase with the increase in aggressiveness and acceptability of the boundary changes decreased. Overall, simulated operations of the DAC concept did not appear to compromise safety. Feedback from the participants highlighted the importance of limiting some aspects of boundary changes such as amount of volume gained or lost and the extent of change relative to the initial airspace design

    Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    Get PDF
    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures

    Feasibility of Mixed Equipage Operations in the Same Airspace

    Get PDF
    This study used a human-in-the-loop simulation to examine the feasibility of mixed equipage operations in an automated separation assurance environment under higher traffic densities. The study involved two aircraft equipage alternatives with and without data link and four traffic conditions. In all traffic conditions the unequipped traffic count was increased linearly throughout the scenario from approximately 5 to 20 aircraft. Condition One consisted solely of this unequipped traffic, while the remaining three conditions also included a constant number of equipped aircraft operating within the same airspace: 15 equipped aircraft in condition two, 30 in condition three, and 45 in condition four. If traffic load became excessive during any run, participants were instructed to refuse sector entry to inbound unequipped aircraft until sector load became manageable. Results showed a progressively higher number of unequipped aircraft turned away under the second, third, and fourth scenario conditions. Controller workload also increased progressively. Participants rated the mixed operations concept as acceptable, with some qualifications about procedures and information displays. These results showed that mixed operations might be feasible in the same airspace, if unequipped aircraft count is held to a workable level. This level will decrease with increasing complexity. The results imply that integrated airspace configuration is feasible to a limit. The results also indicate that the conflict detection and resolution automation, equipage, and traffic density are important factors that will need to be considered for airspace configuration

    Human Centered Decision Support Tools for Arrival Merging and Spacing

    Get PDF
    A simulation of terminal area merging and spacing with air traffic controllers and commercial flight crews was conducted. The goal of the study was to assess the feasibility and benefits of ground and flight-deck based tools to support arrival merging and spacing operations. During the simulation, flight crews arrived over the northwest and southwest arrival meter fixes and were cleared for the flight management system arrivals to runways 18 and 13 right. The controller could then clear the aircraft to merge behind and space with an aircraft on a converging stream or to space behind an aircraft on the same stream of traffic. The controller remained responsible for aircraft separation. Empirical research was performed to assess air and ground tools and the effects of mixed equipage. During the all tools conditions, 75% of the arrivals were equipped for merging and spacing. All aircraft were ADS-B equipped and flew charted FMS routes which were coordinated based on wake turbulence separation at the arrival runway. The aircraft spacing data indicate that spacing and merging were improved with either air or ground based merging and spacing tools, but performance was best with airborne tools. Both controllers and pilots exhibited low to moderate workload and both reported benefits from the concept

    A Human-in-the-Loop Evaluation of Multi-Sector Planning in Mixed Equipage Airspace (MSP III)

    Get PDF
    A human-in-the-loop (HITL) simulation was conducted in May 2010 to determine the feasibility and value 01 conducting multi-sector planning (MSP) operations in a mixed equipage environment. Aircraft were categorized as equipped or unequipped based on the presence or absence of an air-ground data communications (Data Comm) capability for receiving auto-loadable clearances and transfer of communication messages from the air navigation service provider (ANSP). The purpose of the study was to determine the feasibility and possible benefits of introducing multi-sector planning in a mixed equipage context, or whether Data Comm equipage was required for MSP operations. Each test scenario presented one of three different equipage levels to the controllers (10%, 50% or 90% equipped aircraft), so that the operational impact of different equipage levels could be observed. Operational feasibility assessment addressed two related questions: (1) are MSP operations feasible for unequipped aircraft, and (2) are they feasible in a mixed equipage context. Similarly, two categories of potential benefits were explored: (1) system performance improvements (e.g., throughput, workload) associated with MSP at different equipage levels, and (2) the possibility of providing differential service for equipage through MSP operations. Tool requirements (for both planning and controller stations), as well as planning and coordination procedures - within facility (traffic management unit/operational area) and within sector (R-Side/D-Side) - were two other topics addressed in the study. Overall, results suggested that MSP operations were feasible in a mixed equipage environment and that the tools were effective with both equipped and unequipped aircraft. Using the MSP tools, traffic management coordinators were able to manage controller task load, effectively balancing throughput with complexity and controller task load at each of the three equipage levels tested

    Measuring the Average Evolution of Luminous Galaxies at z<3: The Rest-frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density

    Get PDF
    (Abridged) We present the evolution of the volume averaged properties of the rest-frame optically luminous galaxy population to z~3, determined from four disjoint deep fields with optical to near-infrared wavelength coverage. We select galaxies above a rest-frame V-band luminosity of 3x10^10 Lsol and characterize their rest-frame UV through optical properties via the mean spectral energy distribution (SED). To measure evolution we apply the same selection criteria to a sample of galaxies from the Sloan Digital Sky Survey and COMBO-17. The mean rest-frame 2200Ang through V-band SED becomes steadily bluer with increasing redshift but at z<3 the mean SED falls within the range defined by ``normal'' galaxies in the nearby Universe. We measure stellar mass-to-light ratios (Mstar/L) by fitting models to the rest-frame UV-optical SEDs and derive the stellar mass density. The stellar mass density in luminous galaxies has increased by a factor of 3.5-7.9 from z=3 to z=0.1, including field-to-field variance uncertainties. After correcting to total, the measured mass densities at z<2 lie below the integral of the star formation rate (SFR) density as a function of redshift as derived from UV selected samples. This may indicate a systematic error in the mass densities or SFR(z) estimates. We find large discrepancies between recent model predictions for the evolution of the mass density and our results, even when our observational selection is applied to the models. Finally we determine that Distant Red Galaxies (selected to have J_s - K_s>2.3) in our LV selected samples contribute 30% and 64% of the stellar mass budget at z~2 and z~ 2.8 respectively. These galaxies are largely absent from UV surveys and this result highlights the need for mass selection of high redshift galaxies.Comment: Accepted for publication in the Astrophysical Journal, 24 pages, 16 figure
    corecore