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Executive Summary 

Purpose 
A human-in-the-loop (HITL) simulation was conducted in May 2010 to determine the feasibility and value of 

conducting multi-sector planning (MSP) operations in a mixed equipage environment. Aircraft were categorized as 

equipped or unequipped based on the presence or absence of an air-ground data communications (Data Comm) 

capability for receiving auto-loadable clearances and transfer of communication messages from the air navigation 

service provider (ANSP). The purpose of the study was to determine the feasibility and possible benefits of 

introducing multi-sector planning in a mixed equipage context, or whether Data Comm equipage was required for 

MSP operations. Each test scenario presented one of three different equipage levels to the controllers (10%, 50% 

or 90% equipped aircraft), so that the operational impact of different equipage levels could be observed.  

Operational feasibility assessment addressed two related questions: (1) are MSP operations feasible for 

unequipped aircraft, and (2) are they feasible in a mixed equipage context. Similarly, two categories of potential 

benefits were explored: (1) system performance improvements (e.g., throughput, workload) associated with MSP 

at different equipage levels, and (2) the possibility of providing differential service for equipage through MSP 

operations. Tool requirements (for both planning and controller stations), as well as planning and coordination 

procedures – within facility (traffic management unit/operational area) and within sector (R-Side/D-Side) – were 

two other topics addressed in the study.  

Findings 
The following list summarizes the experimental findings covered in this report, along with the results that support 

them.  

1. MSP operations were feasible in a mixed equipage environment. 

o Trajectory coordination was demonstrated to be feasible for unequipped aircraft. Planners (traffic 

management coordinators or area supervisors) and controllers sent a total of 1595 coordinated 

clearance requests during the simulation, 1026 for unequipped aircraft. Out of the 1595 requests, 

1574 were accepted and executed by their receiver (3.3.1).  

o Mixed equipage operations were feasible. Traffic management coordinators (TMCs) did a good job of 

managing controller task load, and were able to effectively balance throughput with sector 

complexity / task load at each equipage level (3.2.1, Figure 14; 3.5.1, Figure 26). 

o Operator feedback indicated that operations for mixed equipage multi-sector planning, and for 

unequipped aircraft trajectory coordinated clearances, were feasible and acceptable at all equipage 

levels. In general, post-run ratings of different task load measures were increasingly positive with 

increasing equipage levels (3.5.3, Figure 27, Table 12).  

Some caveats: 

o When explicitly asked in post-run questionnaires, some operators reported equipage-related 

confusion during the 50% runs. The 50% condition also received the highest mean post-run 

“frustration” rating from all participants, and the worst ratings from area supervisors on most of the 

other post-run task load measures (Table 12, 3.5.2- 3.5.4).  



MSP3_Report_3-2-11 3/2/2011 6 

o There were 7 cases where the wrong input action was used to execute a clearance for an equipped 

aircraft. Although input errors were also observed on other tasks, mixed equipage operations may 

have been a contributing factor to these particular errors, since the controllers had primarily been 

working on unequipped aircraft when they made these mistakes. (3.3.5, Tables 8 and 9). 

2. Multi-sector planning operations supported priority handling of equipped aircraft.  

o Equipped aircraft were allowed greater access to congested airspace, showing consistently higher 

test sector throughput for equipped aircraft was observed when compared to unequipped aircraft, 

indicating that planners were selectively rerouting unequipped flights to reduce test sector 

complexity. (Results section 3.2.1, Figure 15 and Table 3). 

o Controllers moved unequipped aircraft more frequently when solving a mixed equipage conflict, 

allowing the equipped aircraft to fly its original route without interruption. (3.3.3, Figure 21). 

o Flight path increases were larger for unequipped aircraft in all runs at all equipage levels (3.2.2, Figure 

19). 

3. Higher equipage levels resulted in higher sector throughput with lower controller workload.  

o Total test airspace throughput increased with increasing equipage levels. (3.2.1, Figure 14). 

o Although, on average, radar controller and radar associate workload was acceptable across all three 

equipage levels, their workload decreased as equipage level increased. (3.5.1, Figure 26). 

o TMC and area supervisor workload was lowest at the highest equipage level (90%), and on average 

was acceptable across equipage levels (3.5.1, Figure 26). 

4. Tools and procedures were effective and satisfactory for mixed equipage operations. 

o Both TMCs and controllers developed the majority of their coordinated clearances (CCs) for 

unequipped aircraft. 219 of the 229 CCs sent to test sectors were accepted (3.3.1). 

o Most CCs received by test sectors were sent from other controller positions (166 of 229). Controllers 

used the CC function for both within sector and between sector clearance coordination (3.3.3).  

o Participant self-ratings of workload and performance were satisfactory at all equipage levels (3.5.2, 

Table 12). 

o TMCs gave usability and usefulness ratings of 5.5 to 6, on a 1 (not usable/useful) to 6 (very 

usable/useful) scale, for coordinated clearance and trial planning functions for both equipage types 

(3.6.2, Figure 31, Figure 32, & Figure 33).  

o Controllers gave positive usefulness and usability ratings to all of the key tools for developing and 

coordinating clearances for both equipped and unequipped aircraft (3.6.1, Figure 28, Figure 29).  

5. Insights were gained on both R-D and TMU-Supervisor task distribution.  

o TMCs performed far more multi-sector trial planning and coordinated clearance (CC) functions 

(sending more than 13 times as many CC requests) than area supervisors (3.3.1., Table 5). 
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o The supervisory TMC determined, divided, and assigned MSP responsibilities between the other two 

TMCs and took care of within and between Center verbal coordination (3.5.6). 

o TMCs’ multi-sector planning roles were most often divided by geographic area, task (e.g., weather vs. 

volume), or altitude strata. TMCs reported that division by altitude strata seemed to result in the 

least duplication of effort (3.5.6). 

o The radar associate routinely used the tools to trial plan and send clearances for unequipped aircraft 

to his own radar controller to voice up to the aircraft (3.3.4, Tables 6 and 7, 3.5.6, Tables 13 and 14). 

o Division of other duties between radar controller – radar associate pairs was more varied, and 

depended on radar controller personal preferences, and with equipage level (3.5.6). 

Major Conclusions 

Overall, the results suggested that MSP operations were feasible in a mixed equipage environment and that the 

MSP tools were effective with both equipped and unequipped aircraft. Using the MSP tools, traffic management 

coordinators were able to manage controller task load, effectively balancing throughput with complexity and 

controller task load at each of the three equipage levels tested. Also across equipage levels, mean reported task 

and workload remained tolerable and operational acceptability was reported to be satisfactory. Although reported 

frustration and confusion were comparatively higher at the 50% equipage level than at the other levels, overall the 

50% mix was believed to be workable.  

Benefits were observed both in terms of system performance and operational support for a best equipped best 

served (BEBS) policy of air traffic management. As equipage level increased, throughput increased, even as 

controller workload decreased. MSP operations effectively supported priority service for equipped aircraft; more 

equipped than unequipped aircraft were routed through the test airspace and unequipped aircraft received a 

greater increase in flight path length.  

Other operational procedures established throughout the simulation suggested that the bulk of multi-sector 

planning – that is, trial planning and clearance coordination – can be effectively carried out by the traffic 

management unit (TMU), with operational area supervisors performing these functions far less often. Within the 

TMU, the division of specific MSP roles and responsibilities by the supervisory traffic management coordinator 

(STMC) among the traffic management coordinators (TMCs) remained flexible, with divisions by altitude strata, 

geographic area, and airspace problem (e.g, weather constraint or traffic volume) all possible contingent on the 

situation. On a more tactical scale, radar controllers and associates also found the MSP tools useful and effective 

for trial planning and coordinating clearances within their own and with other sectors. Other than voice 

communication with aircraft which was always performed by the radar controller, the division of other roles and 

responsibilities between radar controllers and associates varied by sector team and by equipage level. 

 In summary, the MSP concept, as operationalized, prototyped, and tested in this simulation, appears both feasible 

and beneficial in a mixed equipage environment. 
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1 Introduction 
Introduction of NextGen communication, navigation and air traffic management technologies – air-ground data 

communications and satellite-based navigation systems; new air traffic control and traffic management tools – 

provide an opportunity to move away from today’s methods for controlling aircraft along fixed route structures, 

and towards more active management of en route aircraft trajectories. This shift towards trajectory-based 

operations will allow greater flexibility in modifying traffic flows to current conditions, which can improve both 

user and airspace efficiency.
1-2

 If the tools and procedures for trajectory and flow management are sufficiently 

responsive, trajectory-based operations should also allow the air traffic system to respond more effectively to 

changes that occur within a 20-90 minute timeframe, thus becoming more robust to local disruptions such as 

weather or traffic congestion.  

This move away from sector-oriented air traffic control towards local area or flow-based trajectory management 

will require new tools and procedures for situation assessment and trajectory management, along with changes to 

roles and responsibilities within the en route facility team. For example, the current methods for trajectory 

modification available to traffic management are too limited, and the sector controller’s geographic and temporal 

scope is too narrow, to support effective flow intervention in the proposed 20-90 minute timeframe. An 

operational framework for strategic trajectory clearance development from a non-controller station would satisfy 

this need.  

The multi-sector planner (MSP) concept explored in this simulation is a process for developing strategic trajectory 

clearances that address local flow management objectives. Decision support automation is used to identify and 

assess local area problems, and to solve them by modifying the trajectories of one or several aircraft. Solutions are 

coordinated as needed between traffic management and the operational area to make sure they are compatible 

with any existing constraints. MSP operations address situations that extend beyond the controller’s planning 

horizon (e.g., downstream weather, traffic complexity, excess sector load), and are therefore developed from a 

non-controller planning position that can take a more strategic, “multi-sector” perspective. Proposed clearances 

are sent to the controller, using ground-ground data exchange capabilities, for review and delivery to the aircraft.  

1.1 Background 
The MSP concept evolved through a series of studies that explored the introduction of a new “multi-sector 

planner” position into the United States National Airspace System (NAS).
3-10 

The multi-sector planner concept had 

been a topic of research in both Europe and the United States since the mid-1990s, with varying roles and 

responsibilities proposed for this new position.
11-24 

In an FAA-sponsored study that was completed in 2006, two 

alternative concepts were developed and compared for feasibility and effectiveness. In one concept, the multi-

sector planner worked from a remote location, acting as a single radar associate (or D-Side) controller who 

supported several sectors’ operations. An alternative concept defined the MSP as a local area flow planner, 

responsible for managing sector load and complexity by selectively modifying trajectories or negotiating trajectory 

changes for aircraft. A human-in-the-loop (HITL) simulation was conducted in 2006 to compare these two concepts 

to a baseline condition that had radar associates for each sector and no multi-sector planner.
3-5

 Results indicated 

that the area flow planner concept was preferred, and provided satisfactory support for sector operations.  

A follow-on research collaboration between NASA and the FAA began in 2007 to develop the area flow planner 

concept in the following areas: 

1. Defining roles and responsibilities for a new multi-sector planner position within the air navigation service 

provider (ANSP) team, along with corresponding changes to other team positions (traffic management 

coordinator (TMC), area supervisor and radar controller); 
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2. Developing communication and coordination procedures, and communication infrastructure 

requirements for multi-sector planning operations;  

3. Developing an integrated set of multi-sector planning decision support tools for situation assessment, 

trajectory/flow manipulation, and plan coordination. 

A 2009 HITL simulation tested this expanded concept for multi-sector planning operations, comparing test 

performance with and without the addition of a dedicated multi-sector planner position. This study found multi-

sector planning to be feasible and effective in both conditions. Although improved performance in sector load 

management (both traffic count and complexity) was observed in the condition that added the new multi-sector 

planner position, this improvement was attributed to increased team size (thus better task load distribution), and 

not to the new position itself. The need for creating a new position was not conclusively demonstrated. The 

alternative, simpler solution of integrating multi-sector planning operations into the existing ANSP team appeared 

satisfactory and would likely be easier to integrate into individual facility operations.
6-10

  

1.2 2010 Simulation  
The 2009 study investigated MSP operations in an environment where all aircraft were equipped with an air-

ground data communications (Data Comm) capability. This simulation decision was based on the assumption that 

Data Comm equipped aircraft would be well represented within NAS in the NextGen Mid-Term (2018) timeframe, 

and thus a Data Comm requirement for entry into high performance en route airspace would be reasonable. With 

changes in the economy, however, the transition to DataComm seems likely to proceed more slowly, raising 

interest in assessing high altitude Mid-Term concepts for their suitability in a mixed equipage environment. 

While the 2009 simulation indicated that MSP operations showed promise in a full Data Comm environment, it was 

unclear whether Data Comm was required for MSP. The follow-on HITL simulation reported in this document was 

conducted in May 2010 to investigate MSP operations in a mixed equipage environment. Aircraft were categorized 

as “equipped” or “unequipped” based on the presence or absence of a Data Comm capability that enabled them to 

receive auto-loadable clearances and communications transfer messages from the ANSP. The purpose of this study 

was to determine the feasibility and possible benefits of introducing MSP in a mixed equipage context, where not 

all aircraft were Data Comm equipped. Conclusions from the study will inform FAA decisions about the timing, 

purpose, and appropriate operational environment for introduction of MSP operations. 

1.2.1 Objectives and Research Questions 

The study was conducted to test the feasibility and benefits of MSP operations in a mixed equipage environment, 

and to determine the tool and procedure enhancements needed to support those operations. The operational 

feasibility assessment addressed two related questions: (1) are MSP operations feasible for unequipped aircraft, 

and (2) are they feasible in a mixed equipage context. Similarly, two categories of potential benefits were explored: 

(1) system performance improvements associated with MSP at different equipage levels (e.g., airspace throughput 

and controller workload), and (2) the possibility of providing variable service for equipage through MSP operations. 

Tool requirements (for both planning and controller stations), as well as planning and coordination procedures – 

within facility (TMU-to-operational area) and within sector (R-to-D) – were two other topics addressed in the 

study.  

1.2.2 Approach 

The simulation was planned as a “downsized” one week follow-on to the 2009 study, using a reduced airspace and 

fewer participants, but similar traffic problems. Controller and planner tool capabilities were adapted for 

unequipped aircraft and for a mixed equipage environment, and procedures were modified to distribute planning 
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responsibilities between the operational area and the traffic management unit (TMU) without dedicated MSP 

positions. Radar associate positions were also staffed in this simulation because of the increased workload 

associated with unequipped aircraft.  

Simulation scenarios and operational procedures were developed to investigate MSP mixed equipage operations 

with respect to three specific operational objectives:  

1. Local area traffic count and complexity management, 

2. Convective weather contingency management, and 

3. Ability to provide aircraft differential service for equipage. 

The concept and procedures that were designed to support these three objectives are described in section 1.3. 

1.3 MSP3 Concept for Mixed Equipage Airspace 
The multi-sector planning concept investigated in this simulation is a tool-supported process for solving local area 

problems by selectively modifying the trajectories of one or more aircraft. Figure 1 describes the nominal event 

sequence for multi-sector planning to address a local situation such as convective weather or sector overload, and 

illustrates how it is coordinated between the TMU and the operational area teams.  

1.3.1 Roles and Responsibilities 

The specific responsibilities of the individual positions as illustrated in Figure 1 can be summarized as follows:  

 Area supervisors and traffic management monitor local traffic situations, identify problems and respond 

to external requests (e.g., traffic management initiatives or reroute requests from other facilities or the 

Command Center). 

 The TMC plans trajectory change clearance requests, coordinating with area supervisor and others. 

Depending on problem scope, the TMU team may further divide the task. For example, an STMC may 

coordinate the plan with one or more TMCs who will develop the actual trajectory reroutes. If the reroute 

occurs more than 30 minutes downstream, a trajectory clearance may be sent by the TMC directly to 

the Data Comm equipped aircraft, otherwise it is sent as a coordinated clearance (CC) request to the 

controller for review and execution.  

 The area supervisor manages plan execution by controllers. The area supervisor may also use planning 

tools to develop and coordinate within-area trajectory changes. 

 Controllers review CC requests and execute if suitable. 

1.3.2 Decision Support Tools  

Decision support tools are needed to support MSP operations in three areas: situation assessment, multi-

trajectory trial planning, and coordination.  

Situation assessment (SA) tools enable traffic management and operational area supervisors to monitor local 

traffic, identify problems and evaluate solution options. Traffic flows, convective weather, sector load and 

complexity predictions are some of the monitored parameters.  

Multi-trajectory trial planning tools located at a (non-controller) planning workstation support the development of 

strategic trajectory-change clearances for one or several aircraft. Trial planning is integrated with the SA tools so 
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the planner can determine whether the changes meet flow management objectives, and assess their impact on 

local sectors.  

Coordination tools enable proposed plans and clearances to be shared using ground-ground data exchange 

automation. Data exchange functionality is integrated with the planning tools so that multi-trajectory trial plans 

can be sent to other planning stations or to the area supervisors for review. Finally, proposed “coordinated 

clearance” (CC) requests are sent from the planning station to the controller for review and execution, using 

ground-ground data exchange capabilities that are integrated with the controller’s trial planning, conflict probe, 

and Data Comm automation.  

Figure 1. Nominal representation of multi-sector planning operations for local traffic management. 

1.3.3 Mixed Equipage Operations 

Trajectory planning operations are used to develop reroutes for both equipped and unequipped aircraft. 

Coordinated clearance requests for unequipped aircraft use a format suitable for voice delivery, thus the trajectory 
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Area 3 controllers can execute plan. 

Area 3 

5.  TMU prepares and sends 3 coordinated clearance (CC) 
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MSP

2 
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clearance options are more limited (i.e., a clearance defined by a sequence of lat/long coordinates is not feasible 

with voice). Data Comm equipage also enables automated transfer of communication, reducing controller task 

load associated with sector entry and exit. These differences – reduced clearance options, voice requirement for 

clearance delivery and transfer of communications – mean that unequipped aircraft create more workload for 

controllers than equipped aircraft. Equipage-based differences also influence the planner’s decision making 

regarding whom to reroute for sector load management, and timing and alternatives for convective weather 

management, as described below.  

A mixed equipage environment also provides a chance to offer service for equipage. This seems a reasonable 

additional objective for MSP operations: since the planning team does not have the same immediate separation 

and control responsibilities as the radar controller, they can focus on other issues when addressing local area 

problems. The radar controller continues to prioritize safety and local airspace efficiency. 

1.3.4 Sector Load Management  

Maintaining sector load within manageable limits represents both an MSP objective in its own right and a 

constraint on other flow management actions. Area supervisors and traffic management use SA tools to monitor 

the local traffic situation, particularly the predicted aircraft count and complexity for sectors of interest. Traffic 

management also monitors external situations that may have a local area impact. When solutions are developed, 

one constraint is that aircraft reroutes maintain or achieve an acceptable load distribution among sectors.  

Because of the increased controller workload associated with unequipped aircraft, a strategy that preferentially 

reroutes unequipped aircraft away from the problem area can be an effective way for planners to manage sector 

load. This strategy can result in fewer aircraft being rerouted overall, and has the added benefit of providing 

service to the equipped aircraft in the form of access to constrained airspace.  

1.3.5 Convective Weather Traffic Management  

MSP operations are used to develop reroutes for convective weather. Planners assign the unequipped aircraft 

strategic "playbook"-type routes that avoid both weather and equipped aircraft. The planner may also develop 

custom weather-avoidance trajectories for equipped aircraft. Trajectories for equipped aircraft can also be “fine-

tuned” later by the controller if the situation is uncertain. This increased flexibility can provide better service, and 

is feasible because Data Comm supports the development and delivery of more complex solutions.  

1.3.6 Priority Service for Equipped Aircraft 

As described in the preceding sections, MSP complexity management and weather avoidance strategies naturally 

favor the Data Comm equipped aircraft, and trajectory-based solutions in general can be designed to provide 

priority service to equipped aircraft. This may, for example, involve providing them preferred access to constrained 

resources, e.g., rerouting unequipped aircraft instead of equipped aircraft to reduce sector load or complexity or 

giving an equipped aircraft priority access to a preferred weather avoidance route. Note that both of these choices 

can benefit system efficiency as well, since these aircraft require less effort from the controller and thus increase 

resource capacity. 

Controllers may also apply “service for equipage” conflict resolution strategies (i.e., move the unequipped aircraft 

first) on a workload-permitting basis, which they were encouraged to do during the simulation.  

1.3.7 Key Mixed Equipage Concept Decisions 

Many elements of the MSP concept features described above had alternative solutions. Some key choices that 

were made for the simulation, along with their rationale, include the following:  
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 Trajectory clearances and coordinated clearance requests would be provided for all aircraft. An alternative 

approach would have been to provide trajectories for equipped aircraft only. This would have given the 

planners less flexibility in solution development, and risked penalizing equipped aircraft since they were the 

only practical choice when rerouting was needed.  

 Graphical trial plan tools support trajectory development using named waypoints for unequipped aircraft. 

Named waypoints support voice clearance delivery and facilitate ground-ground verbal and data coordination, 

and a graphical trial plan interface might make this a more practical clearance for the controller to use. If so, it 

provides a means to introduce limited trajectory-based operations (TBO) for unequipped aircraft.  

 Controllers are encouraged to keep all aircraft on known trajectories. This involves issuing route clearances to 

unequipped aircraft when possible instead of heading clearances, and amending the ATC system entry as 

needed to maintain close conformance with the flown trajectory. While this adds to the controllers’ workload, 

it improves the prediction accuracy of applications that rely on up-to-date trajectories (e.g., conflict 

detection). On balance, it seemed useful to explore the feasibility of maintaining trajectory conformance for 

unequipped flights. 

 

 Simulation operations support NextGen ”service for equipage” objective.
 
There were at least two alternatives 

that could have been adopted. With an “equipage blind” approach, planners and controllers might ignore 

aircraft equipage and choose the most expedient solution to a given problem. An “equipage neutral” approach 

could actively seek to insure that neither equipage type receives better (or worse) treatment. The “service for 

equipage” approach was selected because there was interest in exploring its feasibility (in terms of overall 

efficiency and impact on unequipped flights) and its compatibility with multi-sector planning operations. In 

addition, as mentioned above, a service for equipage approach can provide other system benefits such as 

increased system throughput and  reduced controller workload. 

 Radar associate present to assist with added workload and complexity. The ratio of equipped to unequipped 

aircraft was a key independent variable in the simulation, with different scenarios having 10%, 50% or 90% 

equipage levels. A radar associate position was added so the same traffic levels used in the 2009 simulation 

could be maintained in spite of the increased sector complexity and workload, especially in the 10% equipage 

case. It also allowed participants to explore different ways of dividing the tasks when both controllers had 

equivalent tool sets, and to see how task distribution might vary with equipage level. 
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2 Methods 

2.1 Test Plan 
Overview. A 1-week study was conducted to evaluate MSP operations in a mixed equipage environment. The 

week included two travel days, 1 day of training, and 2 days of data collection. Eight 60-minute data collection runs 

were completed. During each run, an ANSP team was presented with a combined convective weather and traffic 

load problem within four high altitude en route sectors and the surrounding airspace.  

The ANSP team included traffic management personnel, area supervisors and air traffic controllers. Six staff 

members from FAA air traffic facilities who currently work as operational area or traffic management supervisors 

participated in the study. Retired Oakland Center controllers staffed the remaining ANSP positions.  

A detailed description of the simulation airspace, staffed positions, scenarios and test matrix are provided below.  

Airspace. The test airspace (Figure 2) included four test sectors on the eastern end of Kansas City Center (ZKC), 

and was divided into two areas: ZKC-North (sectors 94 and 98) and ZKC-South (sectors 29 and 90). The traffic flow 

management problem, which extended into the surrounding ghost airspace, included convective weather in 

Indianapolis and Chicago Centers. The floor of the full simulation airspace – test sectors + ghost airspace – was 

FL290. 

Figure 2. Simulation test airspace 

Staffed positions. ANSP positions were staffed in both the TMU and the operational area. The ZKC traffic 

management team included two traffic management coordinators (TMCs) and one supervisory TMC (STMC). ZKC-

North and ZKC-South each had an area supervisor and shared a “supervisor’s assistant." Test sectors were staffed 

by a 2-person team consisting of a radar controller (R-Side) and a radar associate (D-Side). One TMC and three 

controllers managed the ghost airspace. Controller positions are shown in Figure 3. The supervisory and traffic 

management staff, who collectively comprise the multi-sector planning team, and have access to planning 

workstations, are shown in Figure 4.  

Six current FAA facility personnel were test participants. Two worked as ZKC area supervisors, two were radar 

controllers (sectors 29 and 94), and two alternated between ZKC TMC and STMC positions. The remaining positions 
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were staffed by simulation confederates. ANSP confederates were retired Oakland Center personnel. Pseudo-pilot 

confederates, who responded to ATC instructions, were either corporate pilots, general aviation pilots, or aviation 

students.  

  

Figure 3. Controller positions. 

  

Figure 4. “Planning” positions (traffic management and area supervisors). 

Test matrix and test scenarios. The test matrix combined 2 convective weather patterns (W1 and W2), 2 

traffic patterns (Traffic 1 and Traffic 2), and 2 scenario variants (A and B), for a total of 8 unique traffic/weather 

combinations (Table 1).  

Each traffic pattern was divided into two sets of aircraft: Traffic 1 was split into two unequal sets with a 10/90 size 

ratio, while Traffic 2 had two sets that were equal in size (a 50/50 ratio).  

Table 1: 8 Traffic + Weather Combinations 

 
10/90 Mix 50/50 Mix 

W1 1A 1B 2A 2B 

W2 1A 1B 2A 2B 

 

ZKC Test Airspace Planning Team: 

TKC: ZKC TMCs (2) 

STKC: ZKC STMC  

SN: ZKC North area supervisor 

SS: ZKC South area supervisor 

sa: Supervisor assistant 

Ghost Planner Position: 

TG: Ghost TMC (performs TMC 
and STMC duties for all other 
facilities). 

 

 Participants (white labels) 

Confederates (black labels) 

ZKC Test Airspace Controllers: 

R29, R 90, R 94, R 98: Test sector 
radar controllers 

D29, D 90, D 94, D 98: Test sector 
radar associates 

 

Ghost Airspace Controllers: 

RE: Radar East (high altitude) 

RW: Radar West (high altitude) 

RL: Radar, Low alt. (below FL290) 
 

 

 Participants (white labels) 

Confederates (black labels) 

TKC 

TKC 
TG 

ZKC Planning Team 

“Ghost” Planner 

sa 
SN  

SS  

STKC 

RW 

RL 

RE ZKC Test Area 

controllers  

“Ghost” Airspace Controllers 

D94 
D98 

D90 

D29 

R94 
R98 

R90 

R29 
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Within a run, each set of aircraft were designated as Data Comm equipped or unequipped. Scenario variants A and 

B alternated aircraft equipage assignments within a particular traffic pattern: the equipped aircraft set in A became 

the unequipped set in B, and vice versa. Combining traffic patterns with scenario variants resulted in three 

different equipage levels, with 10%, 50% or 90% equipped aircraft. Each scenario presented a combined convective 

weather and sector overload problem for the planning team to solve, with convective weather located within and 

downstream from the four ZKC test sectors.  

Figure 5 illustrates a sample problem. In this situation, the planner may reroute some aircraft for weather 

avoidance and/or complexity reduction in the test sectors affected by convective weather entering from the north 

(e.g., dashed purple and green route adjustments). Downstream weather can further complicate the problem. The 

blue flow can be rerouted north or south of the downstream weather, but the southern reroute reduces 

congestion in sector 98. The planner’s decisions may also vary based on aircraft equipage type. For instance, the 

planner may choose to leave equipped aircraft in the purple flow untouched and allow the sector controllers to 

adjust the routes later if needed.  

Although the traffic within each of the two A/B sets (1A and 1B, 2A and 2B) was identical, swapping the equipage 

assignments within each traffic pattern presented markedly different problems for the planning team, since the 

strategies for handling equipped and unequipped aircraft were different. Controllers would see further differences 

between the A/B variants because of upstream actions taken by the planners before the aircraft entered the test 

sectors.  

Swapping equipage within Traffic 2, the 50/50 mix, enabled analysis of service for equipage strategies, since the 

equipage ratio is the same, but each aircraft’s equipage assignment is changed. Swapping equipage for the 10/90 

mix resulted in two different equipage levels (10% equipped and 90% equipped), and allowed investigation of the 

impact of high vs. low equipage levels on feasibility and performance.  

The final test run sequence is shown in Table 2; with each scenario built from a unique combination of 2 traffic x 2 

equipage assignment alternatives x 2 weather patterns. The resulting equipage levels are listed. 

 

 
 

Figure 5. Example of test scenario weather and traffic interactions 
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Table 2: Final Test Run Execution Sequence  

Run Scenario Equipage Level Comments 

1 T1B_W1_90 90% equipped  

2 T2B_W2_50 50% equipped  

3 T1A_W1_10 10% equipped discarded run 

4 T2A_W2_50 50% equipped  

5 T2B_W1_50 50% equipped  

6 T1A_W2_10 10% equipped  

7 T2A_W1_50 50% equipped  

8 T1A_W1_10 10% equipped repeat of run #3 

9 T1B_W2_90 90% equipped  

 

2.2 Simulation Environment 
MSP tools and procedures that were developed for the 2009 simulation assumed that all aircraft were Data Comm 

equipped.
8
 Tools and procedures were modified for the 2010 mixed equipage simulation in two areas: (1) MSP and 

controller tools were adapted for unequipped aircraft and mixed equipage traffic; and (2) controller tools and 

procedures were modified so that a radar associate could assist with sector operations. Refer to NASA, 2010
8
 for a 

more extensive description of the MSP tools. 

Planning and controller workstations are illustrated in Figure 6 and Figure 8. As these figures indicate, both MSP 

and controller tools were presented within an emulated DSR
* 

framework. The DSR convention for mapping input 

command entries to a two-character identifier – e.g., “QZ *altitude+ *aircraft id+”for changing an aircraft’s assigned 

altitude – was maintained. Existing DSR input codes were supplemented by new two-character commands for the 

simulated NextGen functions. Training material for controllers and planners that lists available input commands 

and their syntax is provided in Appendix A. 

2.2.1 MSP Tools for Mixed Equipage Operations 

MSP automation, as described in section 1.3, includes decision support tools for situation assessment, multi-sector 

trial planning and ground-ground coordination. Figure 6 shows a planning station from the 2009 simulation that 

has an integrated set of these capabilities. An overview of the MSP tool set is provided in this section, with a 

description of the enhancements that were made to support mixed equipage operations.  

Situation assessment tools. A Traffic Situation Display (TSD) provides a real-time display of current traffic for 

the local facility and its neighbors, with color-coded flows and a weather loop showing recent weather radar 

images and the weather’s projected future movement. A weather penetration probe identifies aircraft that are 

predicted to penetrate convective weather at three selectable intensity levels. A modified en route DSR radar 

display shows a multi-sector view of the current traffic, and a set of dynamic, interactive filters enable the planner 

to selectively highlight the data blocks for subsets of this traffic. These filters allow specific flows or sets of aircraft 

to be identified by flight level, departure or arrival airport, waypoint, equipage type or predicted weather 

penetration. 

                                                                 
*
 The DSR (“display system replacement”) workstation is used today by radar controllers in NAS en route facilities.  
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Figure 6. Multi-Sector Planning Tools 

The planner also has an interactive sector load table and load graphs (Figure 7). The load table displays predicted 

values for individual sectors – complexity, aircraft count, weather penetration events and/or other measures – in 

15 minute increments, and load graphs show predicted sector values in 1-minute increments. These displays can 

be used to actively filter the presentation on the DSR display: clicking on a load table entry or time slice in the load 

graph highlights the set of aircraft that contribute to that value.  

 

Figure 7: Sector Load Table (left), and Sector Load Graphs (right). 
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The complexity calculation incorporates specific attributes of the traffic and can provide a useful metric for 

predicting and managing controller task load. A variety of parameters have been proposed and tested as inputs for 

calculating complexity (number of arrivals, climbing or descending aircraft, conflicts, etc.).
25

 In order to support the 

sector load management task, an effort was made to select intuitive input parameters that could be actively 

managed by the planning team. A key contributor to controller workload in this simulation was the number of 

unequipped aircraft: as mentioned earlier, the controller’s communication, handoff and monitoring tasks were 

much easier for equipped aircraft. This was addressed in the complexity computation by using a differential 

weighting for equipped and unequipped aircraft. 

Multi-aircraft trial planning tools. The planning station also has multi-trajectory trial planning automation 

that supports the development of clearances and trajectory changes for one or several aircraft at a time. Filter 

tools can be used to highlight aircraft of interest, and trial plan routes can be developed using a click and drag 

function to insert or remove waypoints. Trial planning is integrated with the SA tools so the planner can determine 

whether the changes meet flow management objectives – e.g., weather avoidance, sector load redistribution, 

complexity reduction – without any unintended side-effects.  

Trajectories for Data Comm equipped aircraft are constructed using a graphical tool to click-and-drag the route 

and insert user-defined waypoints at precise locations. These waypoints are defined by lat/long coordinates, which 

are practical for Data Comm, but inappropriate for voice clearances. In order to support trajectory development 

for unequipped aircraft, a “snap-to” function was added. This function finds a named waypoint close to the desired 

trajectory change point, then substitutes that waypoint to construct a modified route that can be issued as a voice 

clearance to unequipped aircraft.  

Ground-ground coordination. Plan coordination and coordinated clearances are accomplished using radio and 

digital ground-ground data exchange. An emulation of the en route facility’s voice-switching and communication 

system (VSCS) provides the mechanism for voice communication between the TMU, operational area, and other 

facilities. Ground-ground data exchange functionality is integrated with the planning tools. The coordinated plan 

(CP) command can be used to send multi-trajectory trial plans to sender-specified planning stations or area 

supervisors for review and discussion. Proposed coordinated clearance requests (CC command) are sent from the 

planning station to the sector that currently controls that aircraft for the controller to review and execute.  

2.2.2 Controller Tools for Mixed Equipage Operations 

The controller station combined a DSR emulation with additional automation tools as shown in Figure 8. Additions 

included NextGen tools such as trajectory-based conflict and weather probes, a Data Comm interface, and route 

and altitude trial planning. Ground-to-ground data exchange automation for receiving and sending CC requests 

supported multi-sector planning as well as controller-to-controller coordination. This feature was fully integrated 

with the controller’s trial planning, conflict probe, and Data Comm automation, which supported the sender in 

developing acceptable clearances, and the receiver in quickly evaluating their operational suitability and issuing 

the requested clearance. This functional integration was critical to the operational feasibility of MSP operations.  

A controller D-Side station that had the same automation tools as the R-Side was also used in this simulation. 

Some D and R behaviors could be selectively coupled between stations (e.g., data block movement). How the 

stations were configured, and the role of the radar associate was a decision made by the radar controller.  
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Figure 8. Controller Tools 

Mixed equipage features. Elements of the controller’s tools were modified to support mixed equipage 

operations, including equipage-based flight data block differences (color, symbols, and content) and features of 

the trial plan and coordinated clearance interface. Flight data blocks for equipped and unequipped aircraft were 

assigned different colors to facilitate quick recognition of aircraft equipage type. As Figure 9 illustrates, this not 

only helped controllers categorize individual aircraft, but also enabled controllers and others to recognize their 

relative proportions and distribution within a sector or region.  

 

Figure 9. Controller display with color-coded data blocks: equipped, green; unequipped, gold. 
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Figure 9 also illustrates the chevron-like target symbols used to indicate aircraft position and heading in this 

simulation environment, and the enlarged target that indicated when an aircraft was out of conformance with its 

assigned trajectory, or “free-track” (gold target in the center of Figure 9, left). Because of the increased 

effectiveness of decision support tools with TBO, controllers were asked to try to keep unequipped aircraft on 

assigned trajectories rather than using vectors for lateral clearances. The enlarged target was a feature that 

assisted controllers in monitoring aircraft status when vectors were in use, or when a flown trajectory was not in 

precise conformance with its representation within the ATC system.  

Figure 10 illustrates two coordinated clearance requests that were received by the controller: one for an equipped 

aircraft (left) and another for an unequipped aircraft (right). Incoming CC requests are indicated in the full data 

block (FDB) by a pink box background for the trial plan portal (arrow symbol) to the right of the aircraft’s callsign. 

When the controller clicks on the communications symbol to the left of the callsign (diamond for equipped; dash 

for unequipped), the CC request is shown as a pink trajectory. As mentioned earlier, trajectory clearances for 

equipped aircraft are defined with lat/long coordinates, while unequipped aircraft trajectories use named 

waypoints, with new waypoints shown in the fourth line of the FDB. 

Trial plan graphics for equipped and unequipped aircraft are shown in Figure 11. The routes are constructed as 

described earlier for multi-aircraft trajectory planning, with the equipped aircraft’s route defined by lat/long 

coordinates, and the unequipped aircraft’s route by named waypoints. Figure 12 illustrates these two different 

behaviors, showing the coordinates for AAL302’s modified capture waypoint (i.e., its next active along path 

waypoint) and the sequence of waypoints – QJN, KRAZO – that comprised N304’s route change. 

  
Figure 11. Cyan trial plan graphics for equipped aircraft (above) and unequipped aircraft (below). 

 

Figure 10. Pink coordinated clearances for equipped aircraft (left) and unequipped aircraft (right).  
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Equipped aircraft clearances could be sent directly to the flight management system (FMS) and the ATC computer 

system at the same time by selecting an option in the Communication fly-out menu. Unequipped aircraft 

clearances were issued by voice, and the route was amended in the ATC computer with the Communication fly-out 

menu (Figure 12). 

 

Figure 12. Communication Fly-out Menu: equipped aircraft (left), unequipped aircraft (right).  

Summary of UC, QC, CC, and CP commands. The UC (uplink clearance) command sends a trial plan or 

coordinated clearance to a Data Comm equipped aircraft, and concurrently amends the ATC system data to match 

the clearance that was sent. A QC (amend ATC system entry) command also amends the ATC system data with a 

trial plan or coordinated clearance request, and is used with a voice clearance (usually to an unequipped aircraft), 

or when a system trajectory needs to be aligned with the aircraft’s actual trajectory. The CC (coordinated 

clearance) command is used to send proposed clearances to the sector that currently has track control of the 

relevant aircraft. It can be used for multi-sector coordinated clearances (TMC or supervisor to sector controller), 

inter-sector coordinated clearances (sector controller to sector controller), and within sector coordinated 

clearances (radar associate to/from radar controller) for both equipped and unequipped aircraft. The CP 

(coordinated plan) command is used by planners to send sets of CCs to one or more other planning stations to 

support coordinated development and execution of a multi-sector plan.  

2.3 Experimental Procedures 
Simulation layout. The simulation environment was organized with the two small ZKC areas (North and South) 

and the ZKC TMU in three separate rooms. Pseudo-pilots and ghost positions were located in a fourth room. The 

complete lab layout is shown in Figure 13. The two ZKC TMU participants alternated between STMC and TMC 

positions. All other positions (supervisors North and South; radar controllers for sectors 29 and 94) worked the 

same positions throughout the simulation. 

Sequence of events. Each run began with a traffic management teleconference between the ZKC TMU, 

Command Center, and adjacent facilities. A confederate acting as a Command Center representative led a 

discussion about the status of current playbook routes, convective weather and other concerns, and provided a 

high level plan for modifying traffic flows to deal with the current situation.  

The STMC then organized the response within ZKC. The TMCs’ activities were coordinated by assigning each a 

particular subset of the traffic problem – e.g., internal vs. external weather avoidance, northern vs. southern flows, 
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different altitude strata. The STMC also briefed the area supervisors about the plan, including particular reroutes 

that their controllers might be asked to implement.  

TMCs then developed specific reroutes to accomplish their assigned tasks and to maintain sector loads at 

manageable levels. The STMC monitored task execution, and airspace status, occasionally visiting the operational 

area to insure that the plan was working out. The area supervisor would brief his controllers about what to expect, 

monitor their task load and the developing situation, and keep the TMU informed as needed about area status. 

Finally, the radar controller determined the within-sector distribution of tasks with his D-Side, a split that might 

vary with weather and equipage level.  

 

Figure 13. Simulation positions and their physical locations 

Roles and responsibilities. Appendix B includes several slides from the two briefings that were provided to the 

simulation participants on the first day of the study. A slide from the introductory morning briefing provides a high 

level summary of the mixed equipage MSP concept. Following an initial session in the simulation laboratory, a 

second briefing provided a more detailed description of the roles and responsibilities and tasks for each position. 

Guidelines for providing service for equipage, and for division of responsibilities between radar controller and 

radar associate were covered in this presentation.  

Participants (white text) 

Confederates (black text) 
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3 Results 

3.1 Data Overview 
MSP operations in a mixed equipage environment were evaluated to determine concept feasibility, in terms of 

safety, operator acceptability and workload; and benefits, with a focus on flight efficiency, system efficiency, 

airspace throughput and workload. Both objective and subjective measures were used in this evaluation. 

3.1.1 Objective Metrics 

Several different data logs were automatically generated during each run by different software processes within 

the simulation. Aircraft location and status parameters were recorded at regular intervals, for example, along with 

other data (e.g., current and predicted sector count, traffic complexity, number of conflicts). Time-stamped events 

(such as operator input actions, handoffs, weather penetration events or aircraft separation errors) were logged 

when they occurred, along with their relevant attributes. Objective measures derived from these data logs were 

used to evaluate efficiency and safety, and communication processes. 

Camtasia recordings. A continuous screen capture of each test position was made using the program Camtasia. 

The recordings were used to review the traffic situation and operator actions surrounding particular events. 

3.1.2 Subjective Metrics 

There were three sources of subjective data. Operators at all test positions were prompted to enter their within-

run workload, on a scale of 1-6, at five minute intervals throughout each run. They also completed short on-line 

questionnaires after each run, and a longer questionnaire after the simulation. A post-simulation debrief discussion 

between operators and researchers was a final source of subjective data. These data supported the analysis of 

operational acceptability, workload, task distribution, and overall concept and tool performance. 

3.1.3 Methods & Selection Criteria 

This section explains some of the data reduction and recording methods, selection criteria, and terminology used 

in the analyses. 

Test positions. Event logs and subjective data were collected from all ZKC TMU and operational area positions, 

which were staffed by both FAA participants and retired confederates.  

Clearance and coordinated clearance event records. Several two-character commands associated with 

clearance entry and coordination were logged at each test position during data collection runs. Logged entries for 

three commands – UC (uplink clearance), QC (amend clearance entry in ATC system), and CC (coordinate 

clearance) – are analyzed below. Each time-stamped entry includes the position where it was entered, clearance 

content, and aircraft ID. UC and CC outcomes (accepted, rejected or no response) were also recorded. 

“Open loop” data. Each traffic scenario consisted of a set of simulated aircraft, where each aircraft had a 

controlled entry position, entry time and default flight plan. The scenarios played out differently during different 

runs based on planner and controller decisions that were made. For example, sector complexity and demand were 

modified by planner actions to alleviate load problems, and conflict and weather penetration counts were reduced 

because of controller actions. In order to get a picture of the underlying problem that was presented by each 

scenario absent operator input, data logs were recorded while each scenario was allowed to run open loop – i.e., 

with each aircraft flying its scripted default path with no operator intervention. 
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Test airspace vs. surrounding airspace. Aircraft trajectories were altered by ANSP actions taken inside and 

outside the test airspace. TMCs usually solved weather and sector load problems by rerouting aircraft before they 

entered the test sectors, occasionally routing them around the test airspace entirely to solve load or complexity 

problems. After an aircraft entered a test sector its trajectory could also be modified by the controller to resolve 

conflicts or avoid weather. Ghost controllers were responsible for managing handoffs and responding to external 

CC requests, but not for weather avoidance or conflict resolution within their airspace. Because of these 

differences, some measures (e.g., conflict count) were only meaningful when they occurred within the test 

airspace while other measures (e.g., path length) provided useful data in both regions. 

Discarded run. Run 3 was repeated due to simulation difficulties. Data from the original run were discarded. Of 

nine experimental runs, then, eight were analyzed. 

3.2 Efficiency Analysis 
Two metrics were used to investigate the MSP test operations with respect to system and user efficiency. A third 

measure – the equipage type of maneuvered aircraft when controllers resolved mixed equipage conflicts – 

explores a related user benefit mechanism and is also presented in this section. 

Test sector throughput was defined as the number of unique aircraft that were observed in a test sector during 

each 60 minute run. Test sector throughput varied as the planning team routed aircraft around the test sectors to 

manage load and complexity. Sector throughput by equipage type (i.e., throughput of equipped or unequipped 

aircraft only) reflected the planning strategies for managing demand, and showed how airspace access varied by 

equipage.  

Path length change – the path length difference between the original trajectory and the actual flown trajectory – 

served as a measure of user efficiency, and allowed the impact on individual aircraft of planner and controller 

actions (and of the tools for performing those actions) to be evaluated. The original (flight plan) path length, 

measured from simulation entry location to destination, was compared to the sum of the actual distance flown 

plus remaining distance to destination. The difference between these two values provided a path length delta for 

each aircraft that was caused by actions taken by controllers or planners during the simulation. Lateral, but not 

vertical, distances were used in the calculation. 

In general, overall throughput increased as equipage level increased. Throughput was also higher for equipped 

than for unequipped aircraft, indicating that MSP operations were successfully used by the TMU to selectively 

reroute the unequipped aircraft away from overloaded or weather-constrained airspace. Higher test sector 

throughput for equipped aircraft also suggests the MSP function in the TMU can be an effective means to provide 

service for equipage. Path length changes showed a benefit for equipped aircraft, with smaller changes observed 

on their flown distance when compared to the unequipped aircraft. This difference was consistent at all equipage 

levels, and it was observed both for aircraft that flew through the test airspace and those that flew around it.  

Resolution of mixed equipage conflicts. Radar controllers and associates were asked to give priority service, 

when able, to equipped aircraft in mixed equipage conflicts (conflicts between an equipped and an unequipped 

aircraft) by maneuvering the unequipped aircraft and leaving the equipped aircraft on its current trajectory. In the 

vast majority of cases (108 out of 132) the test controllers’ resolution maneuvers moved the unequipped aircraft, 

even when that solution required coordination with another controller.  

3.2.1 Test Sector Throughput  

Observed changes in mean test sector throughput as a function of equipage level are shown in Figure 14. Total 

sector throughput increased when more aircraft were equipped. A one-way ANOVA performed on the mean sector 
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throughput for the four ZKC test sectors revealed that a significant difference by condition (F(2,5) = 45.93, p < .01), 

and post hoc tests revealed the mean sector throughput in the 10% equipage condition was significantly lower 

than in either the 50% or the 90% conditions (Tukey’s HSD ps < .05; Figure 14). The observed difference between 

the 50% and 90% conditions did not reach significance (Tukey’s HSD p > .05).  

 

Figure 14. Average sector throughput per run, by equipage level. 

The cumulative throughput of the four test sectors was significantly higher for equipped aircraft than for 

unequipped aircraft (χ
2

1 = 17.24, p < .001; Figure 15). As Figure 15 shows, there were 250 more equipped than 

unequipped aircraft that were allowed to fly through the test sectors when combined across all 8 runs. 

 

Figure 15. Cumulative throughput across all test sectors and all runs, by equipage type. 

A consistent airspace access advantage was observed for individual aircraft when they were equipped compared to 

when they were unequipped (Table 3). Priority service for equipped aircraft was seen when comparing aircraft set 

outcomes between the A and B traffic scenario pairs. The difference was significant for both traffic scenarios, 

although only marginally so for the 50/50 mix, Traffic 2 (χ
2

1s = 15.84 and 3.65, ps < .001 and .06, respectively). 

Table 3. Cumulative throughput totals for sets of aircraft when unequipped and equipped. 

Traffic Scenario Pairs Runs 
Unequipped 
Throughput 

Equipped 
Throughput 

Advantage to 
Equipped  

1A (10% Eq.) and 1B (90% Eq.) 1, 6, 8, 9 807 975 168 

2A and 2B (both 50% Eq.) 2, 4, 5, 7 881 963 82 
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3.2.2 Flight Distance  

All simulation aircraft. Mean path length difference was computed for all aircraft that flew in the simulation at 

FL290 and above. Most aircraft saw no change, some had their path length reduced, and some increased; averaged 

over all aircraft, however, path length was increased as participants rerouted aircraft to solve the traffic and 

weather problems in the simulation airspace. The average per-aircraft increase was greater for unequipped aircraft 

than for equipped aircraft (F(1,7963) = 22.09, p < .001; Figure 16). The mean path length increase for unequipped 

aircraft (M = 1.91 nm) was over 2.5 times that of equipped aircraft (M = 0.69 nm). This was consistent both with 

providing priority service to the equipped aircraft and with a complexity management approach that moves the 

unequipped aircraft around congested airspace. 

 

Figure 16. Mean path length change for all aircraft in the simulation, by equipage type. 

Path length impact inside and outside test sectors. When aircraft were sorted according to whether their 

path length was increased, decreased or unchanged (path length delta less than 1 nm), the distribution differed 

between aircraft that transited the test airspace (whose trajectories could have been modified by planners and/or 

controllers) and those that did not (subject to planner modifications only). For aircraft transiting the test airspace, 

proportionally the same numbers of unequipped and equipped aircraft incurred path length decreases, increases, 

and no path length change (Ts: Decreased = 185, 182, Increased = 344, 387, No change = 572, 647, respectively, χ
2

2 

= 1.46, p > .05; Figure 17, left).  

0.0

0.5

1.0

1.5

2.0

2.5

Unequipped Equipped

M
e

an
 C

h
an

ge
 in

 P
at

h
 L

e
n

gt
h

 (
n

m
)

Equipage Category

  

Figure 17. Number of aircraft whose path length was decreased, increased or unchanged. 

185
344

572

182
387

647

0

400

800

1200

1600

2000

2400

decreased increased no change

N
u

m
b

e
r 

o
f 

ai
rc

ra
ft

Direction of Change

Aircraft Transiting ZKC Test Sectors

Unequipped
Equipped

205
328

2341

172 234

2364

0

400

800

1200

1600

2000

2400

decreased increased no change

N
u

m
b

e
r 

o
f 

ai
rc

ra
ft

Direction of Change

Aircraft Bypassing ZKC Test Sectors

Unequipped
Equipped



MSP3_Report_3-2-11 3/2/2011 28 

For aircraft that never entered the test airspace, proportionately more unequipped than equipped incurred path 

length increases (Ts: Decreased = 207, 173, Increased = 328, 234, No change = 2341, 2364, χ
2

2 = 16.93, p < .001; 

Figure 17, right). This is consistent with the observed throughput difference, and with the assumption that 

planners routed more unequipped aircraft around the test airspace, since most of these deviations would result in 

path length increases.  

Although the majority of aircraft that transited the test sectors saw no change in their path length, the average for 

all aircraft was a modest increase, with the unequipped aircraft incurring a significantly greater path length 

increase than the equipped aircraft. The same pattern was also observed for aircraft that did not transit the test 

airspace (F(1,2315) = 10.61, p < .001, Figure 18, left; F(1,5645) = 13.86, p < .001, Figure 18, right).When comparing 

change magnitude (Figure 18), the unequipped aircraft whose flight path was changed saw a greater average 

increase (~9 nm), and a greater average reduction ( ~2 nm), than the equipped aircraft. These larger impacts are 

probably due to the difference in how the reroute trajectories are defined. Data Comm equipage permitted use of 

lat/long coordinates, thus tailoring of more precise lateral trajectories, while unequipped aircraft trajectories were 

limited to the sparse network of named waypoints available for trial planning.  

We were also interested in whether the path length advantage for equipped aircraft held across equipage levels. 

Because our traffic scenarios most accurately achieved our target equipage levels (10, 50, and 90%) within the test 

area, we compared change in path length across equipage levels only for those aircraft that transited a test sector. 

Once again, the average path length increase per aircraft was greater for unequipped than for equipped aircraft, 

and the advantage for equipped aircraft held across all three equipage levels (Figure 19). A repeated measures 

ANOVA with within-run variable equipage type (unequipped or equipped) and between-run variable equipage 

level (10%, 50%, or 90%) confirmed a main effect of equipage type (F(1,5) = 7.16, p < .05), but no main or 

interaction effects of equipage level (F(2,5) = 0.02, p > .05 and F(2,5) = 0.00, p > .05, respectively). On average, the 

increase in path length for unequipped aircraft transiting a test sector (M = 3.8 nm) was over twice that for 

equipped aircraft (M = 1.9 nm) (Figure 19). 

  

Figure 18. Mean change for A/C with decreased path length, increased path length, and all aircraft. 
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Figure 19. Mean path length change per aircraft by equipage level, for aircraft transiting the test airspace. 

3.2.3 Service for Equipage in Conflict Resolution 

Radar controllers and associates were asked to give priority service, when able, to equipped aircraft in mixed 

equipage conflicts (conflicts between an equipped and an unequipped aircraft) by maneuvering the unequipped 

aircraft and leaving the equipped aircraft on its current trajectory.  

The average number of mixed equipage conflicts per run for each equipage level is shown in Figure 20. 

Unsurprisingly, the number of mixed equipage conflicts was greatest in the 50% condition; a one-way ANOVA 

revealed a significant difference between conditions (F(2,5) = 45.93, p < .01), and post hoc tests revealed the mean 

number of conflicts in the 50% condition was significantly higher than in the 10% and than in the 90% condition 

(Tukey’s HSD ps < .01; Figure 20). There was no significant difference between the 10 and 90% conditions in the 

number of mixed equipage conflicts (Tukey’s HSD p > .05). 

 

Figure 20. Mean number of mixed equipage conflicts per run, by equipage level. 

Across the eight runs, there were a total of 167 mixed equipage conflicts, 131 of which were solved by controller 

actions. The equipage of maneuvered aircraft were identified for each resolved conflict. Twenty-nine of the 

remaining conflicts disappeared with no controller action (probable false alarms); four resulted in separation 

violations; and three occurred at the end of a run and were still unresolved when the run ended.  
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 More unequipped than equipped aircraft were maneuvered to resolve mixed equipage conflicts. A repeated 

measures ANOVA with within-run variable of equipage type of maneuvered aircraft (unequipped or equipped) and 

between-run variable airspace equipage level (10%, 50%, or 90%) revealed main effects of both equipage type and 

equipage level (F(1,5) = 22.13, p < .01 and F(2,5) = 58.79, p < .001, respectively), which were qualified by a 

significant equipage type by level interaction (F(2,5) = 10.08, p < .05). An inspection of the means revealed that 

unequipped aircraft were moved more often than equipped aircraft and that this difference was more pronounced 

in the 50% condition (Figure 21). 

In 23 of the 131 mixed equipage conflicts, the controller chose to move the equipped aircraft. This usually occurred 

when the unequipped aircraft was off the radar scope and/or not controlled or “owned” by the controller resolving 

the conflict. In some cases, the equipped aircraft was changing or about to change altitude (e.g., arriving or 

departing) at the time, and the controller chose to use a vertical resolution with the transitioning rather than 

moving an unequipped aircraft in level flight. In other cases, however, when the conflict was imminent (less than 

1-2 minutes to separation violation), it appears controllers may have found the relative ease of moving the 

equipped aircraft to be more expedient, since no voice clearance was necessary. This preference for using Data 

Comm when a fast response was needed was likely a simulation artifact. The reverse preference would be 

expected in an operational setting, where voice communication gives the controller immediate feedback that the 

clearance was heard and will be executed.  

 

Figure 21. Mean number of A/C of each type maneuvered to resolve mixed equipage conflicts per run. 

3.3 Clearance and Coordinated Clearance Analysis 

3.3.1 Ground-Ground Coordinated Clearance Requests 

Across the 8 runs, a total of 1595 ground-ground CCs were recorded. Nearly twice as many CCs were sent for 

unequipped aircraft than for equipped aircraft (Tunequipped = 1026, Tequipped = 569). This reflects a planning strategy 

for preferentially moving unequipped aircraft, and also indicates that participants found these tools to be usable 

and effective for planning trajectory modifications for unequipped aircraft. Out of the 1595 recorded CCs, 229 

went to the four test sectors, and 1366 to the confederate controlled ghost airspace (Table 4). 
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Table 4. Number of CC requests sent to test sectors and ghost sectors, by equipage type. 

Recipient Unequipped Equipped Total 

ZKC test sector  202 27 229 

Ghost sector  824 542 1366 

TOTAL  1026 569 1595 

 

Most of the CC requests received by “Ghost” sectors were sent from a within-facility planning station – TMC or 

supervisor. Most CCs received by the a test sector were sent by another controller (166 out of 229; see Table 5). 

These were either for within-sector (R-D) coordinated clearances or for between-sector coordination of conflict 

resolution or weather avoidance maneuvers. These results indicate that the controllers in particular found data 

exchange useful for coordinating clearances for unequipped aircraft. Unlike the planners, controllers had other 

options for within (and between) sector coordinated clearances. The fact that they chose to use the CC function so 

frequently – particularly for within-sector coordination – suggests that they found it both useful and usable. 

Table 5. Number of CC requests sent to test sector and ghost sectors, by sender and receiver. 

Sender: 

 Receiver: 

ZKC TMCs Ghost TMC ZKC Sups Test sector 
(R or D) 

TOTAL 

ZKC test sector 35 3 25 166 229 

Ghost sector 546 732 19 69 1366 

TOTAL 581 735 44 235 1595 

 

Coordinated Clearance request outcomes. Out of the 1366 CCs sent to the ghost sectors, 1356 were 

executed, 0 were rejected, and 10 were ‘ignored’ – i.e., no response was sent back to the sender. Nine of these 

ignored requests were sent within 3 minutes of the end of the run, and the 10
th

 was a descent request sent for an 

aircraft that was already in descent.  

Out of the 229 CCs sent to the test sectors, 218 were executed, 10 were rejected, and 1 was ignored. The ignored 

request to sector 98 was sent 14 seconds before the end of the run. All ten rejected requests were for unequipped 

aircraft, with 9 sent by the D-Side controller to his/her own R-Side, and 1 from TMC Ghost to sector 90.  

Of the nine D-side initiated requests that were rejected, five were actually cancelled by the D-side himself: twice 

because the problem went away (one conflict, one predicted weather penetration), and three times to replace it 

with a better solution. Two of the four rejects from the R-side were for weather problems that proved 

unnecessary, one conflict resolution was improved (a lat/long replaced by a named waypoint), and one may have 

been an error, since the clearance was issued anyway. 

3.3.2 Air-Ground (Data Comm and Voice) Clearances 

Although proportionally the same number of unequipped as equipped aircraft received clearances in the four ZKC 

test sectors, the unequipped aircraft represented significantly more work for controllers. The per run mean 

percentage of aircraft of each type that received at least one clearance did not differ by equipage (Munequipped = 

36.9%, Mequipped = 34.2%; paired t(7) = 1.06, p > .05). However, the mean number of controller input events per 

aircraft was greater for unequipped than equipped aircraft (Munequipped = 1.9, Mequipped = 1.5; paired t(7) = 5.32, p < 

.001; Figure 22).  
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Note that while all uplink clearances have an associated UC event record, there is not a one-to-one 

correspondence between logged QC events and clearances issued to the aircraft. For example, every tactical 

heading clearance may not have a corresponding QC entry; the controller may choose to wait until the aircraft is 

back on course before updating the system entry. Alternatively, a QC route amendment can be used to bring the 

system into tighter conformance with the actual route of flight even if no new clearance is issued. Even though the 

QC is an unsatisfactory indicator of the number of clearances that are issued, however, UC and QC counts are 

reasonable measures of controller task load for data maintenance associated with equipped and unequipped 

aircraft since they do reflect the number of computer input actions controllers took for each type of aircraft. If 

voice clearances were added to this analysis, the observed task load difference between equipped and unequipped 

aircraft would be even greater.  

 

Figure 22. Mean number of clearance entry commands
†
 per aircraft, aircraft that received at least one clearance. 

3.3.3 Controller Use of Coordinated Clearance Requests 

This section describes use of the CC function at the two participant staffed sectors, 29 and 94. A total of 107 

coordinated clearance requests were sent by radar and radar associate controllers working these two sectors, and 

89 of the 107 requests were for unequipped aircraft. A breakdown of who sent these CCs, by aircraft equipage, is 

presented in Tables 6 and 7. 

Table 6. Internal CCs (Sent to Own Sector)  Table 7. External CCs (Sent to a Different Sector) 
 

Sender 

Aircraft Type 

Total 

 

Sender 

Aircraft Type 

Total Uneq. Eq.  Uneq. Eq. 

29D 24 0 24  29D 0 1 1 

29R 0 1 1  29R 10 10 20 

94D 26 0 26  94D 25 3 28 

94R 1 2 3  94R 3 1 4 

Total 51 3 54  Total 38 15 53 

 

 

                                                                 
†
QC commands for unequipped and UC commands for equipped aircraft. 
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Internal clearance coordination by controllers. Sector controllers used the CC function equally for internal 

and external coordination (Tables 6 and 7). Most internal CCs (50 of 54) were trajectory clearances prepared by the 

D-side and sent to the R-side for voice clearance delivery to an unequipped aircraft (24 CCs from 29D to 29R; 26 

CCs from 94D to 94R).  

External clearance coordination by controllers. Most external CCs were used by test sector controllers for 

coordinating conflict resolutions. Of the 53 external CCs, 45 were clearances for aircraft that were in conflict with 

another aircraft, 7 had flight paths bound for weather penetration, and the last was sent by 94R to stop a climb 

from the sector below in anticipation of a complexity increase.  

Unlike internal CCs, the distribution of external CCs showed some between sector differences. In sector 94, the D-

side again sent most of the CCs (28 of 32), but sector 29’s R-side chose to do most of the external coordination. 

This provides one example of how the two participant R-sides chose to divide sector responsibilities differently 

with their respective D-sides.  

3.3.4 Operator Input Errors  

There were eleven recorded input commands recorded at controller positions that were probably operator input 

errors. Four were CC entries that sent apparently accidental requests from an R-side to the D-side, and seven were 

QC entries for equipped aircraft (from both R and D positions) when a UC was probably the intended action. Ten of 

the eleven commands were entered using the keyboard, and one used a fly-out menu. Since the syntax for each 

keyboard input was identical, ten of the entry errors involved only a one-character substitution – “CC [CID]” 

instead “QC *CID+” or “UC *CID+” for the inadvertent CC request, and “QC *CID+” instead of “UC *CID+” for the 

clearance entry error. Note that the CC and QC commands only exist in our simulation environment.  

R-side to D-side CCs. The four internal CCs sent from the R-side to his D-side (1 CC from 29R to 29D; 3 CCs from 

94R to 94D). Camtasia video recordings were reviewed in each case since the reason for these CCs was unclear. 

The Camtasia recordings suggest these four R-to-D CCs appear to have been operator input errors. Each of those 

CCs were followed by a clearance entry (UC or QC) from the same sender within a minute after they were sent, 

and the D-sides were not involved with those clearances. This indicates that the R-side intended to enter a UC or 

QC to complete the clearance, but mistakenly “CC’d” it to the D-side instead. 

QC input errors. As mentioned above, a controller’s “QC” input command amends the ATC computer system’s 

representation of an aircraft’s flight clearance. QCs are normally only used for unequipped aircraft, since the UC 

(Uplink Clearance) command amends the system at the same time it sends the clearance to the equipped aircraft. 

Thus “QC” entries for equipped aircraft may indicate a controller error. 

Each QC event that was logged for an equipped aircraft was reviewed, and 7 of them probably represent controller 

input errors. Table 8 shows the distribution of these errors by run and equipage level, suggesting that equipage 

level may have been a contributing factor: six of the seven occurred in 50% equipage runs, when controllers would 

find themselves switching most frequently between aircraft types, and the last one occurred during a 10% run, 

when most clearances were being developed for unequipped aircraft (Table 9). 

As Table 8 also illustrates, four of the seven events were recorded from the sector 94 radar controller’s station. 

Table 9 shows that this controller worked almost exclusively on the unequipped aircraft during the 50% and 10% 

runs, indicating that his D-Side was responsible for sending clearances to the equipped aircraft. It suggests that 

when he had decided to work on a equipped aircraft in runs 4 and 5, he inadvertently used the ‘wrong’ type of 

clearance entry command.  
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Table 8. Run and Position of Probable QC Input Errors 

Run %Equipped QC Errors Entry Position 

4 50% 5 94R(x3), 98R, 98D 

5 50% 1 94R 

6 10% 1 29D 

 
Table 9. UC/QC events, 94R 

Run %Equipped UC QC Total 

1 90% 19 7 26 

8 90% 16 2 18 

2 50% 1 24 25 

4 50% 0 23 23 

5 50% 5 22 27 

7 50% 6 17 23 

3 10% 0 19 19 

6 10% 0 17 17 

TOTAL 47 131 178 

3.4 Safety Analysis 
Safety metrics included counts of separation violations, conflicts, and convective weather penetration events that 

occurred in one of the four ZKC test sectors. An analysis of separation violations did not uncover any relationship 

to either multi-sector planning or mixed equipage operations. More conflicts were observed in the 50% equipped 

runs, but “open loop” evidence within the 50% scenarios suggests that this was due to the aircraft trajectories and 

not to operator performance at this equipage level. Analyses of weather penetration results for the 50% equipped 

runs found no difference between the numbers of equipped and unequipped aircraft penetrating weather. These 

results indicate that simulation procedures were not inherently riskier for unequipped or equipped aircraft. 

3.4.1 Number of Conflicts 

The number of test area conflicts with predicted separation violations were recorded and analyzed by equipage 

level. Figure 23 presents the mean number of conflicts recorded per run, sorted by equipage level. This figure 

shows that the 50% equipped condition resulted in the greatest number of conflicts followed by the 90%, then 

10% conditions. A one-way ANOVA confirmed that there was a significant difference (F(2, 5) = 7.23, p< .05) in the 

number of conflicts between conditions. Tukey’s HSD tests revealed that the 50% condition had a significantly 

higher number of conflicts than the 10% condition (p< .05) but not significantly higher than the 90% condition (p> 

.05). Open loop results presented in the next section suggest that the 50% traffic scenarios were inherently more 

difficult, and that this was the most likely reason for the observed difference in number of observed conflicts.  
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Figure 23. Mean number of conflicts per run 

3.4.2  “Open Loop” Results 

Figure 24 presents a count of separation violations that were logged during the open loop runs. These results show 

that the 50% equipage runs (Traffic 2 scenarios) had more violations than either the 10% or 90% runs (Traffic 1 

scenarios). A breakdown by sector found more open loop violations in sectors ZKC 90 and 98. These results 

indicate that the scenarios designed for each equipage level and each sector were inherently different, with the 

50% scenarios and sectors 90 and 98 being inherently more difficult in terms of aircraft interactions. This between-

scenario difference is the most likely contributor to the increased number of conflicts and separation violations 

observed during the 50% runs in the simulation. 

 

Figure 24. Total number of separation violations recorded in “open loop” runs.  

3.4.3 Separation Violations 

There were a total of 20 separation violations throughout the course of the study. Two were “proximity events” 

(PE) where an aircraft pair had a closest point of approach (CPA) of less than 800 ft vertically and between 4.5 and 

5.0 nm laterally. The rest were “operational errors” (OE) in which the CPA was both less than 800 ft vertically and 

4.5 nm laterally. Figure 25 shows the frequency of these separation violations by equipage level, color-coded by 

the equipage type of the aircraft involved. Sixteen out of twenty separation violations (80%) involved an 

unequipped aircraft; however, analysis of these occurrences did not identify any underlying causal factor related to 

equipage type.  
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Figure 25. Separation violations per equipage level; colors indicate equipage of aircraft pair  

Examination of each separation violation also found that 17 of the 20 involved an aircraft in transition: either a 

departure climbing into the sector, an arrival descending through the sector, or an aircraft given an altitude 

clearance to resolve a separate conflict. This speaks to the difficulties of monitoring the separation status of 

transitioning aircraft, and is unrelated to the MSP concept or its associated functions.  

Finally, Table 10 shows that test sectors 90 and 98 were involved in 17 of the 20 (85%) separation violations. As 

mentioned earlier, these sectors had more conflicts than sectors 29 and 94 during the “open loop” runs; they also 

had more transitioning aircraft flying to and from local airports. In addition, they were staffed by retired 

controllers (rather than FAA test participants) who were possibly not as practiced at controlling traffic, particularly 

at the traffic loads experienced in this simulation.  

Table 10. Total counts and percentages of separation violations per sector 

ZKC 29 ZKC 90 ZKC 94 ZKC 98 

2 (10%) 7 (35%) 1 (5%) 10 (50%) 

3.4.4 Weather Penetration 

Three color-coded levels of convective weather intensity were shown on the controller’s display, and controllers 

were asked to route aircraft around all intensity levels. Since the weather could shift in unexpected ways, however, 

penetration events were analyzed only for medium and high intensity areas, with the surrounding low intensity 

weather treated as a buffer zone. This approach provided a useful measure of controller effectiveness, and 

excluded “surprise” penetration events that might have been caused by unexpected (or unrealistic) weather 

movement. 

The primary focus of the analysis was on whether there was a difference in the patterns of weather penetration 

between unequipped and equipped aircraft. The 50% equipped condition was used for this comparison. Table 11 

compares the unique number of unequipped and equipped aircraft that penetrated medium or high intensity 

weather in both the simulation and the “open loop” runs. No difference in weather penetration frequency was 

observed between the two equipage type.  
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Table 11. Number of unique weather penetration events, by equipage type, in simulation and “open loop” runs.  

Simulation  “Open Loop” 

Unequipped Equipped  Unequipped Equipped 

12 14  51 53 

3.5 Subjective Feedback 
In this section, we first examine in-run workload ratings reported by the four radar controllers (two participants 

and two confederates), the four radar associates, the two area supervisors, and the three ZKC TMU positions (two 

participants and one confederate). In the remainder of the section, we report and summarize subjective feedback 

collected in post-run and post-simulation questionnaires and a post-simulation debrief discussion from the six test 

participants only, except where otherwise indicated. 

3.5.1 Workload 

Instantaneous workload ratings, on a scale from 1 (lowest) to 6 (highest), were obtained from all test positions: the 

three ZKC TMU positions, two area supervisors, four radar controllers, and four radar associates. Ratings were 

recorded every five minutes throughout each run.  

As expected, radar controller and radar associate mean workload decreased as equipage level increased (Figure 

26). A repeated measures ANOVA confirmed a significant difference between conditions (F(2,14) = 12.91, p < .01) 

and follow-up planned contrasts revealed mean workload was significantly lower in the 50% condition than in the 

10% condition, and significantly lower in the 90% condition than in the 50% condition (Fs(1,7) = 6.04 and 17.16, ps 

< .05 and .01, respectively). 

For area supervisors and the three ZKC TMU participants, mean workload was lower in the 90% condition, but did 

not differ between the 10 and 50% conditions (Figure 26). A repeated measures ANOVA revealed a significant 

difference between conditions (F(2,8) = 21.84, p < .01) and follow-up planned contrasts revealed workload was 

significantly lower in the 90% condition than in the 50% condition, but did not differ between the 50 and 10% 

conditions (Fs(1,4) = 31.36 and 0.02, ps < .01 and >.05, respectively). 

 

Figure 26. Mean workload rating per position and equipage level. 
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3.5.2 Task Load (NASA-TLX) 

After each run, each of the six participants responded to a modified version of the NASA-Task Load Index
26

 (NASA-

TLX), rating each of the six factors, (performance success, effort, frustration, and mental, physical, and temporal 

demand) based on their peak workload during the run (Appendix C). Each factor was rated on a seven point scale 

ranging from very low / very little to very high / a lot. An average rating, using the scale inverse of the Success 

rating (Ratinginverse = (-1)Ratingoriginal + 8) was computed for each position x equipage level combination.  

In general, task load ratings decreased, and perceived performance success increased, as equipage level increased 

(Table 12). The ratings for the 10 and 50% conditions also tended to be more similar to each other than to those 

for the 90% condition. This observation was confirmed statistically: A repeated measures ANOVA on average TLX 

score, with within subjects variable Equipage Level, was significant (F(2,10) = 5.27, p < .03) and post hoc contrasts 

revealed significant and marginally significant differences between the 50 and 90% conditions and between the 10 

and 90% conditions, respectively (ts(5) = 3.68, 2.20, ps < .05, .10, respectively), but no difference between the 10 

and 50% conditions (t(5) = 0.17, p > .05). 

One TLX subfactor, Frustration (“Were you frustrated by this run? e.g., were you discouraged, irritated, stressed, 

and annoyed, or were you content, relaxed, gratified, and complacent when performing the task?”), was 

consistently higher in the 50% than in the 10 or 90% conditions, across positions. That is, controllers, area 

supervisors, and STMC/TMCs all found the 50% condition the most frustrating. This observation was confirmed by 

paired-samples T tests, which revealed significant and marginally significant differences between the 50 and 90% 

conditions and between the 10 and 50% conditions, respectively (ts(5) = 3.21, -2.45, ps < .05, .10, respectively), but 

no difference between the 10 and 90% conditions (t(5) = 0.17, p > .05). 

Comparing across positions, radar controllers tended to give higher task load ratings than area supervisors and the 

STMC / TMCs, but only in the 10 and 50% conditions. In the 90% condition, all positions reported a low (~2.5 out of 

7) average task load.  

Task load vs. workload. The post-run NASA TLX ratings were compared with the in-run workload ratings that 

participants entered every 5 minutes. For the two participant controllers, all 6 TLX factors were significantly 

correlated with both the mean and the maximum WAK rating per run, with Effort correlating most strongly with 

mean WAK (Pearson’s r = .90, p < .001), and Physical Demand with max WAK (r = .87, p < .001). For the two area 

supervisors, all 6 factors were correlated with mean WAK rating per run, though Success was only marginally 

significantly correlated (p < .10). Just as for the controllers, area supervisor Effort was the factor most strongly 

correlated with mean WAK (r = .79, p < .001). For area supervisors however, no TLX factors were correlated with 

the maximum WAK per run at the p < .05 level. For the two TMU participants, no TLX factor was correlated at the p 

< .05 level with either mean or max WAK. 
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Table 12. Mean NASA-TLX Subscale Ratings 

Mean rating for each of the six subscales of the NASA-TLX, and the average
‡
 of the six subscales per condition. 

Ratings made on a seven point scale ranging from 1 = very low / very little to 4 = average to 7 = very high / a lot.  

Position Metric 
Equipage Level 

10% 50% 90% 

Radar Controllers Mental Demand 5.50 4.88 3.25 

 Physical Demand 5.50 4.50 3.00 

 Success 5.50 4.63 6.25 

 Effort 5.25 4.63 2.75 

 Temporal Demand 4.50 3.50 2.25 

 Frustration 3.25 3.50 1.75 

 Average 4.42 4.06 2.46 

Area Supervisors Mental Demand 3.25 3.75 3.50 

 Physical Demand 2.50 2.75 2.00 

 Success 4.25 4.50 5.50 

 Effort 3.00 3.38 2.75 

 Temporal Demand 2.00 3.00 2.25 

 Frustration 2.00 2.38 2.00 

 Average 2.75 3.13 2.50 

STMC / TMC Mental Demand 3.50 3.50 2.75 

 Physical Demand 4.00 2.75 3.00 

 Success 5.25 5.13 6.50 

 Effort 4.50 3.50 3.25 

 Temporal Demand 2.75 2.75 2.50 

 Frustration 2.00 2.25 1.50 

 Average 3.25 2.94 2.42 

 

3.5.3 Acceptability 

After each run, each of the six test participants responded to a modified version of the Controller Acceptance 

Rating Scale (CARS) which was presented by computer.
27

 The acceptability rating scales used for each position – 

radar controller, area supervisor, and STMC/TMC – are shown in flowchart format in Appendix D, although they 

were presented to participants by computer as a progressive set of questions and statements. After the initial 

question in each scale, subsequent questions/statements were presented conditional upon the response to the 

previous question. At each decision point, participants were allowed to change their response and to review all the 

possible responses before making their final selection.  

In general, the acceptability rating increased with the equipage level (Figure 27). Figure 27 shows the ratings given 

across positions and equipage levels, grouped according to the decision points on the modified CARS: Is it 

safe/workable? (No  1); Is workload tolerable? (No  2-4); Are operations satisfactory without improvement? 

(No  5-7); How desirable? (8-10). Each dot represents one participant’s rating on one run and the position of the 

dot within the box aligns with the response (e.g., a rating of “10” appears in the rightmost position in the 8-10 

box). In all cases the modified CARS description and rating selected were thought to adequately match the 

perceived acceptability of the operations (i.e., no one indicated that the description and rating matched their 

experience “not well”).  

                                                                 
‡
 The success rating scale was reversed (e.g., 1 = 7, 1.5 = 6.5, etc.) when calculating the six-subscale averages. 
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As can be seen, radar controller ratings clustered in the 8-10 range across equipage levels, indicating that the radar 

controller role was satisfactory at all three equipage levels tested. There were two cases, one each in the 10 and 

50% equipped conditions, where a controller rated the position as workable but with excessive workload (i.e., in 

the 2-4 range). In both cases, however, the low rating appeared to be due to factors unrelated to the mixed 

equipage and service for equipage operational concepts (e.g., complexity due to weather and traffic volume). In 

each case the controllers responded that the equipage level itself was not problematic or confusing. 

The area supervisor ratings generally clustered in the 8-10 range across equipage levels, indicating that operations 

were satisfactory at all three levels tested. There were three cases in the 50% condition and one in the 10% 

condition of ratings in the 5-7 range, suggesting operations were safe and workload was manageable but that 

improvement was needed. All four of these ratings came from the ZKC North area supervisor, who indicated that 

traffic volume and in particular the unequipped aircraft added to the workload.  

The STMC / TMC ratings clustered in the 8-10 range across equipage levels, indicating that operations were 

satisfactory at all three levels tested. There was one low rating, on a 10% run, where the participant acting as 

STMC indicated that operations were safe but workload was too high because the volume of traffic that needed to 

be rerouted placed too great a demand on his team for the first twenty minutes of the run. Again, this appeared to 

be the result of the initial traffic scenario design, rather than related to the operational concepts being tested. 

Interestingly, the other TMC test participant rated that same run as a “9”. 

 

Figure 27. Acceptability ratings by position and equipage level. 
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time, controllers indicated that they could have handled more traffic in the 10 and 50% runs, and almost always in 

the 90% equipage runs. 

On scales from 1 (“not at all”) to 4 (“moderate”) to 7 (“very”), mean controller ratings of safety were moderate 

(about 5) for 10 and 50% runs, and very safe (6.75) for 90% runs. Mean traffic complexity ratings decreased with 

increasing equipage levels, from moderate for 10 and 50% runs (Ms = 5.25 and 4.25, respectively) to low-to-

moderate for 90% runs (M = 2.75). Rated effectiveness in managing unequipped aircraft was higher in 90% runs (M 

= 6.33) than in 10 or 50% runs (Ms = 4.75 and 4.88, respectively), but effectiveness in managing equipped aircraft 

was high (Ms > 6.2) across equipage levels. Rated difficulty of keeping unequipped aircraft on trajectory was 

moderate for 10 and 50% runs (Ms = 3.75 and 4.13, respectively) and low for 90% runs (M = 2.25). 

Area Supervisors. Area supervisor of ZKC South thought the traffic and equipage levels were manageable on 

every run; area supervisor of ZKC North found them barely manageable on two runs, one 10% and one 50%, but 

manageable on all other runs. In both cases, area supervisor for ZKC North thought the equipage levels, 10 and 

50%, would have been manageable under lower traffic levels. Area supervisors thought controllers could have 

handled higher traffic levels on about half of the 10 and 50% runs and about 75% of the 90% runs.  

Traffic management coordinators. One TMU participant rated the equipage level and traffic load as 

unmanageable on one 10% run, but thought it would have been manageable with more TMCs on staff. The 

participant further explained that the manageability increased over the course of the run: “Work was very 

intensive for the first 30 minutes of the run. After getting a handle on the traffic, then simple maintenance was all 

that was necessary to keep the sectors under control.” This is likely the result of our traffic scenario design, which 

progressively increased traffic to a relatively high level – particularly for a 10% equipped environment, over 

roughly the first third each run. On every other run, both TMU test participants considered the equipage levels and 

traffic loads to be manageable as staffed. TMU participants thought they could have managed higher traffic loads 

on 50 and 90% runs. Both TMU participants thought that they may have been able to manage a higher traffic load 

on run 8, the third 10% run. This suggests a relatively quick learning effect that increased the acceptability and 

manageability of the simulation traffic loads in the 10% equipped condition. 

3.5.5 Service for Equipage 

Area supervisors and traffic management coordinators. Across equipage levels, area supervisors and 

traffic management coordinators reported that, whether moving traffic for sector load or weather, they were able 

to provide better service to the equipped aircraft relative to the unequipped aircraft, by rerouting unequipped 

aircraft first and allowing equipped to fly their original, or closer to their original, trajectory. For weather, that 

meant unequipped aircraft were rerouted and equipped aircraft were allowed to just “skirt” weather. One 

supervisor commented that the service for equipage policy was a “win-win,” since moving an unequipped aircraft 

out of a sector lightens that sector controller’s workload more than moving an equipped aircraft, and at the same 

time rewards equipped aircraft with better service. Traffic management coordinators indicated that a strategy of 

focusing on the unequipped aircraft, and leaving the equipped untouched, helped them to resist the inclination to 

move the equipped first simply because it was operationally easier to do so. When feasible, the TMC left it to the 

controller to move an equipped aircraft, if necessary. 

TMCs also pointed out that the varying equipage levels did not change their general strategy for providing better 

service to equipped aircraft, but did affect how well they could provide better service. In 10% equipped runs, 

equipped aircraft were simply “not touched” by the TMU. In 90% runs, they felt they had no choice but to reroute 

some equipped in addition to the unequipped aircraft. TMCs also mentioned that if they noticed a sector “going 
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red,” but that it was equipped aircraft sending it over the limit, they would “let it ride,” since the equipped aircraft 

were “not a big deal” for controllers. 

Controllers. Across equipage levels, controllers responded that they gave equipped aircraft priority access to 

constrained airspace and made unequipped aircraft yield to equipped aircraft in mixed equipage conflicts. In both 

cases, the mean difficulty rated on a 1 (“not at all”) to 7 (“very difficult”) scale was 2 or lower for all three equipage 

levels. 

3.5.6 Team Configuration, Roles, and Responsibilities 

Area supervisors. One area supervisor participant, ZKC South, made use of the multi-sector planning station 

while the other, ZKC North, did not. The area supervisor for ZKC South preferred to work from the planning station 

in the corner of the room because the additional, larger screens made the tools easier to use. The area supervisor 

for ZKC North was concerned that sitting at the planning station, rather than at his smaller but more centrally 

located station, would remove him from the operation and cause him to lose situational awareness. This concern 

appeared justified since there was one observed instance when the South supervisor, sitting at the planning 

station, was too late in noticing that his sector 29 radar controller needed help. 

Both area supervisors felt that their roles and responsibilities in the simulation did not differ substantially from their 

actual roles in the facility today. They did point out that they were able to move aircraft more dynamically and 

closer-in than they can today, and were less reliant on the TMU since they could coordinate with each other and 

reroute aircraft directly. They also pointed out that their workload and sector complexity decreased as equipage 

level increased, but that during 90% equipped runs, they could no longer rely on “voice (speed, volume, or 

inflection) to indicate how busy a controller was.” The mean difficulty of determining when to assign/remove radar 

associates, rated on a 1 (“very easy”) to 5 (“very difficult”) scale, was higher for 50 and 90% runs (1.88 and 1.75, 

respectively) than for 10% runs (1.00). 

ZKC South supervisor indicated that across equipage levels he spent about 50% of his time monitoring the 

controllers and potential problems in individual sectors, 30% developing solutions for problems in his area, 10% 

executing TMU’s plans, and 10% requesting assistance from the TMU. ZKC North supervisor did not estimate task 

distribution by percentage of time, but noted that the more unequipped aircraft there were, the more time he 

spent monitoring the radar controllers. He also pointed out that problems in his area were easier to resolve with 

equipped aircraft. 

Traffic management coordinators. The participant acting as STMC in each run took charge of within and 

between center coordination and determined the division of responsibilities between his TMCs. Participants 

indicated that they tried three main divisions of responsibility between the two TMCs working the ZKC test area: 

geographic (North / South Center split); weather / volume (1 TMC reroutes for Wx / 1 TMC manages sector volume 

& complexity); and altitude (FL290 – 350 / FL360 – 600). Both believed the division by altitude strata led to the 

fewest cases of overlap or duplication of effort between TMCs. They also explained that the effectiveness of the 

division of roles largely depended upon the equipage level and weather in the run, and that they sometimes 

needed to adjust the assigned roles in the middle of a run in order to accommodate changes in the situation. The 

importance of communication between all parties and STMC oversight for reducing overlap was stressed.  

Comparison with 2009 multi-sector planner simulation. Our two TMU participants, both of whom had 

previously participated in the 2009 Multi-Sector Planner Simulation, were asked to compare the effectiveness of 

operations and team configuration in the previous simulation with the current simulation. Both responded that 

operations worked better in the current simulation and that they felt they were better able to accomplish their 
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objectives with less duplication of effort. They attributed their improved effectiveness and efficiency to clearer 

delineation of responsibilities and oversight of the MSP function by the STMC, and cited a lack of organization and 

supervision of MSP activities in the 2009 study.  

The two area supervisor participants in the current study were asked whether they could have used a multi-sector 

planner TMC located in the area (“on the floor”). Both believed the multi-sector planning functions would be 

useful but that a supervisor could handle the responsibilities, with no need for a TMC to staff the position. 

Radar controller vs. radar associate. Radar associate positions were staffed on test sectors 29 and 94 for at 

least part of every run, and for the entire run for about 80% of the runs. Having the same scope and tools, radar 

controllers and radar associates each had the capability to perform any ATC task, though only radar controllers 

spoke to pilots. In post-run questionnaires, various ATC activities were listed and the radar associates for all four 

test sectors indicated which of those they had performed on the previous run. Table 13 summarizes their 

responses by equipage level. Radar associates acted as a second set of eyes and ears, helped with handoffs, and 

looked for conflicts across all three equipage levels. As equipage levels increased, radar associates resolved fewer 

mixed equipage conflicts and conflicts between unequipped aircraft, and more conflicts between equipped 

aircraft, presumably because the number of unequipped aircraft in their airspace decreased. They also spent less 

time rerouting aircraft around weather and putting aircraft back on trajectory (“on track”), as equipage level 

increased.  

Radar controllers and associates were asked whether there was any confusion, unnecessary overlap, or duplication 

of effort within sector teams. Of the fifteen instances they mentioned, eleven occurred (73%) during 50% 

equipped runs, suggesting that radar controller – radar associate role division was trickier in 50% scenarios.  

Table 13. Mean percentage of runs on which radar associates reported performing particular ATC tasks. 

ATC Task 
Equipage Level 

10% 50% 90% 

Second set of eyes and ears 100.0 93.8 100.0 

Accept & initiate handoffs 100.0 93.8 100.0 

Look for conflicts 100.0 87.5 100.0 

Resolve conflicts between EQUIPPED A/C 50.0 62.5 62.5 

Resolve conflicts between UNEQUIPPED A/C 50.0 43.8 25.0 

Resolve MIXED CONFLICTS (i.e., conflicts involving 
equipped and unequipped A/C) 

50.0 50.0 25.0 

Reroute A/C around weather 100.0 100.0 87.5 

Put free-track A/C back on route 100.0 87.5 75.0 

Coordinate with other controllers (e.g., on handoffs, 
A/C not on frequency, conflict resolution) 

100.0 87.5 87.5 

Data block management or clean-up 75.0 68.8 75.0 

 

Radar associates were also asked in post-run questionnaires how they performed certain air traffic control tasks, 

and selected from a list of options (Table 14). Specifically, radar associates were asked how they trial planned and 

coordinated reroutes for unequipped, equipped, and un-owned (regardless of equipage) aircraft. In managing 

unequipped aircraft, radar associates trial planned routes and coordinated those routes with their sector radar 

controller using data exchange (i.e., “CC”) much more often than verbal communication. In managing equipped 
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aircraft, radar associates most often uplinked routes directly to aircraft, rather than sending them to the radar 

controller’s station for review and uplink. When it was necessary to manage un-owned aircraft (e.g., for a mixed 

equipage conflict in which the unequipped aircraft was un-owned), radar associates most often coordinated 

verbally with the other sector controllers, rather than via ground-ground data coordination.  

In the post-simulation questionnaire, the two participant radar controllers (for sectors 29 and 94) were asked to 

reflect on their experiences across equipage levels and give their opinion on the optimal division of tasks between 

radar controller and radar associate. Describing the optimal division, both split certain duties according to whether 

the aircraft were equipped. Both allowed their radar associates to send clearances for equipped aircraft directly to 

the aircraft (via a “UC”), but required clearances for unequipped aircraft be sent to them (via a “CC”). Both 

described the radar associate ability to trial plan reroutes and send (“CC”) these for review and issuance as very 

useful.  

More specifically, the sector 29 controller thought the radar controller should be more focused on the unequipped 

aircraft and the radar associate on the equipped aircraft, but with the radar controller taking all handoffs. The 

radar associate would assist in initiation of handoffs. The radar controller and associate would split the duties of 

rerouting aircraft around weather and around conflicts when able. 

According to the sector 94 controller, the radar controller would look at and resolve all conflicts, initiate/accept 

handoffs on unequipped aircraft, trial plan descents/climbs, manage the data blocks, and respond to coordinated 

clearances (“CCs”). The radar associate would look at and resolve weather reroutes for equipped aircraft, look at 

and coordinate (via a “CC” to the radar controller) weather reroutes for unequipped aircraft, assist in initiating 

handoffs on unequipped, and assist in data block management. 

Both sector 29 and 94 controllers stated that the division of tasks would change as the equipage level changed. 

With fewer aircraft equipped, the radar associate would have to assume more duties because the radar controller 

was so busy issuing voice clearances. With 90% equipped, the radar associate might only assist with data block 

management, depending of course on the actual level of complexity due to, for example, weather or conflicts. 

Table 14. Mean percentage of runs on which radar associates reported performing ATC tasks in particular ways. 

ATC Task 
Equipage Level 

10% 50% 90% 

Trial plan UNEQUIPPED & send ("CC") to R-Side to issue verbally 87.5 75.0 25.0 

Trial plan UNEQUIPPED and VERBALLY COORDINATE (no "CC") the 
new route with R-SIDE to issue verbally to A/C 

37.5 31.3 0.0 

Trial plan EQUIPPED & send ("CC") to R-Side to uplink 25.0 31.3 25.0 

Trial plan EQUIPPED & UPLINK directly ("UC") to A/C 100.0 100.0 87.5 

Trial plan UN-OWNED A/C & send ("CC") to OTHER CONTROLLERS 50.0 50.0 25.0 

Trial plan UN-OWNED A/C & VERBALLY COORDINATE with OTHER 
CONTROLLERS 

100.0 100.0 100.0 

 

3.6 Tools Feedback 
In this section we summarize subjective feedback from the post-simulation tools questionnaire from the six test 

participants only. The tools questionnaire covered, among other things, the usefulness and usability of the multi-
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sector planning and controller tools in a mixed equipage environment. Most questions were asked for both 

equipped and unequipped aircraft. Only feedback and ratings which bear directly on the experimental questions of 

the tools’ adequacy in a mixed equipage environment are summarized here. Appendices C and D provide more 

complete and detailed ratings data on all the tools. 

3.6.1 Radar Controller Tools 

Radar controllers and radar associates had use of the full DSR tool set. This tool set included: Route and Altitude 

Trial Planning (for both equipped and unequipped aircraft), Conflict Detection, Weather Probing, Automatic 

Trajectory Resolutions for conflict or weather avoidance, Data Comm equipped aircraft options and unequipped 

aircraft voice communication options, as well as ground-to-ground Data Comm.  

Controller tools in a mixed equipage environment. Tool usefulness vs. usability questions were broken 

down by equipage type. For each set of radar tools, the controllers were asked how useful or usable they were for 

both equipped (E) and unequipped (UE) aircraft. Figure 28 and Figure 29 below present the mean usefulness and 

usability ratings by the two radar controller participants, only. Figure 28 shows the radar controller tool ratings for 

equipped and unequipped aircraft. Figure 29 presents the usefulness and usability ratings of the communication 

tools, Data Comm and voice communication, for equipped and unequipped aircraft. More detailed ratings data on 

all radar controller tools can be found in Appendix E. 

 

Figure 28. R-Side Tools: Usefulness v. Usability for Equipped and Unequipped Aircraft 

 

0 1 2 3 4 5 6

Usefulness

Usability

Usefulness

Usability

Usefulness

Usability

Usefulness

Usability

Usefulness

Usability

Usefulness

Usability

Usefulness

Usability

TT
 (

Tr
ia

l 
P

la
n

n
in

g)

TA
 

(A
lt

it
u

d
e 

Tr
ia

l 
P

la
n

n
in

g)

TR
 (

R
o

u
te

 
Tr

ia
l 

P
la

n
n

in
g)

G
ra

p
h

ic
al

 
Tr

ia
l 

P
la

n
n

in
g

C
o

n
fl

ic
t 

P
ro

b
in

g 

W
ea

th
er

 
P

en
et

ra
ti

o
n

 
P

ro
b

in
g 

C
o

m
m

u
n

i
ca

ti
o

n
 

sy
m

b
o

l 
(d

ia
m

o
n

d
 

o
r 

lin
e 

in
 

fr
o

n
t 

o
f 

ca
lls

ig
n

) 

Not Useful/Usable  (1) to Very Useful/Usable (6) 

R
-S

id
e

 T
o

o
ls

R-Side Tools:  Usefulness v. Usability for Equipped and Un-equipped Aircraft

Equipped

Unequipped



MSP3_Report_3-2-11 3/2/2011 46 

 

Figure 29. Communication Tools: Data Comm Equipped v. Voice Unequipped Usefulness and Usability 

In general, feedback on the controller tool set was positive. Controllers found the trial planning tools highly useful 

and usable with both equipped and unequipped aircraft. One issue cited, however, was that the lack of all the 

ground based NAVAIDS made it difficult to trial plan a good reroute for unequipped aircraft. Also, the direct TR 

keyboard reroute function was rated relatively low in usefulness; the two participant controllers did not use this 

function because they were not familiar enough with the test airspace and because they really liked using the click-

and-drag trial planning function. Controllers loved the conflict probe feature for both equipped and unequipped 

aircraft and one controller commented, “Amazing, get this on our scopes now!” They also liked the weather 

penetration prediction tool but thought the weather avoidance reroute feature needed a bit more “forecasted” 

information.  
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Working in a mixed equipage environment meant that each radar controller could control more traffic than in 

normal, present-day operations: Data Comm enables automated transfer of communication, eliminates the voice 

check-in requirement, and improves performance of trajectory-based tools. Because task load is reduced with 

equipped aircraft, aircraft count increases at higher equipage levels. The more aircraft per sector, the more the 

data blocks overlapped visually. One controller indicated that he would have liked a FDB “de-conflict button,” to 

spatially separate overlapping data blocks. Further, equipped aircraft were not required to check-in as they 

entered a new sector. Consequently, controllers also indicated that making it easier to locate specific aircraft on 

their scopes would help with situational awareness. One suggestion was an alphabetical list of aircraft to select 

from that, when selected, would highlight the corresponding FDB on the scope.  

Working in a mixed equipage environment required controllers to manage and interact with aircraft differently 

depending on the equipage type. For example, controllers had to manage two different types of transfer of 

communication, automatic and manual. Automatic transfer of communication for equipped aircraft was rated high 

in both usefulness and usability; one controller said, “Get this to us now.” Usefulness and usability of manual 

transfer of communication was rated lower, and one controller commented that the usability dropped as the 

number of unequipped aircraft increased. In contrast, the mechanism for issuing clearances was well accepted for 

both equipped (UC) and unequipped (QC) aircraft, but controllers thought that Data Comm (UC), in particular, 

greatly reduced their workload, contributing to higher safety and their ability to handle more aircraft. With 

unequipped aircraft, controllers indicated that they had to use more “props,” like the J-ring, to remind them when 

they needed to do something. Overall, however, controller feedback suggested that the available tools made it 

possible to work the traffic in a mixed equipage environment. 

Synchronized radar controller and radar associate scopes. Another prototyped feature of the controller 

team tool set was the synchronization of the radar controller and radar associate scopes. The participants were 

asked how useful or usable the synchronized display concept was in terms of various controller tools. Figure 30 

presents the two R-Side participant responses to the synchronized display concept. In general, controllers found 

the R-Side-D-Side scope synchronization acceptable. One participant commented that there were times when he 

would have liked to off-set the data blocks differently on his scope than on his D-Side’s scope, but he also 

remarked that in a high workload environment it was probably better to have the data block locations the same.  

 

Figure 30. R-Side and D-Side Display Synchronization: Usefulness v. Usability 
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3.6.2 Multi-Sector Planning Tools: STMC/TMC and Area Supervisors 

The two TMU participants and two Area Supervisors had use of the full multi-sector planning tool set. This tool set 

included: Load Display Control Windows, Load Table, Load Graphs, DSR, TSD (weather information), AC Filters 

tools, Traffic Monitoring and Problem identification, Solution Planning and Solution Coordination/Communication. 

Only feedback which bears directly on the experimental questions of the tools’ adequacy in a mixed equipage 

environment is examined here.  

Multi-sector planning tools for mixed equipage. Figure 31, Figure 32, and Figure 33 present the mean 

usefulness and usability ratings by the area supervisor and TMU participants. The tools ratings are presented in 

three figures organized into the following three categories: MSP Tool Sets (General), Trial Planning Tools, and 

Communication Tools. Figure 31 presents the overall usefulness and usability ratings of the major MSP tools as 

they were used for two primary functions: 1) traffic monitoring and problem identification; and 2) actual solution 

planning. Figure 32 shows the usefulness and usability results for the trial planning tools. Figure 33 shows the 

usefulness and usability of both the voice and Data Comm tool set. More detailed ratings data on all MSP tools can 

be found in Appendix F. 

 

Figure 31. Overall Usefulness and Usability of MSP Tool Set 
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Figure 32. Overall Usefulness and Usability of Trial Planning Tools  

MSP tools and service for equipage. In their comments, area supervisor and TMU participants indicated that 

the filter tool made it easier to provide service for equipage. By filtering out the equipped aircraft and displaying 

only the unequipped aircraft, participants were able to focus their initial attempts at managing sector complexity 

on traffic initiatives that only affected the unequipped aircraft, leaving the equipped to remain on their original 

trajectories. In rerouting unequipped aircraft, however, participants felt that the waypoints available for trial 

planning were too sparsely spaced. They would have liked more closely-spaced waypoints to choose from, in order 

to reduce the reroute penalty to unequipped aircraft. Both area supervisors and TMU participants also commented 

that in using the load table and graphs to manage sector load, they allowed higher sector counts when a majority 

of the aircraft was equipped, and TMU participants allowed sector predictions above the nominal Monitor Alert 

Parameter (MAP) of 22 if the aircraft sending the sector over MAP were equipped aircraft.  
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Figure 33. Overall Usefulness and Usability of Communication Tool Set 

Distribution of multi-sector planning tools. Area supervisors indicated they made use of all the tools 

available to them, especially during peak periods, to manage sector complexity. For example, area supervisors 

commented that they used the filters to identify aircraft that required reroutes for sector load or weather 

avoidance and that the tools allowed for easy analysis of future traffic. Doing so, however, was easier from the full 

planning work station in the corner of each control room which, they felt, caused them to have their back to the 

floor for too long; they would have liked the full station to be more centrally located, with a view of controllers.  

With area supervisors using the multi-sector planning tools to reroute traffic, TMU participants were concerned 

about duplication of efforts. One function they felt was missing and would have found useful was a way to see 

whether a given plane had been moved previously, and if so, how many clearances it had been issued. Without 

such a tool, they were concerned that aircraft might get issued multiple conflicting clearances, if not done with an 

organized, high-level plan in mind. 

An important tool for planning and coordination, ground-to-ground data exchange tools were rated high in both 

usefulness and usability by area supervisors and TMU participants. Participants also appreciated ground-to-ground 

data exchange since it reduced the amount of verbal coordination they needed to do. 
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4  Discussion 
A HITL simulation was conducted to determine the feasibility and value of conducting multi-sector planning (MSP) 

operations in a mixed equipage environment. The simulation also provided insight on tool requirements (for both 

planner and controller stations), as well as planning and coordination procedures and distribution of roles and 

responsibilities both within facility (TMU/Operational Area) and within sector (R/D).  

This simulation also allowed us to explore the application of a proposed NextGen “best-equipped, best-served” air 

traffic management policy. Procedures for accomplishing this at the sector and multi-sector level were developed 

and tested, and a rich set of results were obtained that speak to its effectiveness and feasibility, as well feedback 

from participants about its operational suitability.   

4.1 Feasibility  
The operational feasibility assessment addressed two related questions: (1) are MSP operations feasible for 

unequipped aircraft, and (2) are they feasible in a mixed equipage context. The simulation allowed us to explore 

other feasibility topics that were not directly coupled to this objective, including the feasibility of mixed equipage 

operations in general, and of procedures to support trajectory-based operations for non-Data Comm aircraft.  

4.1.1  Operational Feasibility 

Overall, the results indicated that the simulated MSP tools and procedures were effective with both equipped and 

unequipped aircraft, and that these operations were feasible in a mixed equipage environment. Trajectory 

coordination proved feasible for unequipped aircraft as well as for equipped aircraft. Roughly two thirds of all 

coordinated clearance requests were for unequipped aircraft, and nearly all coordinated clearances were accepted 

and executed by the receiver.  

Using the MSP tools, TMCs were able to manage controller task load, effectively balancing airspace throughput 

with sector complexity and controller task load at each equipage level tested. Operator feedback was consistent 

with performance and usage metrics. Across equipage levels and positions, mean reported task and workload 

remained at average and tolerable levels, and CARS operational acceptability ratings were satisfactory.  

4.1.2 General Mixed Equipage Feasibility  

The simulation also shed light on potential feasibility considerations for mixed equipage operations more 

generally. Although no equipage level was considered particularly problematic, the 50% level was more challenging 

than either the 10% or 90% levels. In the post-run TLX questionnaire, controllers, area supervisors, and TMC 

participants all reported the 50% runs to be the most frustrating, although the reported mean frustration level was 

still at or below the middle value for all 3 participant categories (traffic management, supervisors and controllers). 

One controller explained that the 50% runs were hardest because they required controllers to make more service-

for-equipage decisions. That is, the additional cognitive load placed on controllers by asking them to consider 

providing priority service to the equipped aircraft will be highest when the likelihood of mixed equipage situations 

is highest (i.e., at the 50% level). One suggestion that was offered for mitigating this additional workload was for 

the automation to assist the controller in providing service for equipage by offering resolution advisories that 

preferentially move the unequipped aircraft in mixed equipage conflicts.  

The 50% equipage level was also reported to be the most confusing in terms of dividing roles and responsibilities 

between radar controllers and radar associates. Overlap and duplication of effort – for example, both team 

members working on rerouting the same aircraft – reportedly occurred most frequently during 50% runs. Finally, 
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the 50% runs also had the highest number of controller input errors – i.e., using the wrong action to execute a 

clearance for an equipped aircraft.  

4.1.3 Feasibility of TBO for Unequipped Aircraft 

 One of the key choices for this study was the decision to plan and coordinate trajectory-based clearances for both 

equipped and unequipped aircraft. This meant that tools and procedures were needed to support trajectory-based 

operations for unequipped planes, so a trial plan mechanism for creating and issuing clearances based on named 

waypoints was developed. The aircraft target symbol was modified, too, to provide salient feedback when aircraft 

were out of conformance with the ATC system-entered trajectory, and one regular D-side task was to update the 

system entry as needed to bring it into conformance with the actual flown trajectory.  

Participants found the tools for trial planning trajectories to be effective for unequipped aircraft. The named 

waypoints available to them for route construction were not as dense as they would have liked, however, and they 

developed workaround techniques for minimizing any consequent route inefficiencies. If, for example, the 

waypoint-based reroute for weather avoidance took an unequipped aircraft farther from its preferred route than 

necessary, they would plan to return the aircraft back on course after the weather was no longer a concern. This 

technique of issuing a second follow-up clearance to avoid excessively inefficient reroutes increased the 

controller’s workload, but was used regularly to compensate when the available waypoint’s location was not 

optimal. A solution proposed by several participants was to increase the density of named waypoints, perhaps by 

adopting the NRS grid protocol.
29

 

4.2 Benefits 
Two categories of MSP-associated benefits were evaluated in this simulation: system performance improvements 

and priority service for equipped aircraft. System benefits were also observed with increasing equipage levels, 

independent of MSP operations. 

4.2.1 Benefits Associated with MSP Operations 

System benefits.  System performance improvements were evident both in terms of test airspace throughput 

and controller workload. Using the MSP tools, TMCs selectively diverted aircraft away from the test airspace in 

order to manage predicted sector complexity, a metric that weighted unequipped aircraft more heavily than 

equipped aircraft. As a result, higher throughput was maintained as equipage levels increased, without elevating 

controller workload. In fact, controller workload decreased as equipage levels increased.  

Service for equipage. A strategy of selectively diverting unequipped aircraft also provided priority service to the 

equipped aircraft. TMCs and, to a lesser extent, area supervisors, could selectively permit equipped aircraft 

increased access to congested airspace. The net results were higher test airspace throughput for equipped than 

unequipped aircraft and greater path length increases across all equipage levels for unequipped aircraft. 

4.2.2 System Benefits of Higher Equipage Levels  

With the multi-sector planning operations managing airspace complexity, higher throughput was observed with 

higher equipage levels – i.e., fewer aircraft needed to be routed around constrained resources to keep demand at 

a manageable level. Equipage-related workload differences were so pronounced that increased throughput was 

accompanied by reduced workload at higher equipage levels. This suggests that the complexity calculation could 

have been adjusted to increase the weighting difference between equipage types, allowing even higher 

throughput at the 90% equipage level.  
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The increased overall efficiency with higher equipage levels had an interesting consequence in terms of service for 

equipage as well. Even though controllers and planners reported having fewer opportunities to selectively provide 

priority service to equipped aircraft at the higher equipage levels, the observed advantage to equipped aircraft (in 

terms of path length, throughput differences and conflict resolution maneuvers) was maintained, even at the 90% 

equipage level. This was probably because system efficiency overall was improved: the (10% minority of) equipped 

aircraft saw a comparative benefit in the low-equipage case, while the (90% majority of) equipped aircraft saw a 

comparative benefit in the high equipage case. Note that the converse also appeared to be true: unequipped 

aircraft seemed to be no worse off in the 90% equipage case than in the 10% equipage case, which was arguably 

no different than they would be if 0% were equipped and no system benefit was observed. 

4.3 Service for Equipage  
Another decision made for this simulation was to explore the possible application of a “service-for-equipage” 

policy in ANSP decision making at both the multi-sector planning and the sector level, with planners and 

controllers asked to provide priority service to Data Comm equipped aircraft.   

Controller operations. Controllers provided service for equipped aircraft across all three equipage levels by 

making unequipped aircraft yield in mixed equipage conflicts, and by giving equipped aircraft priority access to 

constrained (e.g., by weather) airspace. They indicated in debrief discussions that this was easy to do, although 

they also said that it would often have been easier for them to move an equipped aircraft.  

One reason why equipped aircraft resolutions may have been easier was that Data Comm permitted a clean, one-

step / one-clearance maneuver to efficiently achieve the weather or conflict avoidance objective. Unequipped 

resolutions, by contrast, often involved a two-step or two-clearance process, regardless of whether the controllers 

used trajectory, heading or altitude clearances. For example, an additional computer entry might be needed to 

bring the ATC system trajectory back into alignment with the flown trajectory; e.g., after the unequipped aircraft 

turns onto its new assigned route. If vectors or an altitude resolution were used, the controller might need to 

remember to return to that aircraft and issue a second clearance later to put it back on course. With trajectory 

clearances, the location of the waypoints sometimes meant that an unequipped aircraft could be sent 

unnecessarily far out of its way, especially when contrasted with the more precise trajectory solutions available for 

equipped aircraft. In order to reduce the impact of these route inefficiencies, controllers would routinely come 

back to the rerouted aircraft several minutes later, after the problem was past, and issue a new clearance to return 

the aircraft back on course.  

Note that these added tasks might contribute to the controller’s workload anytime an unequipped aircraft is 

maneuvered. They only present a dilemma in a service-for-equipage context because the controller may forego a 

comparatively easier, equipped aircraft maneuver in order to provide it priority service.  

This raises a second, cognitive, workload issue that was reported by participants: a service-for-equipage policy 

complicates the controller’s decision making process. For example, the controller may need to weigh the 

comparative benefit to the equipped flight of moving two unequipped aircraft; or perhaps the unequipped aircraft 

maneuver is less obvious or more complicated. Participants suggested that if the conflict resolution advisory tool 

could automatically provide solutions favoring the equipped aircraft, it would reduce the cognitive overhead of 

working through the available options. 

Concerns about comparative solution efficiency may be less important operationally, however. Controllers in our 

simulation reported that it was easier to move equipped aircraft in mixed equipage, tactical situations, and in 

several mixed equipage conflicts they chose to move the equipped aircraft for this reason. In many (perhaps 
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most?) tactical conflict situations in an operational setting, however, the preference will likely switch, since voice 

enables the controller to confirm that the clearance is understood and will be executed in time. If a voice clearance 

is preferred over Data Comm there is no advantage to moving the equipped aircraft, and there may be a 

disadvantage in taking them off their trajectory and reducing the effectiveness of the TBO tools.  

Planning operations. Area supervisors and traffic management coordinators indicated that they, too, were able 

to provide priority service to the equipped aircraft at all three equipage levels, and they thought it would be 

natural for them to do so in the field as well. They agreed with radar controllers that service for equipage was 

viable on a more strategic level, for solving sector load and weather problems, but perhaps less viable on a very 

tactical level, as an additional constraint for controllers to consider. Traffic management coordinator participants 

also stressed that training for MSP operations needs to emphasize the importance and value of rerouting the 

unequipped aircraft first, otherwise the equipped aircraft would suffer simply because they are easier to move (in 

terms of the number of steps/procedure required to reroute them). With lower equipage levels, it was easier to 

solve traffic problems by moving the unequipped aircraft and leaving the equipped aircraft on their original route. 

As equipage level increased, there were fewer solutions available involving only unequipped aircraft, so some 

equipped aircraft were also moved; however, it’s unclear whether that had much impact on their overall 

efficiency, as the equipped aircraft were observed to receive better service at all equipage levels. Moreover, the 

use of lat/long based waypoints allowed equipped aircraft to receive shorter / more precise lateral adjustments to 

their routes at all equipage levels. 

Participant feedback regarding operational suitability.  Planners and controllers all found it feasible to 

provide service for equipage, although they felt it was easier, more appropriate, and probably more effective for 

the planners than for the controllers. All agreed that it was an appropriate and useful role for MSP operations, and 

that it could be very effectively performed as part of these operations. In contrast, feedback was divided about 

whether controllers should be expected to provide priority service for equipped aircraft, even though controllers 

reported that it was possible, and that the added workload was not unreasonable. See Appendix G for a 

transcription of relevant material from the post-simulation debrief discussion. Their three main concerns are 

summarized and discussed below.  

One concern was that providing priority service to equipped aircraft – by moving the unequipped aircraft in a 

mixed equipage conflict, for example – would add to controller workload and could compete with other priorities. 

While our participant controllers reported that it would often have been easier to move an equipped aircraft, 

however, they also reported that the workload increase was modest using the tools that were provided. They also 

suggested that resolution advisories would further reduce the effort required.  

A second concern was that asking controllers to provide priority service to a particular aircraft category represents 

a change from their current practice of “first-come, first-served.” We observed in the simulation that controllers 

continued to provide service to all aircraft, making an extra effort to minimize reroute inefficiencies for 

unequipped aircraft, for example.  The equipped aircraft were favored over the unequipped only when they 

competed for the same resource (e.g., airspace or route access). Priority service was only one of several factors 

considered by controllers when making a control decision, however. On several occasions, for example, a mixed 

equipage conflict was resolved by moving an equipped aircraft nearing its destination instead of an unequipped 

aircraft that was still in mid-cruise.  

Finally, participants questioned whether it was necessary for the controller to actively try to provide benefit at the 

sector level. Our simulation results suggest that the priority-service benefit seen at the sector level may be small 
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compared to the service provided from a multi-sector, or flow management, position. However, further study 

would be needed to understand the differential benefit, and what the impact might be at the sector level. 

4.4 MSP Tools 
Usage data and subjective feedback suggest the prototype tools were effective and satisfactory for mixed 

equipage operations. Both TMCs and controllers developed the majority of their coordinated clearances for 

unequipped aircraft, and the vast majority of these were accepted and executed via voice by controllers. TMCs, 

area supervisors, and controllers gave high usefulness and usability ratings for coordinated clearances and trial 

planning functions for both equipped and unequipped aircraft.  

One of the most critical features for the success of these tools was the integrated trajectory exchange automation 

for development and receipt of coordinated clearances, especially for unequipped aircraft. On the planning end 

there were integrated capabilities that supported trajectory development, evaluation and delivery to controllers, 

via ground-ground data exchange. Integrated functionality continued to be critical on the controller side, with the 

received request integrated with the controller’s trial planning automation, once again enabling efficient 

assessment, and then delivery to the aircraft.  

4.5 Procedures 
Several revisions to the MSP concept developed for the 2009 simulation were needed to accommodate mixed 

equipage operations and to explore functional integration of MSP operations into the existing facility workforce. 

Some of the new procedures developed for mixed equipage operations – including methods for providing service 

for equipage, and trajectory-based operations for unequipped aircraft – were discussed in preceding sections. 

Changes to roles and responsibilities within the planning and controller teams are described in this section. 

4.5.1 Roles and Responsibilities  

Multi-sector planning operations. Roles and responsibilities for MSP operations were established through a 

combination of researcher-suggested guidelines and participant input based on domain expertise and preferences, 

and they evolved as participants gained increasing experience in the mixed equipage environment. Although area 

supervisors did use the tools to coordinate a small number of clearances, the vast majority of multi-sector trial 

planning and coordinated clearance requests were performed by the TMCs. Within the TMU, the STMC decided on 

the division of responsibilities between the two TMCs and carried out the necessary within and between center 

verbal coordination. Of the three primary divisions of multi-sector trajectory planning responsibility that were tried 

out over the course of the simulation – by geographic area, task (weather vs. volume), and altitude strata – the 

division by altitude strata was believed by TMCs to lead to the least overlap and duplication of effort, although this 

could depend on equipage level, weather situation, and other factors.  

Controller responsibilities. Radar controllers and associates used the new tools to trial plan and coordinate 

clearances within their own and with other sectors. Radar controllers always maintained responsibility for issuing 

clearances by voice, but clearance delivery by Data Comm was sometimes delegated to the radar associate. Radar 

associates also  planned and sent clearances for unequipped aircraft to their own sector controllers to voice up to 

the aircraft. Division of other duties, such as coordinating clearances with other sectors, depended on radar 

controller personal preferences, as well as on the equipage level. At lower equipage levels, radar associates 

assumed more duties because radar controllers were busy voicing clearances, while at the highest equipage level, 

the radar associate might primarily assist with data block management at the higher traffic densities. 
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4.6 MSP Functional Integration: A Comparison to 2009 Simulation 
Integration of MSP tasks within existing workforce. Our two TMU participants had both previously 

participated in the 2009 Multi-Sector Planner Simulation, one in each of the two simulation sessions. During that 

simulation, both performed multi-sector planning activities from a dedicated MSP position. Individual planners 

were responsible for non-overlapping geographic areas (e.g., the northeast sectors of ZKC were the purview of 

“MSP North”) with a ~30 to 60 minute time horizon, while a single TMC was responsible for the ~45 to 90 minute 

horizon for the entire center. In the current simulation, the TMU assumed responsibility for the 30 to 60 minute 

time window as well, and both TMCs (potentially) shared an overlapping region of responsibility. The STMC was 

responsible for communication and coordination within his own TMU, with outside center TMUs, and with the ZKC 

area supervisors.  

In the post-simulation questionnaire, these two participants were asked to compare the effectiveness of 

operations and team configuration in the earlier simulation with the current study, where they performed multi-

sector planning functions as a TMC, with an STMC who was largely “off-scope” and available to focus on 

coordination. Both participants agreed that the 2010 team configuration and MSP operations worked well, and 

better than in the 2009 simulation. They also felt they were better able to accomplish their objectives with less 

confusion and duplication of effort. They attributed their improved effectiveness and efficiency to a clearer 

delineation of responsibilities, and oversight of the MSP function by an STMC. STMC management of the MSP 

operations in the TMU, and effective coordination of the delegation of duties were considered key to making the 

operation successful. The fact that the current simulation involved a smaller, “more focused” group was also 

mentioned as an improvement. 

Physical location of planning activities. In the 2009 simulation, the MSPs were physically isolated from the 

rest of the team rather than co-located in the operational area or the TMU. Most participants in 2009 thought the 

MSP would have been more effective from the TMU, however, it was also suggested that an MSP working in the 

operational area might be useful as well. Therefore, the two area supervisor participants in the current study were 

asked whether they could have used a multi-sector planning TMC located in the operational area. Both believed 

the multi-sector planning function and tools would be useful but that a supervisor could handle the 

responsibilities, with no need for a TMC to staff the position. However, one reason to staff the position with a TMC 

might be for ease of coordination with the TMU. Our TMU participants stressed that if MSP functions were to be 

carried out by area supervisors, coordination and communication between area supervisors and the TMU would 

be crucial to avoid duplicating or counteracting each other’s efforts. We also observed during the simulation that 

an area supervisor who was “on scope” performing a multi-sector reroute was less effective at monitoring the 

sector controller’s task load. However this may have been partially due to their unfamiliarity with the planning 

tools, and with the reduced radio communications in a Data Comm control room which reduces the auditory cues 

to the supervisor.  
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5 Conclusions  

5.1 Tools and Procedures  
An MSP concept tested in 2009 was adapted to support multi-sector planning and planner-sector coordination in a 

mixed equipage environment, then tested in a 2010 follow-up simulation. There were two main changes to 

planning procedures for the 2010 simulation: (1) redistribution of planning functions among STMC, TMCs and area 

supervisors, and (2) differential handling of Data Comm equipped and unequipped aircraft. Sector load assessment 

tools were modified to provide equipage-sensitive complexity feedback that took into account the increased 

controller task load associated with the unequipped aircraft. The main 2010 procedure change, supported by the 

modified assessment tools, was the  policy decision for planners to provide the equipped aircraft priority access to 

constrained resources (airspace, routes), selectively moving the unequipped aircraft as needed. This resulted in a 

more workable sector-level problem for controllers, with higher overall throughput and lower workload at the 

higher equipage levels. The new functional distribution of MSP responsibilities also worked well for participants. 

The two who had been part of our earlier simulation said that efficiency and coordination among the planning 

team was greatly improved by consolidating most MSP operations in the TMU.  

Two additional changes that affected controller operations were made for the 2010 mixed equipage simulation. 

The first was the addition of a radar associate to accommodate the increased workload associated with the 

unequipped aircraft. The distribution of responsibilities between radar controller and associate was effective and 

fluid, varying among controller teams and by equipage level. The radar controller always maintained sole 

responsibility for radio voice communication with aircraft, although development of trajectory clearances for 

unequipped aircraft was often delegated to the radar associate. 

It was also necessary to develop a means for coordination of unequipped aircraft trajectory clearances that could 

be easily reviewed and delivered by the controller. Automation tools were modified to enable trajectory clearance 

development and coordination for unequipped aircraft using named waypoint-based trajectories.  This automation 

proved effective enough that the function was central not only to MSP operations but also to controller 

operations, for both within-sector and between-sector coordination. It also provided a tool-supported mechanism 

for increasing TBO feasibility for unequipped aircraft. This raises two questions: (1) With suitable tools, how would 

controller workload for issuing trajectory clearances to non-Data Comm aircraft compare to today’s vector-based 

operations? (2) If there is a “cost” difference with respect to controller workload, how does this cost compare to 

the benefits of trajectory-based operations? More specifically, what TBO-related benefits are observed by the 

sector controller? With suitable automation, trajectory-based operations may prove a comparable, or even easier 

alternative for controllers than today’s methods. If the resulting trajectories are acceptable to users, and if the 

system and controller benefits are significant enough, a modest workload increase may even be acceptable.  

5.2 Service for Equipage 
This simulation provided an opportunity to explore a “best-equipped, best-served” policy of traffic management 

and air traffic control, and the procedures and tools designed to support this objective within MSP and controller 

operations proved both feasible and effective.  

All participants felt that the service for equipage objective was well-suited to MSP operations, and that it could be 

very effectively integrated with flow management or complexity management operations. Solving local area 

demand/capacity imbalances by moving unequipped aircraft away from the affected airspace is a flow planning 

strategy that can maintain higher system throughput while rewarding operators of equipped fleets.  Although their 
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initial impulse was to reroute the “easier” equipped aircraft, TMCs were quick to adopt this strategy, and found it 

highly effective, with no apparent downside. 

In contrast, feedback was mixed regarding whether the controller should be asked to provide priority service, even 

though participants reported that it was possible, and that the added workload was not unreasonable. Their 

concerns were:  

 The workload associated with providing priority service may compete with other controller priorities. 

 Priority service is different from current “first-come, first-served” policy. 

 Sector level benefit may be small compared to multi-sector benefit potential, and may therefore be 

unnecessary. 

The concern about controller workload and competing priorities should be satisfied if priority service is only 

expected on a “workload permitting” basis. Our results indicate that if this service is well-supported by 

automation, controllers will likely be able to accommodate it most of the time. 

Implied in the second concern is that the service received by unequipped aircraft would be unsatisfactory, or that 

they would be unfairly penalized. Our simulation observations would suggest, however, that if a policy decision 

were made to provide priority service to equipped aircraft, it could be implemented in a way that limits the impact 

on unequipped aircraft. More important, it could ensure that the system benefits resulting from the introduction 

of Data Comm do not disproportionately accrue to the unequipped aircraft. 

The simulation demonstrates that priority service can be effectively provided at the MSP level, and that MSP 

operations can be designed so that priority access equates to better overall system efficiency. Perhaps a cleaner 

division of responsibilities, where service for equipped aircraft is realized through MSP operations, and that 

controller operations are simply equipage neutral (i.e., do not penalize either equipage type), would be 

satisfactory. Absent further data, however, the answer is unclear. 

In conclusion, it should be emphasized that our results suggest that a service for equipage policy could be feasible 

at both the MSP and sector levels. Feedback suggests that it should be acceptable if implemented and introduced 

in an appropriate way; that is, with good tool support, minimal extra work, demonstrated value, and applied at the 

operator’s discretion.  

5.3 MSP Operations with Mixed Equipage 
Overall, results suggested that MSP operations were feasible in a mixed equipage environment and that the tools 

were effective with both equipped and unequipped aircraft. Using the MSP tools, traffic management coordinators 

were able to manage controller task load, effectively balancing throughput with complexity and controller task 

load at each of the three equipage levels tested. Also across equipage levels, mean reported task and workload 

remained tolerable, and operational acceptability was reported to be satisfactory. Although reported frustration 

and confusion were comparatively higher at the 50% equipage level than at the other levels, overall the 50% mix 

was believed to be workable.  

Benefits were observed both in terms of system performance and operational support for a “best-equipped best-

served” approach to traffic management and air traffic control. As equipage level increased, throughput increased, 

even as controller workload decreased. MSP operations effectively supported priority service for equipped aircraft; 

more equipped than unequipped aircraft were routed through the test airspace and unequipped aircraft received 

a greater increase in flight path length.  
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Other operational procedures established throughout the simulation suggested that the bulk of multi-sector 

planning – that is, trial planning and clearance coordination – can be effectively carried out by the traffic 

management unit (TMU). Operational area supervisors may also perform these functions, though far less 

frequently. Within the TMU, the division of specific MSP roles and responsibilities by the supervisory traffic 

management coordinator (STMC) among the traffic management coordinators (TMCs) remained flexible, with 

divisions by altitude strata, geographic area, and airspace problem (e.g, weather constraint or traffic volume) all 

possible contingent on the situation. On a more tactical scale, radar controllers and associates also found the 

clearance coordination tools useful and effective for trial planning and coordinating clearances within their own 

sector team and with other sectors. Other than voice communication with aircraft, which was always performed by 

the radar controller, the division of roles and responsibilities between radar controllers and associates varied by 

sector team and by equipage level. 

In summary, the MSP concept, as prototyped and tested in this simulation, appeared to be both feasible and 

beneficial in a mixed equipage environment when used to manage sector complexity and convective weather 

reroutes. A framework of coordination procedures supported by integrated decision support and communication 

tools supported collaborative trajectory management, with strategic clearances developed in response to varying 

constraints from a non-controller station. This framework could be extended to support other flow management 

functions, such as point-in-space metering and arrival flow management, and provides a model for how to 

integrate strategic trajectory management with air traffic control operations.   
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Acronyms 

ANOVA   Analysis of Variance 

ANSP   Air Navigation Service Provider 

AOL   Airspace Operations Laboratory at NASA Ames Research Center 

ATC   Air Traffic Control 

BEBS   Best Equipped Best Served Policy 

CARS   Controller Acceptance Rating Scale 

CC   Coordinated Clearance 

CID  Computer identification number, 4 digit aircraft identifier used for command entries  

CPA   Closest Point of Approach 

D, D-Side   Radar Associate Controller 

Data Comm   Air-Ground Data Communications 

DSR   Display System Replacement (radar display) 

FAA   Federal Aviation Administration 

FDB   Flight Data Block 

FL290   Flight Level 29,000 Feet 

FMS   Flight Management System 

HITL   Human-In-The-Loop Simulation 

HOST   En Route Center Computerized Flight and Data Processing System 

LOS   Loss of Separation 

MAP   Monitor Alert Parameter 

MSP   Multi-Sector Planning 

NAS   United States National Airspace 

NASA   National Aeronautics and Space Administration 

NASA TLX   NASA Task Load Index 

NextGen   Next Generation Air Transportation System 

NRS  Navigation Reference System 

OE   Operational Error 

PE   Proximity Event 

QC   ATC System Data Amendment  

R, R-Side   Radar Controller 

SA   Situation Assessment 

STMC   Traffic Management Coordinator Supervisor  

Sup   Supervisor 

TBO   Trajectory-Based Operations 

TMC   Traffic Management Coordinator  

TMU   Traffic Management Unit 

TR   Trial Plan input with named waypoint(s) 

TSD   Traffic Situation Display 

Tukey's HSD   Honestly Significant Difference Test 

UC   Uplink Clearance 

VSCS   Voice-Switching and Communication System 

WAK   Workload Assessment Keypad 

Wx   Weather 
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Appendix A: MSP and Controller Input Commands 

Two-character input commands for controller workstations. 

2-Char 
Command 

Syntax [Type in CRD] followed 
by ENTER 

Function 

Trial Planning Functions 

TT TT [CID] Open trial plan for [CID] 

 TT Turn off all trial plans 

TA TA [altitude] [CID] Trial plan an altitude for [CID] (in flight levels) 

TR TR [fix] [CID] Open trial plan route direct to [fix] for [CID] (trial plan route then rejoins 
original routing) 

Data CommFunctions 

UC UC [CID] (with trial plan or CC) Uplink trial plan or CC request to [CID]. Updates ATC computer system. 

CC CC [CID or SEL] Coordinates trial plan for [CID or SEL] to ATC sector with track control of [CID] 

CN CN [CID] Sends non-positive response to sender regarding proposed trial plan of [CID] 

CY CY [CID] Sends affirmative response to sender regarding proposed trial plan of [CID] 

QC  QC [CID] Assign trial plan as a ATC computer system amendment for unequipped [CID].  

DE DE [CID] (or) DE /OK [CID] Delete all closed Data Comm messages for [CID] from status list 

Other Sector Quick Actions 

ID ID [CID] Highlights [CID] 

QL QL [sector #] Quick look for [sector #] 

QP QP [sector #] [CID] Point-Out [CID] to [sector #] 

QP J QP J [CID] Toggle display of j-ring for [CID] 

QF QF [CID] Display flight plan readout for [CID] 

QU QU [CID] Display FMS route for [CID] 

FX FX [3-letter ID or fix name] Displays Fix on DSR and shows name and 3-letter identifier in CRD 

Two character input command commands for planner (supervisor or TMC) workstations. 

2-Char 
Command 

Syntax [Type in CRD] followed 
by ENTER 

Function 

Trial Planning Functions 

TT TT [CID] Open trial plan for [CID] 

 TT Turn off all trial plans 

TA TA [altitude] [CID] Trial plan an altitude for [CID] (in flight levels) 

TR TR [fix] [CID] Open trial plan route direct to [fix] for [CID] (trial plan route then rejoins 
original routing) 

FF FF [ACID or CID] [CID] [CID] etc 
FF [SEL] or FF [000] 

Selects multiple data tags for altitude or route plan changes 

 FF Turns off all multi-aircraft selections 

Data Comm Functions 

UC UC [CID] (with trial plan shown 
or CC message) 

Uplink trial plan to [CID] and trial plan will be entered into ATC system. 

CC CC [CID or SEL] Coordinates trial plan for [CID or SEL] to ATC sector with track control of [CID] 

CP CP [MSP or TMU position #] 
[CID or SEL] 

Coordinates trial plan for [MSP or TMU position #] of [CID or SEL]  

CN CN [CID] Sends non-positive response to sender regarding proposed trial plan of [CID] 

CY CY [CID] Sends affirmative response to senderregarding proposed trial plan of [CID] 

QC  QC [CID] Assign trial plan as a ATC system amendment for unequipped [CID].  

 

Additional commands for planner workstations that filter traffic presentation. 
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Filter 
Commands 

Syntax [Type in CRD] followed by 
ENTER 

Function 

FC FC [TO, FROM, VIA, FL, GEO, 
DRAW, WX, CON, ACID, AIRLINE, 
FR, LOAD] 

Adds filter commands to the aircraft filter list on the DSR 
 

TO FC TO [airport] or [ARTCC] Filter aircraft to specific arrival airport(s) 

FROM FC FROM [airport] or [ARTCC] Filter aircraft coming from a specific airport(s) 

VIA FC VIA [fix] Filter aircraft going via a certain waypoint/fix 

FL (ALT.) FC FL [alt] [alt] Filter by altitude(s) 

GEO (SECTOR)  FC GEO [ZKC90] or [ZME] [T] Filter by sector ownership or ARTCC @ Time X 

DRAW or LINE FC DRAW or LINE [F1] [T15-35] Filter aircraft that will enter any “Draw Tool” defined area @ Time X 

WX 1, 2, 3 FC WX 1,2,3 [T25-45] Filter aircraft that are predicted to go into weather low (1), medium (2), 
and high (3) @ Time X 

CONFLICT FC CON T1=30 Filter aircraft that are predicted to be in conflict at Time X (T1-30, 
between now and 30 minutes) 

ACID FC ID [NWA123] Filter by ID (NWA123) 

AIRLINE FC AIRLINE [SWA] Filter by airline (SWA) 

AIRPORT FC AIRPORT [DFW] Filter aircraft to/from this airport 

DIR FC DIR [Heading Range 045-090] Filters aircraft heading in a specific direction 

LOAD FC LOAD Filter based on Load Table/Graph criteria selected 

FR FC FR [IFR or TFR] Filter based on equipage: Equipped (TFR) and Unequipped (IFR) 
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Appendix B: Participant Briefing Material 

Slide content from participants’ May 18, 2010 “Morning Briefing: Introduction” 

Multi-Sector Planning for Mixed Equipage Airspace 

 What do we mean by Multi-Sector Planning (MSP)? 

 Process for solving local area problems by modifying trajectory of one or more 
aircraft 

 Performed in the TMU and/or on the control floor  

 Nominal roles and responsibilities: 

 Area supervisor and traffic management monitor local traffic situation 

 TMC plans trajectory changes, coordinating with supervisor and others 

 Supervisor manages plan execution by controllers 

 Controllers review trajectory requests and execute if suitable 

 MSP and mixed equipage: 

 Trajectory-based solutions developed for unequipped and equipped aircraft.  

 Unequipped aircraft are constrained to waypoint-based trajectories; equipped 
aircraft are not. 

 MSP supports NextGen “Best-Equipped Best-Served” objective: Equipped aircraft get 
preferred access to constrained airspace.  

 

Slide content from participants’ May 18, 2010 “Afternoon Briefing: Roles and Responsibilities” 

“Best-Equipped, Best-Served” Priority Service Means: 

 For Controllers/Area Supervisor: 

 Conflicts:  

○ If equipped is in conflict with unequipped, move the unequipped when able.  

○ Negotiate resolutions with adjacent sectors as needed. 

 Sector Load or Complexity: When able, let equipped “fly through” and reroute 
unequipped. 

 Weather: Let equipped fly when able; only move to skirt around the weather. 

 For TMU: 

 Complexity: If sector complexity is high, re-route unequipped when able. 

 Sector Load: Let equipped “fly through” the constrained area, reroute unequipped out 
of loaded sector when able. 

 Weather:  

○ Equipped: When able, let equipped fly, only move to skirt around the weather. 

○ Unequipped: Move to give wide berth to weather cells using fix/waypoint-based routes. 
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Roles and Responsibilities for TMU Team 

 STMC: Manage facility TMU operations, including: 

 Coordinate with Command Center, neighboring TMUs, and Area Supervisors 

 Monitor capacity/demand balance in area of responsibility. 

 Assign TMC position(s) as needed to manage local multi-sector trajectory changes. (e.g. weather 

reroutes, load capacity issues etc…) 

 Coordinate TMC activities and communicate as needed. 

 TMCs: Perform tasks/roles as designated by STMC, e.g.: 
 Monitor and manage complexity in assigned area of responsibility.  

 Develop local area flow modifications in response to external events or situations.  

 Provide priority service to equipped aircraft when modifying trajectories or flows. 

 Coordinate as appropriate on management of developing situation… 

 Clearances may be sent directly to A/C if first route change is more than 30 minutes out. 

 

Roles and Responsibilities for Area Supervisor 

 Use available automation to monitor sector load and complexity within area, and inform TMU and 

affected sectors of situations as appropriate.  

 Coordinate with the TMU to develop local area plans. Use “best-equipped best-served” protocol 

when reroutes are necessary.  

 Coordinate with adjacent Area Supervisors for local load and complexity. 

 Inform controllers about TMU reroutes. 

 Coordinate as needed regarding plan execution.  

 Monitor plan execution, and inform TMU when plan cannot be executed.  

 Assign D-Side controllers as needed. 

 

Roles and Responsibilities for Sector Team 

 Team Responsibilities: 

 Coordinate regarding D/R division of responsibilities (e.g., with respect to clearance requests, 
development of clearances for equipped or unequipped aircraft, handoffs, data block 
management). 

 Best-equipped best-served: Provide priority service to equipped aircraft when able.  

 Coordinated Clearance (CC) Requests:  

○ Review external CC requests (from TMC or Sup), and execute when able. 

○ Modify if needed to resolve traffic conflicts. 

○ Inform supervisor if CC request is rejected. 

 R-Side controller: 

 Team leader. 

 Maintains radio communication with all aircraft. 

 D-Side controller: 

 Coordinate as needed, including point-outs. 
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Nominal D-Side Tasks 

 D-Side acts as a second set of eyes 

 Look for conflicts, especially further out to see conflicts that involve multiple sectors 

 Look to ensure that handoff initiation/acceptance are done in time. 

 D-Side performs coordination tasks 

 Coordinate conflict resolutions with adjacent sector as needed 

 Get aircraft that are not on frequency 

 D-Side executes whatever R-Side requests 

 Execute tasks that distract R-Side from their primary responsibilities (e.g., route modification, 

handoffs, data block management, etc.) 

 

Possible Additional D-Side Tasks 

D and R can divide these tasks globally or on a plane-by-plane basis, at radar controller’s discretion.  

 For equipped aircraft: 

 Reroutes around weather: 

○ Reroute around weather and send clearance to the flight deck, or 

○ Construct wx avoidance route and CC to R-Side  

 Resolve conflicts: 

○ Resolve conflict and send clearance to the flight deck, or 

○ Construct conflict-free route and CC to R-Side (or ghost) 

 For unequipped aircraft: 

 Reroutes around weather: 

○ Reroute around weather, then 

 send CC (ground-ground data coordination) to R-Side for review, or  

 verbally coordinate the constructed route, then amend the ATC system’s flight plan 

○ R-Side issues the route clearance by voice. 
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Appendix C: Modified NASA-Task Load Index (NASA-TLX) 

Immediately following each run, radar controllers and associates, area supervisors, and TMU participants 

responded to the following six questions. 

1.  How much mental activity was there for you in the last run? (e.g., thinking, deciding, calculating, remembering, 
looking, searching, etc.) 

Please click on a number to choose your rating. 

1 2 3 4 5 6 7 
Very low 

 mental activity 
  Average   Very high  

mental activity 

2.  How much physical activity was there for you in the last run? (e.g., how much did you use your keyboard, mouse, 
and radio for voice communications, if applicable, etc.)?  

Please click on a number to choose your rating. 

1 2 3 4 5 6 7 
Very low activity   Average   Very high activity 

3.  How successful do you think you were in accomplishing the goals of the task?  

Please click on a number to choose your rating. 

1 2 3 4 5 6 7 
Very low success   Average   Very high success 

4.  How hard did you have to work mentally and physically to accomplish this level of success? 

Please click on a number to choose your rating. 

1 2 3 4 5 6 7 
Very little effort   Average   A lot of hard work 

5.  How much time pressure were you under? (Did you feel rushed and that you did not have enough time to 
complete tasks? Or that you did not have enough to do?) 

Please click on a number to choose your rating. 

1 2 3 4 5 6 7 

No time pressure 
at all 

  Average   Considerable time 
pressure 

6.  Were you frustrated by this run? (e.g., were you discouraged, irritated, stressed, and annoyed, or were you 
content, relaxed, gratified, and complacent when performing the task?) 

Please click on a number to choose your rating. 

1 2 3 4 5 6 7 

Low frustration   Average   High frustration 
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Appendix D: Modified CARS 
 

Improvement mandatory. The traffic could 

not be managed using the procedures. 

Was the R-side 

position workable? 

Was adequate per-

formance in the R-side 

position attainable with 

tolerable workload?

Was the R-side role 

in this team 

configuration 

satisfactory?

Adequate performance is 

not achievable with 

tolerable workload 

levels.  Deficiencies are 

unreasonable.

Improvement mandatory.

Improvement is needed.  

Deficiencies warrant 

further improvement.

1

Major deficiencies. Control of current traffic was 

only possible by neglecting some traffic 

management tasks and situation awareness was 

severely degraded. Effective teamwork and 

communication could not be achieved.

Major deficiencies. Control of current traffic was 

not compromised but maintenance of situation 

awareness in the position was marginal. 

Performance was marginal, as considerable 

work-arounds were required to achieve minimal 

traffic management. Marginal levels of  teamwork 

and communication were possible but with 

significant increases in workload.

Major deficiencies. Control and situation 

awareness of  traffic could be maintained but 

adequate performance was achievable only with 

significant effort. Adequate levels of teamwork 

and communication could only be achieved with 

significant increases in workload.

Significant deficiencies. Adequate performance 

required hard work and considerable work-

arounds. Adequate levels of teamwork and 

communication were achieved.

Moderate deficiencies. Procedures required 

considerable work-arounds to adequately 

manage the traffic.

Minor, but annoying, deficiencies. Desired traffic 

management required moderate work-arounds.

2

3

4

5

6

7

START

NO

YES

YES

YES

NO

NO

Determine how effective 

the position is.

Mildly unpleasant deficiencies. Position was 

acceptable and minimal work-arounds were 

needed to meet desired performance 

effectiveness.  

Deficiencies were few. Position was acceptable 

and no work-arounds were needed to achieve 

desired performance effectiveness.  10

9

How well does this 

description and 

rating (out of 10) 

match what you 

think was the 

acceptability of the 

operations?

Please circle one:

If you circled “not 

well,” please 

explain why the 

rating feels wrong.

Well

OK  

Not well

Radar Controller Acceptability Rating Scale

Negligible deficiencies. Position was acceptable 

and work-arounds were not a factor to achieve 

desired performance effectiveness.  

8
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Improvement mandatory. Safe operations 

could not be maintained using these tools 

and procedures. Were the 

operations safe and 

manageable? 

Was adequate 

performance attainable 

with tolerable workload?

Were operations 

satisfactory without 

improvement?

Determine how 

desirable the 

operations were.

Adequate performance is 

not achievable with 

tolerable workload levels.  

Deficiencies are 

unreasonable.

Improvement mandatory.

Improvement is needed.  

Deficiencies warrant further 

improvement.

1

Major deficiencies. Safety is not 

compromised, but operations are barely 

manageable and only with extreme 

supervisor compensation and effort. 

Major deficiencies. System is not 

compromised, but is only marginally 

manageable. Considerable compensation 

and effort are needed by the supervisor.

Major deficiencies. System is manageable, 

and operations do not compromise safety . 

Considerable compensation and effort are 

needed to maintain adequate operations.

Very objectionable deficiencies. System 

is manageable, and operations do not 

compromise efficiency. Considerable 

compensation is needed.

Moderately objectionable deficiencies.  

Tools and procedures required considerable 

compensation to achieve adequate 

performance.

Minor, but annoying, deficiencies.  

Desired performance required moderate 

compensation.

Mildly unpleasant deficiencies. Operations 

were acceptable. Minimum compensation is 

needed to meet desired performance.

Negligible deficiencies. Operations were 

acceptable and compensation was not a 

factor to achieve desired performance.

Deficiencies are rare. Desired performance 

can be achieved with no compensation. 10

2

3

4

5

6

7

8

9

START

NO

NO

NO

Area Supervisor Acceptability Rating Scale

YES

YES

YES

How well does this 

description and 

rating (out of 10) 

match what you 

think was the 

acceptability of 

these operations?

Please circle one:

If you circled “not 

well,” please 

explain why the 

rating feels wrong.

Well

OK  

Not well
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Improvement mandatory. Safe operations 

could not be maintained using these tools 

and procedures. Were the 

operations safe and 

manageable? 

Was adequate 

performance attainable 

with tolerable workload?

Were operations 

satisfactory without 

improvement?

Determine how 

desirable the 

operations were.

Adequate performance is 

not achievable with 

tolerable workload levels.  

Deficiencies are 

unreasonable.

Improvement mandatory.

Improvement is needed.  

Deficiencies warrant further 

improvement.

1

Major deficiencies. Safety is not 

compromised, but operations are barely 

manageable and only with extreme 

compensation and effort. 

Major deficiencies. System is not 

compromised, but is only marginally 

manageable. Considerable compensation 

and effort are needed.

Major deficiencies. System is manageable, 

and operations do not compromise safety. 

Considerable compensation and effort are 

needed to maintain adequate operations.

Very objectionable deficiencies. System 

is manageable, and operations do not 

compromise efficiency. Considerable 

compensation is needed.

Moderately objectionable deficiencies. 

Tools and procedures required considerable 

compensation to achieve adequate 

performance.

Minor, but annoying, deficiencies. 

Desired performance required moderate 

compensation.

Mildly unpleasant deficiencies. Operations 

were acceptable. Minimum compensation is 

needed to meet desired performance.

Negligible deficiencies. Operations were 

acceptable and compensation was not a 

factor to achieve desired performance.

Deficiencies are rare. Desired performance 

can be achieved with no compensation. 10

2

3

4

5

6

7

8

9

START

NO

YES

YES

YES

NO

NO

(S)TMC Acceptability Rating Scale

How well does this 

description and 

rating (out of 10) 

match what you 

think was the 

acceptability of 

these operations?

Please circle one:

If you circled “not 

well,” please 

explain why the 

rating feels wrong.

Well

OK  

Not well
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Appendix E: Radar Controller and Radar Associate 

Tools Questionnaire Data 
 

Tables include responses from participants and confederates who staffed the four ZKC test sectors. 

Ratings 1 to 6: Not at all Useful/Usable (1) to Very Useful/Usable (6) 

Part 1. Radar Controller and Radar 

Associate Display Synchronization 
Radar Controllers (n=4) Radar Associates (n=4) 

 Useful 

Average 

Usable 

Average 

Useful 

Average 

Usable 

Average 

Graphical Flight Plan Readout 5.00 5.50 4.00 4.50 

Halo/J-ring 6.00 6.00 5.75 6.00 

Flight Data block position 5.50 5.75 5.75 5.25 

Datalink UC (up arrows next to callsign) 6.00 6.00 5.75 5.50 

Datalink UC (message in status list) 5.25 3.75 3.75 3.00 

 

     

Part 2. Mixed Equipage Controller Tools 
Radar Controllers (n=4) Radar Associates (n=4) 

Equipped Unequipped Equipped Unequipped 

Mixed Equipage Trial Planning Tools 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

TT (Trial Planning) 6.00 6.00 6.00 5.50 5.75 5.50 5.75 4.25 

TA (Altitude Trial Planning 6.00 6.00 6.00 6.00 5.25 4.50 5.50 4.50 

TR (Route Trial Planning 4.00 6.00 5.00 6.00 5.50 4.75 5.25 3.75 

Graphical Trial Planning 
6.00 6.00 6.00 6.00 5.75 5.75 5.50 4.75 

Conflict Probing 6.00 5.75 6.00 5.75 6.00 5.25 6.00 5.25 

Weather Penetration Probing 6.00 4.75 6.00 4.50 5.75 4.75 5.75 4.00 

Communication Symbol (E-diamond; UE-

line in front of callsign) 
6.00 6.00 3.33 5.00 5.75 5.25 5.00 5.25 

Data block 4
th

 line trial plan information   6.00 6.00   5.75 4.50 
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Part 2. Mixed Equipage Controller Tools 

(continued) 

Radar Controllers (n=4) Radar Associates (n=4) 

Equipped Unequipped Equipped Unequipped 

Mixed Equipage Communication Tools  

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

Transfer of Communication  

(E-Auto; UE-Manual) 
6.00 6.00 4.00 3.33 6.00 6.00 5.50 4.50 

Mechanism for Building Trial Plans (E-Lat/Long; 

UE-Snap-to Fix)  
6.00 6.00 4.75 3.75 6.00 6.00 5.00 4.00 

Transfer of Clearance  

(E-UC Uplink clearance; UE- QC ATC system 

amemdment) 

6.00 6.00 6.00 5.25 6.00 5.75 5.50 4.75 

Mechanism for Receiving/Detecting Clearance 

Requests from TMC 
5.75 5.75 5.75 5.75 5.75 5.25 5.75 5.25 

Mechanism for Reviewing Clearance Requests 

from TMC 
5.75 5.25 5.75 5.25 6.00 6.00 6.00 5.50 

Mechanism for Receiving/ Detecting Clearance 

Requests from a RA/R-Side 
5.75 5.75 5.75 5.75 6.00 5.75 5.75 5.75 

Mechanism for Reviewing Clearance Requests 

from a RA/R-Side 
5.75 5.75 5.75 5.75 6.00 6.00 6.00 5.75 

Communication Drop-down Window 4.75 5.50 4.50 5.50 5.25 5.25 5.25 5.25 

CY (Clearance Yes – WILCO) 4.00 4.00 4.00 3.67 6.00 6.00 4.50 4.50 

CN (Clearance No – UNA) 4.00 4.00 4.67 3.67 6.00 6.00 4.50 4.50 
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Appendix F: MSP3 Tools Questionnaire Data for STMC/TMC and SUP 

Ratings 1 to 6: Not at all Useful/Usable (1) to Very Useful/Usable (6) 

Part 1: Traffic Monitoring and Problem 

Identification 

STMC/TMC 

(n=2) 
SUP 

(n=2) 

Load Display Control Window 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

Cell Values TOTAL  5.00 3.50 3.00 6.00 

PEAK 5.50 5.50 6.00 6.00 

AVERAGE 3.00 3.00 2.50 6.00 

PEAK/ 

TOTAL 
4.00 3.50 3.00 6.00 

Categories ALL 5.50 5.00 3.00 6.00 

CNFLT_ 

CNT 
4.00 5.00 1.50 6.00 

CNFLT_AC 4.00 5.00 1.50 6.00 

TRANS 3.00 3.00 2.50 6.00 

FILTR 3.50 3.50 2.50 6.00 

UNEQP 4.25 5.00 N/A 6.00 

WETHR 4.50 4.50 2.50 6.00 

CMPLX 5.00 5.50 6.00 6.00 

Show Category only 5.00 4.00 2.50 6.00 

Show Category & ALL 5.00 5.00 5.00 6.00 

Selection Logic Single Cell 4.00 4.00 6.00 6.00 

Multi Cell 6.00 6.00 5.00 6.00 

In any cell 5.50 5.50 4.00 6.00 

In all cells 4.00 5.00 4.00 6.00 

     

Overall Usefulness and Usability of Load Table Window 6.00 5.50 6.00 5.50 

Color coded cell values (red, yellow, green) 6.00 6.00 6.00 6.00 

Color coded trial plan values(cyan numbers) 6.00 6.00 5.00 6.00 

Sector Boundary 

Highlighting (“*” left of sector ID)  
4.00 5.50 4.00 6.00 

Cell Selection (Magenta box) 6.00 6.00 6.00 6.00 

Single Sector Graph Selection (by clicking on “G” left of sector id) 3.50 4.00 5.00 6.00 
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Part 1. Traffic Monitoring and Problem Identification (continued) 

STMC/TMC 

(n=2) 

SUP 

(n=2) 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

     

Overall Usefulness and Usability of Load Graphs 5.50 5.50 6.00 6.00 

Color Coding 5.50 5.50 5.50 6.00 

Selectable Time Slice 5.50 5.50 6.00 6.00 

     

Overall Usefulness and Usability of Traffic Situation Display (TSD) 3.00 3.50 5.00 5.00 

Weather Depiction (color coding) 4.50 4.50 5.00 6.00 

Weather Loop: History 4.50 4.50 5.00 6.00 

Weather Loop: Forecast 4.50 4.50 6.00 6.00 

Traffic Depiction 4.50 4.50 4.50 6.00 

     

Overall Usefulness and Usability of AC Filters 5.00 4.00 6.00 5.50 

Draw/Line Filter 3.50 3.50 3.00 6.00 

VIA Filter 3.50 3.50 3.00 6.00 

ACID Filter 3.50 3.50 3.00 6.00 

FL Filter 4.50 5.00 3.00 6.00 

Conflict Filter 3.00 3.50 5.00 6.00 

TO/FROM Filter 4.50 3.50 4.00 6.00 

Load Filter (using cells in the load table) 5.00 5.50 6.00 6.00 

Airline Filter 3.50 3.50 4.00 6.00 

GEO Filter 4.50 3.50 4.00 6.00 

WX Filter 4.50 3.50 6.00 6.00 

Load Filter (using time slice in the load graph) 4.50 3.50 6.00 6.00 

Color Coding (of selected filter setting) 4.00 2.00 5.00 6.00 

Equipage Filter (unequipped or equipped) 5.00 5.50 3.00 3.00 
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Part 2: Solution Planning 
STMC/TMC 

 (n=2) 

SUP 

(n=2) 

 

Tool Set U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
se

ab
le

 

A
ve

ra
ge

 

Traffic Situation Display 3.50 2.50 4.50 6.00 

DSR Traffic View Display 5.50 5.00 5.00 6.00 

Load Table 5.50 5.00 6.00 6.00 

Load Graphs 5.00 4.50 6.00 6.00 

AC Filters 5.50 5.00 5.00 6.00 

Trial Planning     

FF (Group selection for group planning) 5.50 5.00 5.00 6.00 

TT (Trial Planning) 4.00 4.50 6.00 6.00 

TA (Altitude Trial Planning) 5.00 5.00 5.00 6.00 

TR (Route Trial Planning) 5.50 5.50 5.50 6.00 

Conflict Probing in real-time 4.50 4.00 4.50 6.00 

Weather penetration probe in real-time 5.50 4.00 5.50 6.00 

Graphical Trial Planning for Equipped aircraft 6.00 6.00 3.00 6.00 

Graphical Trial Planning Unequipped aircraft 6.00 6.00 3.00 6.00 

Communication Set 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

U
se

fu
l 

A
ve

ra
ge

 

U
sa

b
le

 

A
ve

ra
ge

 

Voice Communication     

1-to-1 Voice Communication 5.50 5.50 5.00 6.00 

1-to-Many voice communication 5.50 5.50 5.00 6.00 

Data Comm     

UC (Uplink clearance) 5.50 5.50 6.00 6.00 

CC (send coordinated clearance to radar controller) 5.50 5.50 6.00 6.00 

CP (Copy coordinated clearance to others) 5.50 5.50 6.00 6.00 

CY (Clearance Yes- WILCO) 4.00 3.00 4.00 6.00 

CN (Clearance No- UNABLE) 6.00 6.00 4.00 6.00 
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Appendix G: Excerpt from Post-Simulation Debrief Discussion 
 

The material below was transcribed from the post-simulation debrief discussion, and edited slightly for clarity. The 

selections includes participant responses to questions about providing priority service for the Data Comm-

equipped aircraft. 

 SECTION 1: Discussion with Controller Participants and Supervisor 

Question (NS):  “We asked you to always try to provide better service to the data comm equipped aircraft. I was 

wondering what you thought of that: Was that was an unreasonable request? Were you able to do it for 

the most part? How did it go?” 

Controller 1:  “*In most mixed equipage conflicts+ it would’ve been much easier to turn the equipped aircraft, but since 

you asked us to try to leave them alone, we moved the unequipped, and it wasn’t all that difficult. It was 

a little more awkward, but nothing I couldn’t handle. If I were a controller on the floor, in an operational 

setting, I guess I’d want to understand why, because, if the operation is [trajectory based], as it was up in 

the simulation, it’s easier to move the equipped aircraft from point to point, instead of moving the 

unequipped from fix to fix.” 

Question (NS):  “So how much do you think that added to your workload?” 

Controller 1:  “It did add some, because sometimes it was awkward finding a suitable fix. For example, where you have 

to go way around weather and you’re searching for something that will keep him close to the weather, 

and it’s way downstream. Or sometimes you have to pick a fix that’s way past the weather. Then you 

have to return to that aircraft later because you don’t want to send him too far out of his way. Once he’s 

past the weather you can clear him short back to the next fix, but that means you need to get back to him 

in three, four, or five minutes later, whenever, when you think about it.” 

Controller 2:  “I did it slightly differently. In most cases it didn’t matter which one I moved, but there were a couple 

where there wasn’t a good fix...so I ended up vectoring them. I wouldn’t change the route, I just vectored 

him until he was clear of the traffic, then I put him right back on course, with a TR [route amendment] 

back to that next fix. Or I would vector him around the weather and then TR him back to the fix…That was 

a workaround, when there wasn’t a suitable NAVAID, or I couldn’t find one without having to range way 

out…” 

Question (NS):  “And that worked out ok?” 

Controller 2:  “For me it did. It added a little bit of workload because you had to remember, I’ve got this guy on a 

vector, I don’t want to all of a sudden look down and there he is…” 

Question (NS):  “Supervisors and traffic managers, what did you think about trying to prioritize the equipped aircraft?” 

Supervisor 1:  “From a Sup’s standpoint, it wasn’t any big deal. Because when I was selecting anybody to do anything to 

*I could pick+ the unequipped first, … *because+ there was no time crunch for me. You know I wasn’t 

feeling the pressure of talking to twenty-five airplanes. *I had more time to explore what would work+. … 

it wasn’t really that big of a deal in my position.” 

 SECTION 2: Later Discussion with Traffic Management Participants and others 

Confederate TMC:  

“I would say though, the weather and the loading, definitely, Best-equipped, best-served.  The biggest 

push back on BEBS will be from a controller, “You’re telling me who I have to turn.”  You’re gonna get 

some severe resistance on that.  But as far as the sector loading and the weather reroute, no problem.” 

S/TMC 1:  “I agree.  He’s absolutely right about that.  I mean you tell a controller you have to move this guy instead 

of this guy; there’s your push back.  BEBS has to occur outside of the controller position (at the strategic 

level, MSP/TMC position).  Once you get within that immediate time-frame, the controller’s gonna have 
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to make the decision. … *MSP/TMC can do BEBS and the controller can uplink the CCs, but the BEBS 

should be transparent to the sector controller.]  The [situation] changes when an a/c is coming up on 

weather or on another a/c and you have to make a decision about who has to be turned, and you’re 

supposed to be thinking Best Equipped Best Served, that’s not going to happen. The controller has to 

make that decision based on what’s more efficient right then right now, and what’s safe.” 

…  

Question (TP):  “…if the policy came out, ok so now we’re introducing this, there’s gonna be equipped aircraft in there 

and all the controllers were told, “Please give them preferential service unless you need to move them for 

… unless you’re compromising safety,” do you think that they really wouldn’t buy into this? What would 

you expect would happen?” 

S/TMC 1: “It happens now. Wait we’re doing that now.” 

Question (AK): “BEBS happens now?” 

S/TMC 1: “Heck yeah!” 

Question (AK): “What?” 

Confederate TMC: “Yeah, they wouldn’t buy into it.” 

?:  “Maybe after 3 years (?)” 

?: “Yeah, they would buy into it eventually.” 

Question (TP): “They would not you said?” 

Confederate TMC: “There would be push back.” 

Speaker A: “But if we back up a little bit, again the MSP tools, and this is the first time I’ve been exposed to it, it looks 

to me the best bang for the buck is 30 to 45 minutes ahead of the impacted sector.  So if TMU or MSP 

position is already moving the unequipped aircraft, what the controller’s doing in the sector, I’m not sure 

those little 10 degree turns make that much difference. Maybe we’re already supplying Best Equipped 

Best Served. Because we’re already doing it before they get into the sector.” 

Speaker B: “Right. That’s the key.” 

Speaker A: “We’re doing it Traffic Flow Management-wise. Again a controller has to move a plane based on the 

position of the plane. And they’re not gonna look and say, well, wait, that one’s not equipped.” 

Question (TP):  “But you did it here.” You looked when there was a mixed conflict, you tried to move the unequipped, 

because we asked you to, so...” 

Speaker B:  “But it’s different here, in the simulation. Since you have a bunch of supervisors working the scenario for 

research.” 

Speaker A:   “It also depends on whether they’ll have SA and the conflict probe available to them.” 

 

 so...” 

Speaker B:  “But it’s different here, in the simulation. Since you have a bunch of supervisors working the scenario for 

research.” 

Speaker A:   “It also depends on whether they’ll have SA and the conflict probe available to them.” 

 


