7 research outputs found
Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study
International audienceBACKGROUND: Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity.METHODS: We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (\textgreater18y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). RESULTS: Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate.CONCLUSION: Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trial
Patient selection of DM-Scope registry.
<p>Patient selection of DM-Scope registry.</p
Convergence of patient- and physician-reported outcomes in the French National Registry of Facioscapulohumeral Dystrophy
International audienceFacioscapulohumeral muscular dystrophy (FSHD) is among the most prevalent muscular dystrophies and currently has no treatment. Clinical and genetic heterogeneity are the main challenges to a full comprehension of the physiopathological mechanism. Improving our knowledge of FSHD is crucial to the development of future therapeutic trials and standards of care. National FSHD registries have been set up to this end. The French National Registry of FSHD combines a clinical evaluation form (CEF) and a self-report questionnaire (SRQ), filled out by a physician with expertise in neuromuscular dystrophies and by the patient, respectively. Aside from favoring recruitment, our strategy was devised to improve data quality. Indeed, the pairwise comparison of data from 281 patients for 39 items allowed for evaluating data accuracy. Kappa or intra-class coefficient (ICC) values were calculated to determine the correlation between answers provided in both the CEF and SRQ. Results Patients and physicians agreed on a majority of questions common to the SRQ and CEF (24 out of 39). Demographic, diagnosis- and care-related questions were generally answered consistently by the patient and the medical practitioner (kappa or ICC values of most items in these groups were greater than 0.8). Muscle function-related items, i.e. FSHD-specific signs, showed an overall medium to poor correlation between data provided in the two forms; the distribution of agreements in this section was markedly spread out and ranged from poor to good. In particular, there was very little agreement regarding the assessment of facial motricity and the presence of a winged scapula. However, patients and physicians agreed very well on the Vignos and Brooke scores. The report of symptoms not specific to FSHD showed general poor consistency. Conclusions Patient and physician answers are largely concordant when addressing quantitative and objective items. Consequently, we updated collection forms by relying more on patient-reported data where appropriate. We hope the revised forms will reduce data collection time while ensuring the same quality standard. With the advent of artificial intelligence and automated decision-making, high-quality and reliable data are critical to develop top-performing algorithms to improve diagnosis, care, and evaluate the efficiency of upcoming treatments
Science goals and mission architecture of the Europa Lander mission concept
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hand, K., Phillips, C., Murray, A., Garvin, J., Maize, E., Gibbs, R., Reeves, G., San Martin, A., Tan-Wang, G., Krajewski, J., Hurst, K., Crum, R., Kennedy, B., McElrath, T., Gallon, J., Sabahi, D., Thurman, S., Goldstein, B., Estabrook, P., Lee, S. W., Dooley, J. A., Brinckerhoff, W. B., Edgett, K. S., German, C. R., Hoehler, T. M., Hörst, S. M., Lunine, J. I., Paranicas, C., Nealson, K., Smith, D. E., Templeton, A. S., Russell, M. J., Schmidt, B., Christner, B., Ehlmann, B., Hayes, A., Rhoden, A., Willis, P., Yingst, R. A., Craft, K., Cameron, M. E., Nordheim, T., Pitesky, J., Scully, J., Hofgartner, J., Sell, S. W., Barltrop, K. J., Izraelevitz, J., Brandon, E. J., Seong, J., Jones, J.-P., Pasalic, J., Billings, K. J., Ruiz, J. P., Bugga, R. V., Graham, D., Arenas, L. A., Takeyama, D., Drummond, M., Aghazarian, H., Andersen, A. J., Andersen, K. B., Anderson, E. W., Babuscia, A., Backes, P. G., Bailey, E. S., Balentine, D., Ballard, C. G., Berisford, D. F., Bhandari, P., Blackwood, K., Bolotin, G. S., Bovre, E. A., Bowkett, J., Boykins, K. T., Bramble, M. S., Brice, T. M., Briggs, P., Brinkman, A. P., Brooks, S. M., Buffington, B. B., Burns, B., Cable, M. L., Campagnola, S., Cangahuala, L. A., Carr, G. A., Casani, J. R., Chahat, N. E., Chamberlain-Simon, B. K., Cheng, Y., Chien, S. A., Cook, B. T., Cooper, M., DiNicola, M., Clement, B., Dean, Z., Cullimore, E. A., Curtis, A. G., Croix, J-P. de la, Pasquale, P. Di, Dodd, E. M., Dubord, L. A., Edlund, J. A., Ellyin, R., Emanuel, B., Foster, J. T., Ganino, A. J., Garner, G. J., Gibson, M. T., Gildner, M., Glazebrook, K. J., Greco, M. E., Green, W. M., Hatch, S. J., Hetzel, M. M., Hoey, W. A., Hofmann, A. E., Ionasescu, R., Jain, A., Jasper, J. D., Johannesen, J. R., Johnson, G. K., Jun, I., Katake, A. B., Kim-Castet, S. Y., Kim, D. I., Kim, W., Klonicki, E. F., Kobeissi, B., Kobie, B. D., Kochocki, J., Kokorowski, M., Kosberg, J. A., Kriechbaum, K., Kulkarni, T. P., Lam, R. L., Landau, D. F., Lattimore, M. A., Laubach, S. L., Lawler, C. R., Lim, G., Lin, J. Y., Litwin, T. E., Lo, M. W., Logan, C. A., Maghasoudi, E., Mandrake, L., Marchetti, Y., Marteau, E., Maxwell, K. A., Namee, J. B. Mc, Mcintyre, O., Meacham, M., Melko, J. P., Mueller, J., Muliere, D. A., Mysore, A., Nash, J., Ono, H., Parker, J. M., Perkins, R. C., Petropoulos, A. E., Gaut, A., Gomez, M. Y. Piette, Casillas, R. P., Preudhomme, M., Pyrzak, G., Rapinchuk, J., Ratliff, J. M., Ray, T. L., Roberts, E. T., Roffo, K., Roth, D. C., Russino, J. A., Schmidt, T. M., Schoppers, M. J., Senent, J. S., Serricchio, F., Sheldon, D. J., Shiraishi, L. R., Shirvanian, J., Siegel, K. J., Singh, G., Sirota, A. R., Skulsky, E. D., Stehly, J. S., Strange, N. J., Stevens, S. U., Sunada, E. T., Tepsuporn, S. P., Tosi, L. P. C., Trawny, N., Uchenik, I., Verma, V., Volpe, R. A., Wagner, C. T., Wang, D., Willson, R. G., Wolff, J. L., Wong, A. T., Zimmer, A. K., Sukhatme, K. G., Bago, K. A., Chen, Y., Deardorff, A. M., Kuch, R. S., Lim, C., Syvertson, M. L., Arakaki, G. A., Avila, A., DeBruin, K. J., Frick, A., Harris, J. R., Heverly, M. C., Kawata, J. M., Kim, S.-K., Kipp, D. M., Murphy, J., Smith, M. W., Spaulding, M. D., Thakker, R., Warner, N. Z., Yahnker, C. R., Young, M. E., Magner, T., Adams, D., Bedini, P., Mehr, L., Sheldon, C., Vernon, S., Bailey, V., Briere, M., Butler, M., Davis, A., Ensor, S., Gannon, M., Haapala-Chalk, A., Hartka, T., Holdridge, M., Hong, A., Hunt, J., Iskow, J., Kahler, F., Murray, K., Napolillo, D., Norkus, M., Pfisterer, R., Porter, J., Roth, D., Schwartz, P., Wolfarth, L., Cardiff, E. H., Davis, A., Grob, E. W., Adam, J. R., Betts, E., Norwood, J., Heller, M. M., Voskuilen, T., Sakievich, P., Gray, L., Hansen, D. J., Irick, K. W., Hewson, J. C., Lamb, J., Stacy, S. C., Brotherton, C. M., Tappan, A. S., Benally, D., Thigpen, H., Ortiz, E., Sandoval, D., Ison, A. M., Warren, M., Stromberg, P. G., Thelen, P. M., Blasy, B., Nandy, P., Haddad, A. W., Trujillo, L. B., Wiseley, T. H., Bell, S. A., Teske, N. P., Post, C., Torres-Castro, L., Grosso, C. Wasiolek, M. Science goals and mission architecture of the Europa Lander mission concept. The Planetary Science Journal, 3(1), (2022): 22, https://doi.org/10.3847/psj/ac4493.Europa is a premier target for advancing both planetary science and astrobiology, as well as for opening a new window into the burgeoning field of comparative oceanography. The potentially habitable subsurface ocean of Europa may harbor life, and the globally young and comparatively thin ice shell of Europa may contain biosignatures that are readily accessible to a surface lander. Europa's icy shell also offers the opportunity to study tectonics and geologic cycles across a range of mechanisms and compositions. Here we detail the goals and mission architecture of the Europa Lander mission concept, as developed from 2015 through 2020. The science was developed by the 2016 Europa Lander Science Definition Team (SDT), and the mission architecture was developed by the preproject engineering team, in close collaboration with the SDT. In 2017 and 2018, the mission concept passed its mission concept review and delta-mission concept review, respectively. Since that time, the preproject has been advancing the technologies, and developing the hardware and software, needed to retire risks associated with technology, science, cost, and schedule.K.P.H., C.B.P., E.M., and all authors affiliated with the Jet Propulsion Laboratory carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (grant No. 80NM0018D0004). J.I.L. was the David Baltimore Distinguished Visiting Scientist during the preparation of the SDT report. JPL/Caltech2021