60 research outputs found

    Takotsubo Syndrome is Associated with Mood Disorders and Antidepressants Use, not with Anxiety and Impairment of Quality of Life Due to the Psychiatric Disorder

    Get PDF
    Background: The aim was to study the association between mood and anxiety disorders and the Tako-Tsubo Syndrome (TTS) and to determine the role of antidepressants and the impairment of quality of life due the comorbid psychiatric disorder. Methods: Case-control study: 19 consecutive patients (17 female) with TTS compared to 76 controls without TTS, were randomly selected from the database of a Nationwide epidemiological study after matching (gender, age and residence) by controls. Psychiatric diagnoses were carried out according to the ICD-10 using semi-structured interview tools (ANTAS-SCID) administered by clinical staff. Quality of Life (Qol) was assessed by means of SF-12. Results: Only Major Depressive Disorders (MDD) showed higher frequencies in cases with statistical significance difference (p=0.014) as well as at least one Mood Disorder Diagnosis [MDD or BD] (p=0.002). The lifetime prevalence of at least one anxiety disorder with no comorbid mood disorder did not show a higher frequency in cases (p=0.57). The score at SF 12 in the TTS group was similar to those of controls (p=0.71)In the TTS group, the score at SF-12 in people with one mood or anxiety diagnosis (N=7) was similar to those without mood or anxiety diagnosis (p=0.75). The use of antidepressants was higher in TTS group (15.79% vs 1.31%; p=0.030). Conclusion: The study shows an association between TTS with depressive disorders and antidepressants use and does not confirm the association with anxiety syndromes. The study suggests the need to investigate the possible interactions between antidepressants use and mood disorders in studies with appropriate design and sample size

    Revisiting brain rewiring and plasticity in children born without corpus callosum

    Get PDF
    The corpus callosum is the largest white matter pathway connecting homologous structures of the two cerebral hemispheres. Remarkably, children and adults with developmental absence of the corpus callosum (callosal dysgenesis, CD) show typical interhemispheric integration, which is classically impaired in adult split-brain patients, for whom the corpus callosum is surgically severed. Tovar-Moll and colleagues (2014) proposed alternative neural pathways involved in the preservation of interhemispheric transfer. In a sample of six adults with CD, they revealed two homotopic bundles crossing the midline via the anterior and posterior commissures and connecting parietal cortices, and the microstructural properties of these aberrant bundles were associated with functional connectivity of these regions. The aberrant bundles were specific to CD and not visualised in healthy brains. We extended this study in a developmental cohort of 20 children with CD and 29 typically developing controls (TDC). The two anomalous white-matter bundles were visualised using tractography. Associations between structural properties of these bundles and their regional functional connectivity were explored. The proposed atypical bundles were observed in 30% of our CD cohort crossing via the anterior commissure, and in 30% crossing via the posterior commissure (also observed in 6.9% of TDC). However, the structural property measures of these bundles were not associated with parietal functional connectivity, bringing into question their role and implication for interhemispheric functional connectivity in CD. It is possible that very early disruption of embryological callosal development enhances neuroplasticity and facilitates the formation of these proposed alternative neural pathways, but further evidence is needed

    The Ariel Instrument Control Unit: its role within the Payload and B1 Phase design

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (Tinetti 2019; Puig et al. 2018; Pascale et al. 2018), has been selected in March 2018 by ESA for the fourth medium-class mission (M4) launch opportunity of the Cosmic Vision Program, with an expected lift off in late 2028. It is the first mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of our own Solar System. Its Payload (P/L) (Eccleston and Tinetti 2018; Eccleston et al. 2017; Middleton et al. 2019), has been designed to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large unbiased survey concerning the nature of exoplanets atmospheres and their interiors, to determine the key factors affecting the formation and evolution of planetary systems (Tinetti et al. 2017, 2018). Ariel will observe hundreds of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than ∌ 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transit spectroscopy in the 1.10 to 7.80 ÎŒm spectral range and broad-band photometry in the optical (0.50 - 0.80 ÎŒm) and Near IR (0.80 - 1.10 ÎŒm). One of the two instruments of the Ariel Payload is the Fine Guidance System (FGS), including three photometric channels (two used for guiding as well as science) between 0.5-1.1 ÎŒm plus a low resolution NIR spectrometer for 1.1-1.95 ÎŒm range. Along with FGS an IR Spectrometer (AIRS) (Amiaux et al. 2017) is foreseen, providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95 − 3.90 ÎŒm band and Channel 1 (CH1) for the 3.90 − 7.80 ÎŒm range. Finally, an Active Cooler System (ACS) including a Ne Joule-Thomson cooler is adopted to provide active cooling capability to the AIRS detectors working at cryogenic temperatures. AIRS is located at the intermediate focal plane of the telescope and common optical system and it hosts two HgCdTe-based hybrid IR detectors and two cold front-end electronics (CFEE) for detectors control and readout. Each CFEE is driven by a Detector Control Unit (DCU) part of AIRS but hosted within and managed by the Instrument Control Unit (ICU) of the Payload (Focardi et al. 2018). ICU is a warm unit residing into the S/C Service Module (SVM) and it is based on a cold redundant configuration involving the Power Supply Unit (PSU) and the Commanding and Data Processing Unit (CDPU) boards; both DCUs are instead cross-strapped and can be managed by the nominal or the redundant (PSU+CDPU) chain. ICU is in charge of AIRS management, collecting scientific and housekeeping (HK) telemetries from the spectrometer and HK from the telescope (temperatures readings), the P/L Optical Bench (OB) and other Subsystems (SS), thanks to a warm slave unit (TCU, Telescope Control Unit) interfaced to the ICU. Science and HK telemetries are then forwarded to the S/C, for temporary storage, before sending them to Ground. Here we describe the status of the ICU design at the end of B1 Phase, prior to the Mission Adoption Review (MAR) by ESA, with some still open architectural choices to be addressed and finalised once selected the ICU industrial Prime contractor

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Integrating regional perfusion CT information to improve prediction of infarction after stroke

    No full text
    Physiological evidence suggests that neighboring brain regions have similar perfusion characteristics (vascular supply, collateral blood flow). It is largely unknown whether integrating perfusion CT (pCT) information from the area surrounding a given voxel (i.e. the receptive field (RF)) improves the prediction of infarction of this voxel. Based on general linear regression models (GLMs) and using acute pCT-derived maps, we compared the added value of cuboid RF to predict the final infarct. To this aim, we included 144 stroke patients with acute pCT and follow-up MRI, used to delineate the final infarct. Overall, the performance of GLMs to predict the final infarct improved when using RF for all pCT maps (cerebral blood flow, cerebral blood volume, mean transit time and time-to-maximum of the tissue residual function (Tmax)). The highest performance was obtained with Tmax (glm(Tmax); AUC = 0.89 +/- 0.03 with RF vs. 0.78 +/- 0.02 without RF; p < 0.001) and with a model combining all perfusion parameters (glm(multi); AUC 0.89 +/- 0.02 with RF vs. 0.79 +/- 0.02 without RF; p < 0.001). These results suggest that prediction of infarction improves by integrating perfusion information from adjacent tissue. This approach may be applied in future studies to better identify ischemic core and penumbra thresholds and improve patient selection for acute stroke treatment

    Functional network centrality indicates interactions between APOE4 and age across the clinical spectrum of AD

    No full text
    Advanced age is the most important risk factor for Alzheimer’s disease (AD), and carrier-status of the Apolipoprotein E4 (APOE4) allele is the strongest known genetic risk factor. Many studies have consistently shown a link between APOE4 and synaptic dysfunction, possibly reflecting pathologically accelerated biological aging in persons at risk for AD.To test the hypothesis that distinct functional connectivity patterns characterize APOE4 carriers across the clinical spectrum of AD, we investigated 128 resting state functional Magnetic Resonance Imaging (fMRI) datasets from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI), representing all disease stages from cognitive normal to clinical dementia. Brain region centralities within functional networks, computed as eigenvector centrality, were tested for multivariate associations with chronological age, APOE4 carrier status and clinical stage (as well as their interactions) by partial least square analysis (PLSC).By PLSC analysis two distinct brain activity patterns could be identified, which reflected interactive effects of age, APOE4 and clinical disease stage. A first component including sensorimotor regions and parietal regions correlated with age and AD clinical stage (p < 0.001). A second component focused on medial-frontal regions and was specifically related to the interaction between age and APOE4 (p = 0.032).Our findings are consistent with earlier reports on altered network connectivity in APOE4 carriers. Results of our study highlight promise of graph-theory based network centrality to identify brain connectivity linked to genetic risk, clinical stage and age. Our data suggest the existence of brain network activity patterns that characterize APOE4 carriers across clinical stages of AD

    The effects of sand extraction on the macrobenthos of a relict sands area (Northern Adriatic Sea): results 12 months post-extraction.

    No full text
    Sands for the nourishment of beaches along the Emilia-Romagna coast (northern Adriatic Sea) were dredged from an offshore area characterised by relict sands formed during the last Adriatic post-glacial transgression. The short-term effects of the sand extraction on macrozoobenthic communities were investigated before, during and 1, 6 and 12 months after dredging at three impacted stations and seven control stations. Sand extraction activities did not significantly influence the granulometry and %TOC in the sediment but caused almost complete defaunation at dredging stations. Yet, just 12 months after the extraction, the recolonisation of communities at the impacted stations was at an advanced stage. Unlike other studies on the effects of extraction of marine sand, no significant settlement of opportunistic species was observed. The limited impact of the sand extraction operation on the physical characteristics of the sediment and hydrological-sedimentary characteristics in the relict sand area should aid its rapid recovery and the restoration of the original community in a short period of time (2-4 years after dredging)
    • 

    corecore