7 research outputs found

    On real one-sided ideals in a free algebra

    Full text link
    In classical and real algebraic geometry there are several notions of the radical of an ideal I. There is the vanishing radical defined as the set of all real polynomials vanishing on the real zero set of I, and the real radical defined as the smallest real ideal containing I. By the real Nullstellensatz they coincide. This paper focuses on extensions of these to the free algebra R of noncommutative real polynomials in x=(x_1,...,x_g) and x^*=(x_1^*,...,x_g^*). We work with a natural notion of the (noncommutative real) zero set V(I) of a left ideal I in the free algebra. The vanishing radical of I is the set of all noncommutative polynomials p which vanish on V(I). In this paper our quest is to find classes of left ideals I which coincide with their vanishing radical. We completely succeed for monomial ideals and homogeneous principal ideals. We also present the case of principal univariate ideals with a degree two generator and find that it is very messy. Also we give an algorithm (running under NCAlgebra) which checks if a left ideal is radical or is not, and illustrate how one uses our implementation of it.Comment: v1: 31 pages; v2: 32 page

    Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert

    Get PDF
    The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East– West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.Web of Scienc
    corecore