43 research outputs found

    Dissipative Divergence of Resonant Orbits

    Get PDF
    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g. 2:1, 3:2, 4:3) has been interpreted as evidence for lack of resonant interactions. Here we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.Comment: 10 pages, 6 figures, accepted to A

    Quantum Fluctuations in Josephson Junction Comparators

    Full text link
    We have developed a method for calculation of quantum fluctuation effects, in particular of the uncertainty zone developing at the potential curvature sign inversion, for a damped harmonic oscillator with arbitrary time dependence of frequency and for arbitrary temperature, within the Caldeira-Leggett model. The method has been applied to the calculation of the gray zone width Delta Ix of Josephson-junction balanced comparators driven by a specially designed low-impedance RSFQ circuit. The calculated temperature dependence of Delta Ix in the range 1.5 to 4.2K is in a virtually perfect agreement with experimental data for Nb-trilayer comparators with critical current densities of 1.0 and 5.5 kA/cm^2, without any fitting parameters.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins

    Get PDF
    This paper presents a post-Newtonian (PN) template family of gravitational waveforms from inspiralling compact binaries with non-precessing spins, where the spin effects are described by a single "reduced-spin" parameter. This template family, which reparametrizes all the spin-dependent PN terms in terms of the leading-order (1.5PN) spin-orbit coupling term \emph{in an approximate way}, has very high overlaps (fitting factor > 0.99) with non-precessing binaries with arbitrary mass ratios and spins. We also show that this template family is "effectual" for the detection of a significant fraction of generic spinning binaries in the comparable-mass regime (m_2/m_1 <~ 10), providing an attractive and feasible way of searching for gravitational waves (GWs) from spinning low-mass binaries. We also show that the secular (non-oscillatory) spin-dependent effects in the phase evolution (which are taken into account by the non-precessing templates) are more important than the oscillatory effects of precession in the comparable-mass (m_1 ~= m_2) regime. Hence the effectualness of non-spinning templates is particularly poor in this case, as compared to non-precessing-spin templates. For the case of binary neutron stars observable by Advanced LIGO, even moderate spins (L . S/m^2 ~= 0.015 - 0.1) will cause considerable mismatches (~ 3% - 25%) with non-spinning templates. This is contrary to the expectation that neutron-star spins may not be relevant for GW detection.Comment: 16 pages, 11 figures, More material added, Some changes to clarify the presentatio

    Methods for Estimating Fluxes and Absorptions of Faint X-ray Sources

    Full text link
    X-ray sources with very few counts can be identified with low-noise X-ray detectors such as ACIS onboard the Chandra X-ray Observatory. These sources are often too faint for parametric spectral modeling using well-established methods such as fitting with XSPEC. We discuss the estimation of apparent and intrinsic broad-band X-ray fluxes and soft X-ray absorption from gas along the line of sight to these sources, using nonparametric methods. Apparent flux is estimated from the ratio of the source count rate to the instrumental effective area averaged over the chosen band. Absorption, intrinsic flux, and errors on these quantities are estimated from comparison of source photometric quantities with those of high S/N spectra that were simulated using spectral models characteristic of the class of astrophysical sources under study. The concept of this method is similar to the long-standing use of color-magnitude diagrams in optical and infrared astronomy, with X-ray median energy replacing color index and X-ray source counts replacing magnitude. Our nonparametric method is tested against the apparent spectra of 2000 faint sources in the Chandra observation of the rich young stellar cluster in the M17 HII region. We show that the intrinsic X-ray properties can be determined with little bias and reasonable accuracy using these observable photometric quantities without employing often uncertain and time-consuming methods of non-linear parametric spectral modeling. Our method is calibrated for thermal spectra characteristic of stars in young stellar clusters, but recalibration should be possible for some other classes of faint X-ray sources such as extragalactic AGN.Comment: Accepted for publication in The Astrophysical Journal. 39 pages, 15 figure

    Prospects for Indirect Detection of Neutralino Dark Matter

    Full text link
    Dark matter candidates arising in models of particle physics incorporating weak scale supersymmetry may produce detectable signals through their annihilation into neutrinos, photons, or positrons. A large number of relevant experiments are planned or underway. The `logically possible' parameter space is unwieldy. By working in the framework of minimal supergravity, we can survey the implications of the experiments for each other, as well as for direct searches, collider searches, low-energy experiments, and naturalness in a transparent fashion. We find that a wide variety of experiments provide interesting probes. Particularly promising signals arise in the mixed gaugino-Higgsino region. This region is favored by low-energy particle physics constraints and arises naturally from minimal supergravity due to the focus point mechanism. Indirect dark matter searches and traditional particle searches are highly complementary. In cosmologically preferred models, if there are charged superpartners with masses below 250 GeV, then some signature of supersymmetry must appear before the LHC begins operation.Comment: 37 pages, 20 figures. Latest Super-Kamiokande result included, expected sensitivities of HESS and CANGAROO updated, references added. Version to appear in Phys. Rev.

    Nonstandard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

    Get PDF
    HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02±0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (ρb = 5.60+2.15-1.43g cm-3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (ρc = 1.97+0.94-0.59 g cm-3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90±0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the system's instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASATESS mission.Publisher PDFPeer reviewe

    Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene

    No full text
    The activity of dibenzylzirconium and dibenzylhafnium Salalen complexes in polymerisation of propylene with MAO as a cocatalyst is described. Three Salalen ligand precursors combining a bulky alkyl group (1-adamantyl) on the imine-side phenol and electron withdrawing halo groups of different sizes on the amine-side phenol were explored. All metal complexes were obtained as single diastereomers. An X-ray crystallographic structure of a hafnium complex of an additional ligand carrying the combination of tertbutyl and chloro substituted phenolates, 4-Hf, revealed a fac–mer wrapping of the Salalen ligand around the metal centre. All complexes led to active catalysts in propylene polymerisation and to isotactic polypropylene of high regioregularity. The zirconium complexes led to polypropylene having molecular weights of Mw = 132 000–200 000 and isotacticities of [mmmm] = 65.7–75.0%. The hafnium complexes led to polypropylene of higher molecular weights of Mw = 375 000–520 000 and higher stereoregularities of [mmmm] = 80.6–89.3%, the highest isotacticity obtained with 3-Hf
    corecore