209 research outputs found

    Jon K. Presnell to James (2 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_pro/1505/thumbnail.jp

    Federal Regulation of BB Guns: Aiming to Protect Our Children

    Get PDF

    Regulated peristalsis into the acidic region of the _Drosophila_ larval midgut is controlled by a novel component of the Autonomic Nervous System

    Get PDF
    The underlying cellular and molecular mechanisms that regulate and coordinate critical physiological processes such as peristalsis are complex, often cryptic, and involve the integration of multiple tissues and organ systems within the organism. We have identified a completely novel component of the larval autonomic nervous system in the _Drosophila_ larval midgut that is essential for the peristaltic movement of food from the anterior midgut into the acidic region of the midgut. We have named this region the Superior Cupric Autonomic Nervous System or SCANS. Located at the junction of the anterior and the acidic portions of the midgut, the SCANS is characterized by a cluster of a novel neuro-enteroendocrine cells that we call Lettuce Head Cells, a valve, and two anterior muscular tethers to the dorsal gastric caeca. Using cell ablation and ectopic activation via expression of the _Chlamydomonas reinhardtii_ blue-light activated channelrhodopsin, we demonstrate that the SCANS and in particular the Lettuce Head Cells are both necessary and sufficient for peristalsis and perhaps serve a larger role by coordinating digestion throughout the anterior midgut with development and growth

    A hybrid of bovine pancreatic ribonuclease and human angiogenin: an external loop as a module controlling substrate specificity?

    Get PDF
    A comparison of the sequences of three homologous ribonucleases (RNase A, angiogenin and bovine seminal RNase) identifies three surface loops that are highly variable between the three proteins. Two hypotheses were contrasted: (i) that this variation might be responsible for the different catalytic activities of the three proteins; and (ii) that this variation is simply an example of surface loops undergoing rapid neutral divergence in sequence. Three hybrids of angiogenin and bovine pancreatic ribonuclease (RNase) A were prepared where regions in these loops taken from angiogenin were inserted into RNase A. Two of the three hybrids had unremarkable catalytic properties. However, the RNase A mutant containing residues 63-74 of angiogenin had greatly diminished catalytic activity against uridylyl-(3′ - 5′)-adenosine (UpA), and slightly increased catalytic activity as an inhibitor of translation in vitro. Both catalytic behaviors are characteristic of angiogenin. This is one of the first examples of an engineered external loop in a protein. Further, these results are complementary to those recently obtained from the complementary experiment, where residues 59-70 of RNase were inserted into angiogenin [Harper and Vallee (1989) Biochemistry, 28, 1875-1884]. Thus, the external loop in residues 63-74 of RNase A appears to behave, at least in part, as an interchangeable ‘module' that influences substrate specificity in an enzyme in a way that is isolated from the influences of other regions in the protei

    Body image, body dissatisfaction and weight status in south asian children: a cross-sectional study

    Get PDF
    Background Childhood obesity is a continuing problem in the UK and South Asian children represent a group that are particularly vulnerable to its health consequences. The relationship between body dissatisfaction and obesity is well documented in older children and adults, but is less clear in young children, particularly South Asians. A better understanding of this relationship in young South Asian children will inform the design and delivery of obesity intervention programmes. The aim of this study is to describe body image size perception and dissatisfaction, and their relationship to weight status in primary school aged UK South Asian children. Methods Objective measures of height and weight were undertaken on 574 predominantly South Asian children aged 5-7 (296 boys and 278 girls). BMI z-scores, and weight status (underweight, healthy weight, overweight or obese) were calculated based on the UK 1990 BMI reference charts. Figure rating scales were used to assess perceived body image size (asking children to identify their perceived body size) and dissatisfaction (difference between perceived current and ideal body size). The relationship between these and weight status were examined using multivariate analyses. Results Perceived body image size was positively associated with weight status (partial regression coefficient for overweight/obese vs. non-overweight/obese was 0.63 (95% CI 0.26-0.99) and for BMI z-score was 0.21 (95% CI 0.10-0.31), adjusted for sex, age and ethnicity). Body dissatisfaction was also associated with weight status, with overweight and obese children more likely to select thinner ideal body size than healthy weight children (adjusted partial regression coefficient for overweight/obese vs. non-overweight/obese was 1.47 (95% CI 0.99-1.96) and for BMI z-score was 0.54 (95% CI 0.40-0.67)). Conclusions Awareness of body image size and increasing body dissatisfaction with higher weight status is established at a young age in this population. This needs to be considered when designing interventions to reduce obesity in young children, in terms of both benefits and harms

    Reduction of Paraoxonase Expression Followed by Inactivation across Independent Semiaquatic Mammals Suggests Stepwise Path to Pseudogenization.

    Get PDF
    Convergent adaptation to the same environment by multiple lineages frequently involves rapid evolutionary change at the same genes, implicating these genes as important for environmental adaptation. Such adaptive molecular changes may yield either change or loss of protein function; loss of function can eliminate newly deleterious proteins or reduce energy necessary for protein production. We previously found a striking case of recurrent pseudogenization of the Paraoxonase 1 (Pon1) gene among aquatic mammal lineages-Pon1 became a pseudogene with genetic lesions, such as stop codons and frameshifts, at least four times independently in aquatic and semiaquatic mammals. Here, we assess the landscape and pace of pseudogenization by studying Pon1 sequences, expression levels, and enzymatic activity across four aquatic and semiaquatic mammal lineages: pinnipeds, cetaceans, otters, and beavers. We observe in beavers and pinnipeds an unexpected reduction in expression of Pon3, a paralog with similar expression patterns but different substrate preferences. Ultimately, in all lineages with aquatic/semiaquatic members, we find that preceding any coding-level pseudogenization events in Pon1, there is a drastic decrease in expression, followed by relaxed selection, thus allowing accumulation of disrupting mutations. The recurrent loss of Pon1 function in aquatic/semiaquatic lineages is consistent with a benefit to Pon1 functional loss in aquatic environments. Accordingly, we examine diving and dietary traits across pinniped species as potential driving forces of Pon1 functional loss. We find that loss is best associated with diving activity and likely results from changes in selective pressures associated with hypoxia and hypoxia-induced inflammation

    Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    Get PDF
    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria

    Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children

    Get PDF
    BACKGROUND: Mucus plugging can worsen asthma control, lead to reduced lung function and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and MUC5AC gene expression has been associated with development of airway obstruction and asthma exacerbations in urban children with asthma. However, the genetic determinants of MUC5AC expression are not established. OBJECTIVE: To assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC expression and relate to pulmonary functions in childhood asthma. METHODS: We used RNA-sequencing data from upper airway samples and performed cis-expression quantitative trait loci (eQTL) and allele specific expression (ASE) analyses in two cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort and an exacerbation-prone asthma cohort. We further investigated inducible MUC5AC eQTLs during incipient asthma exacerbations. We tested significant eQTLs SNPs for associations with lung function measurements and investigated their functional consequences in DNA regulatory databases. RESULTS: We identified two independent groups of SNPs in the MUC5AC gene that were significantly associated with MUC5AC expression. Moreover, these SNPs showed stronger eQTL associations with MUC5AC expression during asthma exacerbations, consistent with inducible expression. SNPs in one group also showed significant association with decreased pulmonary functions. These SNPs included multiple EGR1 transcription factor binding sites suggesting a mechanism of effect. CONCLUSIONS: These findings demonstrate the applicability of organ specific RNA-sequencing data to determine genetic factors contributing to a key disease pathway. Specifically, they suggest important genetic variations that may underlie propensity to mucus plugging in asthma and could be important in targeted asthma phenotyping and disease management strategies
    corecore