research

Regulated peristalsis into the acidic region of the _Drosophila_ larval midgut is controlled by a novel component of the Autonomic Nervous System

Abstract

The underlying cellular and molecular mechanisms that regulate and coordinate critical physiological processes such as peristalsis are complex, often cryptic, and involve the integration of multiple tissues and organ systems within the organism. We have identified a completely novel component of the larval autonomic nervous system in the _Drosophila_ larval midgut that is essential for the peristaltic movement of food from the anterior midgut into the acidic region of the midgut. We have named this region the Superior Cupric Autonomic Nervous System or SCANS. Located at the junction of the anterior and the acidic portions of the midgut, the SCANS is characterized by a cluster of a novel neuro-enteroendocrine cells that we call Lettuce Head Cells, a valve, and two anterior muscular tethers to the dorsal gastric caeca. Using cell ablation and ectopic activation via expression of the _Chlamydomonas reinhardtii_ blue-light activated channelrhodopsin, we demonstrate that the SCANS and in particular the Lettuce Head Cells are both necessary and sufficient for peristalsis and perhaps serve a larger role by coordinating digestion throughout the anterior midgut with development and growth

    Similar works