35 research outputs found

    Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew

    Get PDF
    Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620–6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116–175 genes encoding CSEPs with limited gene amplification. Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.Wu, Y., Ma, X., Pan, Z. et al. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics 19, 705 (2018)

    Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey

    Get PDF
    Durability-based designs with timber require reliable information about the wood properties and how they affect its performance under variable exposure conditions. This study aimed at utilizing a material resistance model (Part 2 of this publication) based on a dose–response approach for predicting the relative decay rates in above-ground situations. Laboratory and field test data were, for the first time, surveyed globally and used to determine material-specific resistance dose values, which were correlated to decay rates. In addition, laboratory indicators were used to adapt the material resistance model to in-ground exposure. The relationship between decay rates in- and above-ground, the predictive power of laboratory indicators to predict such decay rates, and a method for implementing both in a service life prediction tool, were established based on 195 hardwoods, 29 softwoods, 19 modified timbers, and 41 preservative-treated timbers

    Modeling the material resistance of wood—part 2:Validation and optimization of the meyer-veltrup model

    Get PDF
    Service life planning with timber requires reliable models for quantifying the effects of exposure-related parameters and the material-inherent resistance of wood against biotic agents. The Meyer-Veltrup model was the first attempt to account for inherent protective properties and the wetting ability of wood to quantify resistance of wood in a quantitative manner. Based on test data on brown, white, and soft rot as well as moisture dynamics, the decay rates of different untreated wood species were predicted relative to the reference species of Norway spruce (Picea abies). The present study aimed to validate and optimize the resistance model for a wider range of wood species including very durable species, thermally and chemically modified wood, and preservative treated wood. The general model structure was shown to also be suitable for highly durable materials, but previously defined maximum thresholds had to be adjusted (i.e., maximum values of factors accounting for wetting ability and inherent protective properties) to 18 instead of 5 compared to Norway spruce. As expected, both the enlarged span in durability and the use of numerous and partly very divergent data sources (i.e., test methods, test locations, and types of data presentation) led to a decrease in the predictive power of the model compared to the original. In addition to the need to enlarge the database quantity and improve its quality, in particular for treated wood, it might be advantageous to use separate models for untreated and treated wood as long as the effect of additional impact variables (e.g., treatment quality) can be accounted for. Nevertheless, the adapted Meyer-Veltrup model will serve as an instrument to quantify material resistance for a wide range of wood-based materials as an input for comprehensive service life prediction software

    A Highly Sensitive Assay for Monitoring the Secretory Pathway and ER Stress

    Get PDF
    Background: The secretory pathway is a critical index of the capacity of cells to incorporate proteins into cellular membranes and secrete proteins into the extracellular space. Importantly it is disrupted in response to stress to the endoplasmic reticulum that can be induced by a variety of factors, including expression of mutant proteins and physiologic stress. Activation of the ER stress response is critical in the etiology of a number of diseases, such as diabetes and neurodegeneration, as well as cancer. We have developed a highly sensitive assay to monitor processing of proteins through the secretory pathway and endoplasmic reticulum (ER) stress in real-time based on the naturally secreted Gaussia luciferase (Gluc). Methodology/Principle Findings: An expression cassette for Gluc was delivered to cells, and its secretion was monitored by measuring luciferase activity in the conditioned medium. Gluc secretion was decreased down to 90% when these cells were treated with drugs that interfere with the secretory pathway at different steps. Fusing Gluc to a fluorescent protein allowed quantitation and visualization of the secretory pathway in real-time. Expression of this reporter protein did not itself elicit an ER stress response in cells; however, Gluc proved very sensitive at sensing this type of stress, which is associated with a temporary decrease in processing of proteins through the secretory pathway. The Gluc secretion assay was over 20,000-fold more sensitive as compared to the secreted alkaline phosphatase (SEAP), a well established assay for monitoring of protein processing and ER stress in mammalian cells. Conclusions/Significance: The Gluc assay provides a fast, quantitative and sensitive technique to monitor the secretory pathway and ER stress and its compatibility with high throughput screening will allow discovery of drugs for treatment of conditions in which the ER stress is generally induced

    Penyakit kardiovaskular: Seri pengobatan rasional

    Get PDF
    Buku Penyakit Kardiovaskular ini membahas secara holistik dari sudut pandang ahli, yaitu dokter, apoteker dan farmasi klinis. Buku ini membahas beberapa penyakit kardiovaskular, antara lain: hipertensi, dislipidemia, sidroma koroner akut dengan atau tanpa peningkatan segmen ST, stroke dan atrial fibrilasi. Setiap penyakit kardiovaskular pada buku ini dibahas secara detail mulai dari definisi penyakit, etiologi, tanda dan gejala, hingga pengobatan rasional yang berbasis bukti (evidence based). Selain itu perkembangan obat-obat kardiovaskular yang disertai bukti-bukti klinis dibahas dalam bagian akhir buku ini

    Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris

    Get PDF
    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015
    corecore