699 research outputs found

    Technical, Operational and Logistical Parameters Influencing Emissions of Heavy Duty Vehicles

    Get PDF
    The focus of this study is the analysis of collected data of real world emission measurements of a heavy duty vehicle using a Portable Emission Measurement System (PEMS) along a large portion of the extended Trans-European Transport CORRIDOR V. The aim of the analysis is to assess heavy duty vehicle emission in different real-world transport conditions and their correlations i.e. transport factors influencing emissions.JRC.H.4-Transport and air qualit

    Indicators to Assess Sustainability of Transport Activities - Part 1: Review of the Existing Transport Sustainability Indicator Initiatives and Development of an Indicator Set to Assess Transport Sustainability Performance

    Get PDF
    The major focus of this study is the review of the existing transport indicator initiatives of the EU and other international organisations as well as the development of an indicator set to measure sustainability of transport systems. Initially, the major characteristics of environmentally sustainable transport are defined and indicator quality selection criteria and quantitative targets as guideline criteria for selection of transport related indicators are presented. The following parts are dedicated to a review of a number of major EU and international indicator initiatives. On the basis of 10 transport related international initiatives which include EC Sustainable Development Indicators, EC ETIS study, the EEA TERM indicators, Eurostat transport indicators, transport indicator sets from OECD, US EPA, World Bank, UNECE, VTPI as well as taking into account the EC JRC Well-to-Wheel study a set of 55 sustainable transport indicators has been identified. In addition, causal chains among the selected indicators are analysed according to the DPSIR framework. This selection of transport sustainability indicators may serve as a valuable framework for the assessment of European transport sustainability performance and for the development of policy scenarios and strategies to mitigate negative impacts from transport activities. Their use in the so-called "Dashboard of Sustainability" (JRC) will point out areas where transport performance shows particular success or problems in the EU27.JRC.H.4-Transport and air qualit

    Surface modification of silicon nanowire based field effect transistors with stimuli responsive polymer brushes for biosensing applications

    Get PDF
    We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire based field effect transistor sensor device. For thermo-responsive PNIPAAM, the physicochemical properties (i.e., a reversible phase transition, wettability) were induced by crossing the lower critical solution temperature (LCST) of about 32 C. Taking advantage of this property, osteosarcomic SaoS-2 cells were cultured on PNIPAAM-modified sensors at temperatures above the LCST, and completely detached by simply cooling. Next, the weak polyelectrolyte PAA, that is sensitive towards alteration of pH and ionic strength, was used to cover the silicon nanowire based device. Here, the increase of pH will cause deprotonation of the present carboxylic (COOH) groups along the chains into negatively charged COO- moieties that repel each other and cause swelling of the polymer. Our experimental results suggest that this functionalization enhances the pH sensitivity of the SiNW FETs. Specific receptor (bio-)molecules can be added to the polymer brushes by simple click chemistry so that functionality of the brush layer can be tuned optionally. We demonstrate at the proof-of concept-level that osteosarcomic Saos-2 cells can adhere to PNIPAAM-modified FETs, and cell signals could be recorded electrically. This study presents an applicable route for the modification of highly sensitive, versatile FETs that can be applied for detection of a variety of biological analytes. © 2020 by the authors

    Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato.

    Get PDF
    Dissection of the genetic architecture of adaptation and abiotic stress-related traits is highly desirable for developing drought-tolerant potatoes and enhancing the resilience of existing cultivars, particularly as agricultural production in rain-fed areas may be reduced by up to 50 % by 2020. The “DMDD” potato progeny was developed at International Potato Center (CIP) by crossing the sequenced double monoploid line DM and a diploid cultivar of the Solanum tuberosum diploid Andigenum Goniocalyx group. Recently, a high-density integrated genetic map based on single nucleotide polymorphism (SNP), diversity array technology (DArT), simple sequence repeats (SSRs), and amplified fragment length polymorphism (AFLP) markers was also made available for this population. Two trials were conducted, in greenhouse and field, for drought tolerance with two treatments each, well-watered and terminal drought, in which watering was suspended 60 days after planting. The DMDD population was evaluated for agro-morphological and physiological traits before and after initiation of stress, at multiple time points. Two dense parental genetic maps were constructed using published genotypic data, and quantitative trait locus (QTL) analysis identified 45 genomic regions associated with nine traits in well-watered and terminal drought treatments and 26 potentially associated with drought stress. In this study, the strong influence of environmental factors besides water shortage on the expression of traits and QTLs reflects the multigenic control of traits related to drought tolerance. This is the first study to our knowledge in potato identifying QTLs for drought-related traits in field and greenhouse trials, giving new insights into genetic architecture of drought-related traits. Many of the QTLs identified have the potential to be used in potato breeding programs for enhanced drought tolerance

    Single nucleotide polymorphism discovery in elite north american potato germplasm

    Get PDF
    BACKGROUND: Current breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used. Large-scale sequence datasets generated primarily through Sanger Expressed Sequence Tag projects are available from a limited number of potato cultivars and access to next generation sequencing technologies permits rapid generation of sequence data for additional cultivars. When coupled with the advent of high throughput genotyping methods, an opportunity now exists for potato breeders to incorporate considerably more genotypic data into their decision-making. RESULTS: To identify a large number of Single Nucleotide Polymorphisms (SNPs) in elite potato germplasm, we sequenced normalized cDNA prepared from three commercial potato cultivars: 'Atlantic', 'Premier Russet' and 'Snowden'. For each cultivar, we generated 2 Gb of sequence which was assembled into a representative transcriptome of (~)28-29 Mb for each cultivar. Using the Maq SNP filter that filters read depth, density, and quality, 575,340 SNPs were identified within these three cultivars. In parallel, 2,358 SNPs were identified within existing Sanger sequences for three additional cultivars, 'Bintje', 'Kennebec', and 'Shepody'. Using a stringent set of filters in conjunction with the potato reference genome, we identified 69,011 high confidence SNPs from these six cultivars for use in genotyping with the Infinium platform. Ninety-six of these SNPs were used with a BeadXpress assay to assess allelic diversity in a germplasm panel of 248 lines; 82 of the SNPs proved sufficiently informative for subsequent analyses. Within diverse North American germplasm, the chip processing market class was most distinct, clearly separated from all other market classes. The round white and russet market classes both include fresh market and processing cultivars. Nevertheless, the russet and round white market classes are more distant from each other than processing are from fresh market types within these two groups. CONCLUSIONS: The genotype data generated in this study, albeit limited in number, has revealed distinct relationships among the market classes of potato. The SNPs identified in this study will enable high-throughput genotyping of germplasm and populations, which in turn will enable more efficient marker-assisted breeding efforts in potato

    A mixed model QTL analysis for sugarcane multiple-harvest-location trial data

    Get PDF
    Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane
    corecore