368 research outputs found

    Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Get PDF
    The Quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in the Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In a recent work was shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible represntations (irreps) of SU(3) are needed to describe the Yrast band, the leading S = 0 irrep augmented with the leading S = 1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a "realistic but schematic" Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20-Ne, 22-Ne, 24-Mg and 28-Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the Yrast band and the importance of the various terms in the Hamiltonian.Comment: 30 pages, 8 figures. Submited to Nucl. Phys.

    Pion-nucleus optical potential valid up to the DELTA-resonance region

    Get PDF
    We present in this article an optical potential for the π\pi-nucleus interaction that can be used in various studies involving π\pi-nucleus channels. Based on earlier treatments of the low energy π\pi-nucleus optical potential, we have derived a potential expression applicable from threshold up to the Δ\Delta-resonance region. We extracted the impulse approximation form for this potential from the πN\pi-N scattering amplitude and then added to it kinematical and physical corrections. The kinematic corrections arise from transforming the impulse approximation expression from the πN\pi-N center of mass frame to the π\pi-nucleus center of mass frame, while the physical corrections arise mostly from the many-body nature of the π\pi-nucleus interaction. By taking advantage of the experimental progress in our knowledge of the πN\pi-N process, we have updated earlier treatments with parameters calculated from state-of-the-art experimental measurements.Comment: 23 pages, 12 figures. Accepted for publication in Physical Review

    Measurements of polarized photo-pion production on longitudinally polarized HD and Implications for Convergence of the GDH Integral

    Full text link
    We report new measurements of inclusive pion production from frozen-spin HD for polarized photon beams covering the Delta(1232) resonance. These provide data simultaneously on both H and D with nearly complete angular distributions of the spin-difference cross sections entering the Gerasimov-Drell-Hearn (GDH) sum rule. Recent results from Mainz and Bonn exceed the GDH prediction for the proton by 22 microbarns, suggesting as yet unmeasured high-energy components. Our pi0 data reveal a different angular dependence than assumed in Mainz analyses and integrate to a value that is 18 microbarns lower, suggesting a more rapid convergence. Our results for deuterium are somewhat lower than published data, considerably more precise and generally lower than available calculations.Comment: 4 pages, 4 figures. Submitted for publication in Physical Review Letter

    Correlation effects in single-particle overlap functions and one-nucleon removal reactions

    Get PDF
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of the one-body density matrices (ODM) obtained for the nucleus 16O^{16}O employing different approaches to account for the effects of correlations. The calculations use the relationship between the overlap functions related to bound states of the (A-1)-particle system and the ODM for the ground state of the A-particle system. The resulting bound-state overlap functions are compared and tested in the description of the experimental data from (p,d) reactions for which the shape of the overlap function is important.Comment: 11 pages, 4 figures include

    Coherent Photoproduction of Eta-Mesons on Spin-Zero Nuclei in a Relativistic, Non-local Model

    Get PDF
    The coherent photoproduction of η\eta-mesons on spin-zero nuclei is studied in a relativistic, non-local model, which we have previously applied to the coherent photoproduction of pions. We find that different off-shell extrapolations of the elementary production operator lead to large effects in the cross section. We also show that the almost complete suppression of the N(1535) seen in earlier studies on this reaction is a result of the local or factorization approximation used in these works. Non-local effects can lead to a considerable contribution from this resonance. The relative size of the N(1535) contribution depends on the structure of the nucleus under consideration. We give an estimate for the contribution of the N(1520) resonance and discuss the effect of an η\eta-nucleus optical potentialComment: 29 pages, 14 figures; slight changes in presentation, extended discussion, one new figur

    Photoproduction of phi(1020) mesons on the proton at large momentum transfer

    Get PDF
    The cross section for ϕ\phi meson photoproduction on the proton has been measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low four-momentum transfer, the differential cross section is well described by Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the data support a model where the Pomeron is resolved into its simplest component, two gluons, which may couple to any quark in the proton and in the ϕ\phi.Comment: 5 pages; 7 figure

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure

    First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction

    Full text link
    The first measurements of the transferred polarization for the exclusive ep --> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron beam was used to measure the hyperon polarization over a range of Q2 from 0.3 to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass angular range of the K+ meson. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A non-relativistic quark model interpretation of our data suggests that the s-sbar quark pair is produced with spins predominantly anti-aligned. Implications for the validity of the widely used 3P0 quark-pair creation operator are discussed.Comment: 6 pages, 4 figure
    corecore