1,141 research outputs found

    The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary

    Get PDF
    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate

    The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 3: Special diagnostic studies

    Get PDF
    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate

    The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 2: Comparisons with global atmospheric measurements

    Get PDF
    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate

    Using graphical and pictorial representations to teach introductory astronomy students about the detection of extrasolar planets via gravitational microlensing

    Get PDF
    The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics, and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravitationally microlensed by an extrasolar planet. In order to facilitate instructors' abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial, "Detecting Exoplanets with Gravitational Microlensing." In this paper, we describe how this new Lecture-Tutorial's representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.Comment: 10 pages, 10 figures, accepted for publication in the American Journal of Physic

    Ex-nihilo II: Examination Syllabi and the Sequencing of Cosmology Education

    Full text link
    Cosmology education has become an integral part of modern physics courses. Directed by National Curricula, major UK examination boards have developed syllabi that contain explicit statements about the model of the Big Bang and the strong observational evidence that supports it. This work examines the similarities and differences in these specifications, addresses when cosmology could be taught within a physics course, what should be included in this teaching and in what sequence it should be taught at different levels.Comment: 9 pages. Accepted for publication in a special issue of Physics Educatio

    A Synaptic Basis for Auditory-Vocal Integration in the Songbird

    Get PDF
    Songbirds learn to sing by memorizing a tutor song that they then vocally mimic using auditory feedback. This developmental sequence suggests that brain areas that encode auditory memories communicate with brain areas for learned vocal control. In the songbird, the secondary auditory telencephalic region caudal mesopallium (CM) contains neurons that encode aspects of auditory experience. We investigated whether CM is an important source of auditory input to two sensorimotor structures implicated in singing, the telencephalic song nucleus interface (NIf) and HVC. We used reversible inactivation methods to show that activity in CM is necessary for much of the auditory-evoked activity that can be detected in NIf and HVC of anesthetized adult male zebra finches. Furthermore, extracellular and intracellular recordings along with spike-triggered averaging methods indicate that auditory selectivity for the bird’s own song is enhanced between CM and NIf. We used lentiviral-mediated tracing methods to confirm that CM neurons directly innervate NIf. To our surprise, these tracing studies also revealed a direct projection from CM to HVC. We combined irreversible lesions of NIf with reversible inactivation of CM to establish that CM supplies a direct source of auditory drive to HVC. Finally, using chronic recording methods, we found that CM neurons are active in response to song playback and during singing, indicating their potential importance to song perception and processing of auditory feedback. These results establish the functional synaptic linkage between sites of auditory and vocal learning and may identify an important substrate for learned vocal communication

    Space Shuttle Program: Automatic rendezvous, proximity operations, and capture (category 3)

    Get PDF
    The NASA Johnson Space Center is actively pursuing the development and demonstration of capabilities for automatic rendezvous, proximity operations, and capture (AR&C) using the Space Shuttle as the active vehicle. This activity combines the technologies, expertise, tools, and facilities of the JSC Tracking and Communications Division (EE), Navigation, Control and Aeronautics Division (EG), Automation and Robotics Division (ER), and Structures and Mechanics Division (ES) of the Engineering Directorate and the Flight Design and Dynamics Division (DM) of the Mission Operations Directorate. Potential benefits of AR&C include more efficient and repeatable rendezvous, proximity operations, and capture operations; reduced impacts on the target vehicles (e.g., Orbiter RCS plume loads); reduced flight crew work loads; reduced ground support requirements; and reduced operational constraints. This paper documents the current JSC capabilities/tools/facilities for AR&C and describes a proposed plan for a progression of ground demonstrations and flight tests and demonstrations of AR&C capabilities. This plan involves the maturing of existing technologies in tracking and communications; guidance, navigation and control; mechanisms; manipulators; and systems management and integrating them into several evolutionary demonstration stages
    • …
    corecore