74 research outputs found

    Pseudonymization risk analysis in distributed systems

    Get PDF
    In an era of big data, online services are becoming increasingly data-centric; they collect, process, analyze and anonymously disclose growing amounts of personal data in the form of pseudonymized data sets. It is crucial that such systems are engineered to both protect individual user (data subject) privacy and give back control of personal data to the user. In terms of pseudonymized data this means that unwanted individuals should not be able to deduce sensitive information about the user. However, the plethora of pseudonymization algorithms and tuneable parameters that currently exist make it difficult for a non expert developer (data controller) to understand and realise strong privacy guarantees. In this paper we propose a principled Model-Driven Engineering (MDE) framework to model data services in terms of their pseudonymization strategies and identify the risks to breaches of user privacy. A developer can explore alternative pseudonymization strategies to determine the effectiveness of their pseudonymization strategy in terms of quantifiable metrics: i) violations of privacy requirements for every user in the current data set; ii) the trade-off between conforming to these requirements and the usefulness of the data for its intended purposes. We demonstrate through an experimental evaluation that the information provided by the framework is useful, particularly in complex situations where privacy requirements are different for different users, and can inform decisions to optimize a chosen strategy in comparison to applying an off-the-shelf algorithm

    Construction and execution of experiments at the multi-purpose thermal hydraulic test facility TOPFLOW for generic investigations of two-phase flows and the development and validation of CFD codes - Final report

    Get PDF
    The works aimed at the further development and validation of models for CFD codes. For this reason, the new thermal-hydraulic test facility TOPFLOW was erected and equipped with wire-mesh sensors with high spatial and time resolution. Vertical test sections with nominal diameters of DN50 and DN200 operating with air-water as well as steam-water two-phase flows provided results on the evaluation of flow patterns, on the be¬haviour of the interfacial area as well as on interfacial momentum and heat transfer. The validation of the CFD-code for complex geometries was carried out using 3D void fraction and velocity distributions obtained in an experiment with an asymmetric obstacle in the large DN200 test section. With respect to free surface flows, stratified co- and counter-current flows as well as slug flows were studied in two horizontal test channels made from acrylic glass. Post-test calculations of these experiments succeeded in predicting the slug formation process. Corresponding to the main goal of the project, the experimental data was used for the model development. For vertical flows, the emphasis was put on lateral bubble forces (e.g. lift force). Different constitutive laws were tested using a Multi Bubble Size Class Test Solver that has been developed for this purpose. Basing on the results a generalized inhomogeneous Multiple Size Group (MUSIG) Model has been proposed and implemented into the CFD code CFX (ANSYS). Validation calculations with the new code resulted in the conclusion that particularly the models for bubble coalescence and fragmentation need further optimisation. Studies of single effects, like the assessment of turbulent dissipation in a bubbly flow and the analysis of trajectories of single bubbles near the wall, supplied other important results of the project

    Aufbau und Durchführung von Experimenten an der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW für generische Untersuchungen von Zweiphasenströmungen und die Weiterentwicklung und Validierung von CFD-Codes - Abschlussbericht

    Get PDF
    Ziel der Arbeiten war die Weiterentwicklung und Validierung von Modellen in CFD-Codes. Hierzu wurde am FZD die thermohydraulische Versuchsanlage TOPFLOW aufgebaut und mit räumlich und zeitlich hochauflösenden Gittersensoren ausgestattet. Vertikale Teststrecken mit Nenndurchmessern von DN50 bzw. DN200 für Luft/Wasser- sowie Dampf/Wasser-Strömungen lieferten Ergebnisse zur Entwicklung von Strömungsformen, zum Verhalten der Zwischenphasengrenzfläche sowie zum Wärme- und Impulsaustausch zwischen den Phasen. Die Validierung des CFD-Codes in komplexen Geometrien erfolgte anhand von 3D Gasgehalts- und Geschwindigkeitsfeldern, die bei Umströmung eines asymmetrischen Hindernisses auftreten, das in der Teststrecke DN200 eingebaut war. Im Hinblick auf Strömungen mit freier Oberfläche untersuchte das FZD in zwei horizontalen Acrylglas-Kanälen geschichtete Zweiphasenströmungen im Gleich- bzw. Gegenstrom sowie Schwallströmungen. Bei den Nachrechnungen dieser Versuche gelang die Simulation der Schwallentstehung. Entsprechend des Projektziels wurden die experimentellen Ergebnisse zur Modellentwicklung genutzt. Bei vertikalen Strömungen stand die Wirkung der lateralen Blasenkräfte (z.B. Liftkraft) im Vordergrund. Zum Test unterschiedlicher Modellansätze wurde hierzu ein Mehrblasenklassen-Testsolver entwickelt und genutzt. Darauf aufbauend wurde ein neues Konzept für ein Mehrblasenklassenmodell, das Inhomogene MUSIG Modell erarbeitet und in den kommerziellen CFD Code CFX (ANSYS) implementiert. Bei Validierungsrechnungen zeigte sich, dass vor allem die Blasenkoaleszenz- und -zerfallsmodelle weiter optimiert werden müssen. Untersuchungen zu Einzeleffekten, wie z.B. die Abschätzung von Turbulenzkoeffizienten und die Analyse der Trajektoren von Einzelblasen in unmittelbarer Wandnähe, lieferten weitere wichtige Ergebnisse des Projekts

    Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (CO<sub>PAC</sub>) measurement by the pulmonary artery catheter (PAC). However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (CO<sub>AP</sub>) device (FloTrac™, Vigileo™; Edwards Lifesciences, Irvine, CA, USA) only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU) using CO<sub>PAC </sub>as the method of reference.</p> <p>Methods</p> <p>We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 ± 18.8 years), who required both arterial and pulmonary artery pressure monitoring. CO<sub>PAC </sub>measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while CO<sub>AP </sub>values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman.</p> <p>Results</p> <p>A total of 164 coupled measurements were obtained. Absolute values of CO<sub>PAC </sub>ranged from 2.80 to 10.80 l/min (mean 5.93 ± 1.55 l/min). The bias and limits of agreement between CO<sub>PAC </sub>and CO<sub>AP </sub>for unequal numbers of replicates was 0.02 ± 2.92 l/min. The percentage error between CO<sub>PAC </sub>and CO<sub>AP </sub>was 49.3%. The bias between percentage changes in CO<sub>PAC </sub>(ΔCO<sub>PAC</sub>) and percentage changes in CO<sub>AP </sub>(ΔCO<sub>AP</sub>) for consecutive measurements was -0.70% ± 32.28%. CO<sub>PAC </sub>and CO<sub>AP </sub>showed a Pearson correlation coefficient of 0.58 (<it>p </it>< 0.01), while the correlation coefficient between ΔCO<sub>PAC </sub>and ΔCO<sub>AP </sub>was 0.46 (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Although the CO<sub>AP </sub>algorithm shows a minimal bias with CO<sub>PAC </sub>over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore, the used algorithm (V 1.03) failed to demonstrate an acceptable accuracy in comparison to the clinical standard of cardiac output determination.</p

    Global and local hydrodynamics of bubble columns: effect of gas distributor

    Get PDF
    Global (level swell) and local (WMS – Wire Mesh Sensor) measurements were made on waters of different purities and air, in a cylindrical laboratory bubble column (2 m tall, 0.127 m dia) using two different gas distributors: a perforated plate (to produce homogeneous flow) and a spider sparger (to produce heterogeneous flow). The level swell method provided the steady space-averaged gas holdup/gas flow rate data. The WMS method provided the actual gas holdups and bubble sizes resolved in time and space at one cross-sectional horizontal plane (1 m above distributor), whose integration yields the timeaveraged data. The following results were obtained: The global and local data agree relatively well; there are distinct differences between the radial profiles and bubble size distributions between the two main flow regimes; the local information identifies why the predictions of published models, which account for the smaller and larger bubbles in the flow, may not perform well; the modelling approaches based on the hindrance and enhancement concepts prove to be suitable for the flow regime identification and description, including the transition range between the homogeneous and heterogeneous flows; based on the hydrodynamics, the specific interfacial area is obtained, together with the mass transfer coefficient

    SCOR: A secure international informatics infrastructure to investigate COVID-19

    Get PDF
    Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale

    Anonymize or Synthesize? - Privacy-Preserving Methods for Heart Failure Score Analytics

    No full text
    corecore