133 research outputs found

    3D laser scanner based on surface silicon micromachining techniques for shape and size reconstruction of the human ear canal

    Get PDF
    2005/2006As technology advances, hearing aids can be packaged into increasingly smaller housings. Devices that fit entirely within the deeper portion of the external auditory canal have been developed, called completely-in-the-canal (CIC). These aids are custom moulded and have high cosmetic appeal because they are virtually undetectable. They also have several acoustic advantages: reduced occlusion effect, reduced gain requirements, and preservation of the natural acoustic properties of the pinna and external ear. However, CIC hearing aids require proper fitting of the hearing aid shell to the subject ear canal to achieve satisfactory wearing comfort, reduction in acoustic feedback, and unwanted changes in the electro-acoustic characteristics of the aid. To date, the hearing aid shell manufacturing process is fully manual: the shell is fabricated as a replica of the impression of the subject ear canal. Conventional impression acquisition method is very invasive and imprecise, moreover the typical post-impression processes made on the ear impression leaves room for error and may not accurately represent the structural anatomy of patient’s ear canal. There are some laser approaches able to perform a 3D laser scanning of the original ear impression but, the entire shell-making process is completely dependent on the ear impression and often is the sole cause of poor fitting shell. Therefore, direct ear canal scanning is the only way to perform accurate and repeatable measurements without the use of physical ear impression. The conventional optical elements are not able to enter in the inner part of the ear and perform a scanning of the cavity. This work is devoted to the direct scanning of human external auditory canal by using electromagnetically actuated torsion micromirror fabricated by micromachining technique as scanner. This is the first ever demonstration of actual scanning of human external auditory canal by a single integral Micro-Electro-Mechanical System (MEMS). A novel prototype 3D scanning system is developed together with surface reconstruction algorithm to obtain an explicit 3D reconstruction of actual human auditory canal. The system is based on acquisition of optical range data by conoscopic holographic laser interferometer using electromagnetically actuated scanning MEMS micromirror. An innovative fabrication process based on poly(methylmethacrylate) (PMMA) sacrificial layer for fabrication of free standing micromirror is used. Micromirror actuation is achieved by using magnetic field generated with an electromagnetic coil stick. Micromirror and electromagnet coil assembly composes the opto-mechanical scanning probe used for entering in ear auditory canal. Based on actual scan map, a 3D reconstructed digital model of the ear canal was built using a surface point distribution approach. The proposed system allows noninvasive 3D imaging of ear canal with spatial resolution in the 10 μm range. Fabrication of actual shell from in-vivo ear canal scanning is also accomplished. The actual human ear canal measurement techniques presented provide a characterization of the ear canal shape, which help in the design and refining of hearing aids fabrication approaches to patient personalized based.XIX Ciclo197

    Development of electrochemical biosensors by e-beam lithography for medical diagnostics

    Get PDF
    In this work the fabrication and characterization of boron-doped diamond (BDD) nanoelectrode arrays are discussed. The use of boron-doped diamond electrodes is very attractive due to advantageous properties including high reproducibility, stability, and robustness under extreme conditions, where conventional electrode materials may undergo severe erosion. BDD electrodes have also proved to be very useful because they show an extremely wide potential window in aqueous solutions without oxidation of the electrode itself. This allows electrochemical detection, at tiny background currents, of a number of substances that oxidize at very positive potentials, where other electrodic materials are not suitable. BDD based NEAs were prepared using Si substrates coated with a layer of Boron doped diamond as macroelectrode. NEAs were obtained by creating an array of nanoholes by electron beam lithography (EBL) in a thin film of polycarbonate deposited on top of the macroelectrode. This approach leads to the formation of recessed nanoelectrodes. The parameters for using polycarbonate as a novel electron beam resist have been optimized and successfully used for fabrication of NEAs. The most interesting properties of this polymer for nanofabrication purposes are the high lithographic contrast, which allows the creation of structures of dimensions less than 100 nm; chemical stability, which guarantees a long-term use in electrochemical solutions and the possibility of functionalization with biological molecules (DNA and proteins). NEAs have been characterized with cyclic voltammetry and have provided voltammetric signals controlled by pure radial diffusion. The low background current of BDD added to the properties of NEAs indicate that this system can be applied for the development of sensors with high sensitivity. Polycarbonate surface of NEAs was successfully functionalized with small ss-DNA sequence, confirming the possibility of exploiting these systems as diagnostic biosensors

    On the use of multilayer Laue lenses with X-ray Free Electron Lasers

    Get PDF
    Multilayer Laue lenses were used for the first time to focus x-rays from an X-ray Free Electron Laser (XFEL). In an experiment, which was performed at the European XFEL, we demonstrated focusing to a spot size of a few tens of nanometers. A series of runs in which the number of pulses per train was increased from 1 to 2, 3, 4, 5, 6, 7, 10, 20 and 30 pulses per train, all with a pulse separation of 3.55 us, was done using the same set of lenses. The increase in the number of pulses per train was accompanied with an increase of x-ray intensity (transmission) from 9% to 92% at 5 pulses per train, and then the transmission was reduced to 23.5 % when the pulses were increased further. The final working condition was 30 pulses per train and 23.5% transmission. Only at this condition we saw that the diffraction efficiency of the MLLs changed over the course of a pulse train, and this variation was reproducible from train to train. We present the procedure to align and characterize these lenses and discuss challenges working with the pulse trains from this unique x-ray source

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    Get PDF

    On the Properties of WC/SiC Multilayers

    No full text
    A study of the materials properties of WC/SiC multilayer coatings is presented. We investigated the dependence of interface and surface roughness, intrinsic stress, microstructure, chemical composition, and stoichiometry as a function of multilayer period and in some cases compared these to W/SiC multilayer systems. The WC/SiC material pair forms multilayers with extremely smooth and sharp interfaces and both materials remain amorphous over a wide range of thicknesses. These properties are desirable for multilayer-based high-resolution diffractive x-ray optics, such as multilayer Laue lenses (MLLs), which require very thick films in which the layer spacing varies considerably. Thermal and structural stability studies show that WC/SiC multilayers have exceptional thermal stability, making this an extremely robust and favorable material pair for MLLs and other multilayer-based X-ray optical elements

    On the Properties of WC/SiC Multilayers

    No full text
    A study of the materials properties of WC/SiC multilayer coatings is presented. We investigated the dependence of interface and surface roughness, intrinsic stress, microstructure, chemical composition, and stoichiometry as a function of multilayer period and in some cases compared these to W/SiC multilayer systems. The WC/SiC material pair forms multilayers with extremely smooth and sharp interfaces and both materials remain amorphous over a wide range of thicknesses. These properties are desirable for multilayer-based high-resolution diffractive x-ray optics, such as multilayer Laue lenses (MLLs), which require very thick films in which the layer spacing varies considerably. Thermal and structural stability studies show that WC/SiC multilayers have exceptional thermal stability, making this an extremely robust and favorable material pair for MLLs and other multilayer-based X-ray optical elements

    On the Properties of WC/SiC Multilayers

    No full text
    A study of the materials properties of WC/SiC multilayer coatings is presented. We investigated the dependence of interface and surface roughness, intrinsic stress, microstructure, chemical composition, and stoichiometry as a function of multilayer period and in some cases compared these to W/SiC multilayer systems. The WC/SiC material pair forms multilayers with extremely smooth and sharp interfaces and both materials remain amorphous over a wide range of thicknesses. These properties are desirable for multilayer-based high-resolution diffractive x-ray optics, such as multilayer Laue lenses (MLLs), which require very thick films in which the layer spacing varies considerably. Thermal and structural stability studies show that WC/SiC multilayers have exceptional thermal stability, making this an extremely robust and favorable material pair for MLLs and other multilayer-based X-ray optical elements

    Uterine rupture in pregnancy: two case reports and review of literature

    No full text
    Rupture of a gravid uterus is an obstetric emergency. Risks factors include a scarred uterus but also spontaneous rupture of an un- scarred uterus during pregnancy is possible. The authors present two cases of a spontaneous complete uterine rupture during pregnancy. The first case had only a past history of dilatation and curettage for abortion; the second case had a past history of dilatation and curettage for abortion and a monolateral laparoscopic salpingectomy for ectopic pregnancy. They presented with abdominal pain and after ultrasound scan, uterine ruptures were diagnosed. These cases show that there should be a high index of suspicious of uterine rupture in a gravid woman with a history of curettage for the possible presence of misunderstood uterine scar and in women with a past history of salpingectomy with or without corneal resection. Appropriate counseling and close follow-up might help to avoid such obstetrical catastrophes. To provide more insight into the possible risk factors for prelabor uterine rupture in pregnancy, a literature review was performe
    • …
    corecore