90 research outputs found

    Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains

    Get PDF
    Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps. Along the lateral chronosequence, we found that benthic biofilms in tributaries develop higher biomass than those in glacier-fed streams, and that their respective diversity and community composition differed markedly. We also found spatial turnover of bacterial communities in the glacier-fed streams along the longitudinal chronosequence. These patterns along the two chronosequences seem unexpected given the close spatial proximity and connectivity of the various streams, suggesting environmental filtering as an underlying mechanism. Furthermore, our results suggest that photoautotrophic communities shape bacterial communities across the various streams, which is understandable given that algae are the major source of organic matter in proglacial streams. Overall, our findings shed new light on benthic biofilms in proglacial streams now changing at rapid pace owing to climate-induced glacier shrinkage

    Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams

    Get PDF
    Glacier-fed streams (GFS) are harsh ecosystems dominated by microbial life organized in benthic biofilms, yet the biodiversity and ecosystem functions provided by these communities remain under-appreciated. To better understand the microbial processes and communities contributing to GFS ecosystems, it is necessary to leverage high throughput sequencing. Low biomass and high inorganic particle load in GFS sediment samples may affect nucleic acid extraction efficiency using extraction methods tailored to other extreme environments such as deep-sea sediments. Here, we benchmarked the utility and efficacy of four extraction protocols, including an up-scaled phenol-chloroform protocol. We found that established protocols for comparable sample types consistently failed to yield sufficient high-quality DNA, delineating the extreme character of GFS. The methods differed in the success of downstream applications such as library preparation and sequencing. An adapted phenol-chloroform-based extraction method resulted in higher yields and better recovered the expected taxonomic profile and abundance of reconstructed genomes when compared to commercially-available methods. Affordable and straight-forward, this method consistently recapitulated the abundance and genomes of a mock community, including eukaryotes. Moreover, by increasing the amount of input sediment, the protocol is readily adjustable to the microbial load of the processed samples without compromising protocol efficiency. Our study provides a first systematic and extensive analysis of the different options for extraction of nucleic acids from glacier-fed streams for high-throughput sequencing applications, which may be applied to other extreme environments

    Phylogenetic Analysis of the Complete Mitochondrial Genome of Madurella mycetomatis Confirms Its Taxonomic Position within the Order Sordariales

    Get PDF
    Background: Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. Results: The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. Conclusion: Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order

    Cross-domain interactions confer stability to benthic biofilms in proglacial streams

    Get PDF
    Cross-domain interactions are an integral part of the success of biofilms in natural environments but remain poorly understood. Here, we describe cross-domain interactions in stream biofilms draining proglacial floodplains in the Swiss Alps. These streams, as a consequence of the retreat of glaciers, are characterised by multiple environmental gradients and perturbations (e.g., changes in channel geomorphology, discharge) that depend on the time since deglaciation. We evaluate co-occurrence of bacteria and eukaryotic communities along streams and show that key community members have disproportionate effects on the stability of community networks. The topology of the networks, here quantified as the arrangement of the constituent nodes formed by specific taxa, was independent of stream type and their apparent environmental stability. However, network stability against fragmentation was higher in the streams draining proglacial terrain that was more recently deglaciated. We find that bacteria, eukaryotic photoautotrophs, and fungi are central to the stability of these networks, which fragment upon the removal of both pro- and eukaryotic taxa. Key taxa are not always abundant, suggesting an underlying functional component to their contributions. Thus, we show that there is a key role played by individual taxa in determining microbial community stability of glacier-fed streams

    Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal

    Get PDF
    One thousand six hundred and twenty yeast isolates were obtained from 54 spontaneous fermentations performed from grapes collected in 18 sampling sites of three vineyards (Vinho Verde Wine Region in northwest Portugal) during the 2001-2003 harvest seasons. All isolates were analyzed by mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) and a pattern profile was verified for each isolate, resulting in a total of 297 different profiles, all revealed to belong to the species Saccharomyces cerevisiae. The strains corresponding to seventeen profiles showed a wider temporal and geographical distribution, being characterized by a generalized pattern of sporadic presence, absence and reappearance. One strain (ACP10) showed a more regional distribution with a perennial behavior. In different fermentations ACP10 was either dominant or not, showing that the final outcome of fermentation was dependent on the specific composition of the yeast community in the must. Few of the grape samples collected before harvest initiated a spontaneous fermentation, compared to the samples collected after harvest, in a time frame of about 2 weeks. The associated strains were also much more diversified: 267 patterns among 1260 isolates compared to 30 patterns among 360 isolates in the post- and pre-harvest samples respectively. Fermenting yeast populations have never been characterized before in this region and the present work reports the presence of commercial yeast strains used by the wineries. The present study aims at the development of strategies for the preservation of biodiversity and genetic resources as a basis for further strain development.ENOSAFE - (Nº 762, programa AGRO, 657 C2

    Cross-domain interactions induce community stability to benthic biofilms in proglacial streams

    Get PDF
    AbstractCross-domain interactions are an integral part of the success of complex biofilms in natural environments. Here, we report on cross-domain interactions in biofilms of streams draining proglacial floodplains in the Swiss Alps. These streams, as a consequence of the retreat of glaciers, are characterized by multiple environmental gradients and stability that depend on the time since deglaciation. We estimate co-occurrence of prokaryotic and eukaryotic communities along this gradient and show that key community members have disproportionate effects on the stability of co-occurrence networks. The topology of the networks was similar independent of environmental gradients and stability. However, network stability was higher in the streams draining proglacial terrain that was more recently deglaciated. We find that both pro- and eukaryotes are central to the stability of these networks, which fragment upon the removal of both pro- and eukaryotic taxa. These ‘keyplayers’ are not always abundant, suggesting an underlying functional component to their contributions. Thus, we show that there is a key role played by individual taxa in determining microbial community stability of glacier-fed streams

    Homogeneous selection promotes microdiversity in the glacier-fed stream microbiome

    Get PDF
    Microdiversity, the organization of microorganisms into groups with closely related but ecologically different sub-types, is widespread and represents an important linchpin between microbial ecology and evolution. However, the drivers of microdiversification remain largely unknown. Here we show that selection promotes microdiversity in the microbiome associated with sediments in glacier-fed streams (GFS). Applying a novel phylogenetic framework, we identify several clades that are under homogeneous selection and that contain genera with higher levels of microdiversity than the rest of the genera. Overall these clades constituted ∼44% and ∼64% of community α-diversity and abundance, and both percentages increased further in GFS that were largely devoid of primary producers. Our findings show that strong homogeneous selection drives the microdiversification of specialized microbial groups putatively underlying their success in the extreme environment of GFS. This microdiversity could be threatened as glaciers shrink, with unknown consequences for microbial diversity and functionality in these ecosystems

    Cross-domain interactions confer stability to benthic biofilms in proglacial streams

    Get PDF
    Cross-domain interactions are an integral part of the success of biofilms in natural environments but remain poorly understood. Here, we describe cross-domain interactions in stream biofilms draining proglacial floodplains in the Swiss Alps. These streams, as a consequence of the retreat of glaciers, are characterised by multiple environmental gradients and perturbations (e.g., changes in channel geomorphology, discharge) that depend on the time since deglaciation. We evaluate co-occurrence of bacteria and eukaryotic communities along streams and show that key community members have disproportionate effects on the stability of community networks. The topology of the networks, here quantified as the arrangement of the constituent nodes formed by specific taxa, was independent of stream type and their apparent environmental stability. However, network stability against fragmentation was higher in the streams draining proglacial terrain that was more recently deglaciated. We find that bacteria, eukaryotic photoautotrophs, and fungi are central to the stability of these networks, which fragment upon the removal of both pro- and eukaryotic taxa. Key taxa are not always abundant, suggesting an underlying functional component to their contributions. Thus, we show that there is a key role played by individual taxa in determining microbial community stability of glacier-fed streams

    Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function.

    Get PDF
    peer reviewedThe shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish

    Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions

    Get PDF
    We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8–43 strains per fermentation) was associated with high percentage (60–100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0–40%) corresponded to a rather low strain diversity (1–10 strains per fermentation)
    corecore