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Abstract 35 

Cross-domain interactions are an integral part of the success of complex biofilms in natural 36 

environments. Here, we report on cross-domain interactions in biofilms of streams draining 37 

proglacial floodplains in the Swiss Alps. These streams, as a consequence of the retreat of 38 

glaciers, are characterized by multiple environmental gradients and stability that depend on the 39 

time since deglaciation. We estimate co-occurrence of prokaryotic and eukaryotic communities 40 

along this gradient and show that key community members have disproportionate effects on the 41 

stability of co-occurrence networks. The topology of the networks was similar independent of 42 

environmental gradients and stability. However, network stability was higher in the streams 43 

draining proglacial terrain that was more recently deglaciated.  We find that both pro- and 44 

eukaryotes are central to the stability of these networks, which fragment upon the removal of both 45 

pro- and eukaryotic taxa. These ‘keyplayers’ are not always abundant, suggesting an underlying 46 

functional component to their contributions. Thus, we show that there is a key role played by 47 

individual taxa in determining microbial community stability of glacier-fed streams. 48 

 49 

Introduction 50 

Biofilms represent the dominant microbial lifestyle in streams and rivers1. There, these matrix-51 

enclosed microbial communities colonise sediment surfaces and can regulate critical ecosystem 52 

processes1. Stream biofilm communities are highly diverse, harbouring members of all domains 53 

of life, including viruses. This biodiversity fosters biotic interactions, such as those between algae 54 

and bacterial heterotrophs, which contribute to the stability of ecological communities2. Given the 55 

multitude of interacting taxa and the small spatial scales at which interactions occur, their direct 56 

observation is, however, not possible. Instead, patterns of taxa co-occurrence across samples 57 

can be used to infer microbial interactions. These co-occurrence patterns are often usefully 58 

represented as ecological networks, which allow us to explore emergent properties, such as the 59 

density of interactions, clusters of interacting taxa or the stability of networks against 60 

fragmentation. For example, studying bacterial co-occurrences across a dendritic stream network, 61 

Widder et al. found evidence for the role of spatial and hydrological processes in shaping co-62 

occurrence network structure and stability3. 63 

 64 

Overall, the environment of proglacial streams is extreme. Low water temperature coupled to high 65 

turbidity and oligotrophy as well as snow- and ice-cover over extended times collectively 66 

contribute to rendering these environments extreme. Highly unstable stream channels further 67 

contribute to these extreme conditions, making it difficult for benthic biofilms to establish4. This is 68 
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particularly true for glacier-fed streams (GFS) that develop into braided channels, and which 69 

commonly are dynamic with channel changes on a diel basis. Further downstream, these effects 70 

become alleviated notably by biogeomorphic succession as plant communities begin to exert 71 

substantial resistance to lateral channel erosion5. GFS channels start to consolidate, thereby 72 

further increasing the habitability of the GFS ecosystem. Towards the edge of the proglacial 73 

floodplain, tributaries (TRIB) fed by groundwater and snowmelt drain terrasses that are slightly 74 

elevated and often disconnected from the meltwaters in the GFS channels6. The environment in 75 

TRIB is generally more stable than in GFS4, which is reflected by the microbial communities in 76 

these streams7,8. In fact, despite their close spatial proximity, GFS and TRIB host  biofilms that 77 

differ in terms of biomass, composition, and diversity7,8. GFS will become increasingly fed by 78 

groundwater and snowmelt as glaciers shrink9.  79 

 80 

Here, we investigated the properties of cross-domain microbial co-occurrence networks in benthic 81 

biofilms in GFS and TRIB within zones with different deglaciation histories in two proglacial 82 

floodplains in the Swiss Alps. We hypothesised that the apparent stability of co-occurrence 83 

networks in GFS and TRIB changes along downstream and lateral gradients of deglaciation 84 

histories and hence environmental stability. To address this, we assessed the stability of cross-85 

domain co-occurrence networks upon removal of keyplayer taxa. Keyplayers are taxa with a 86 

central role in maintaining network structure  and  have been identified in other ecological 87 

networks10,11. However, the role of keyplayers for structuring communities is unknown. We 88 

investigated the variance in bacterial community composition that can be explained by eukaryotic 89 

and prokaryotic keyplayers and contrasted this to the variance that can be explained by 90 

environmental differences among sites. Our findings highlight the importance of cross-domain 91 

interactions for the success of biofilms in proglacial streams.  92 

 93 

Materials and methods 94 

Sample collection  95 

Benthic sediment from various stream reaches within the Otemma Glacier (Otemma; 45° 56' 08.4" 96 

N 7° 24' 55.1" E) and Val Roseg Glacier (Val Roseg; 46° 24' 21.1" N, 9° 51' 55.1" E) floodplains 97 

were collected from the glacier snout to the floodplain’s outlet. In each reach, we collected sandy 98 

sediments (0.25 - 3.15 mm) from the benthic zone (0 - 5 cm depth) with flame-sterilised sieves 99 

and spatulas. Samples were collected during early (June/July) and late (August/September) 100 

summer8 and as shown previously by Brandani et al. 8, the two sample periods did not show 101 

differences in terms of community composition and structure. Study reaches were categorised 102 
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into GFS or TRIB depending on their connectivity to glacier runoff based on visual field 103 

observations, drone-based imagery, and physicochemical characteristics8. Overall, a total of 136 104 

samples (GFS: 50;  TRIB: 86) were collected across both floodplains. These included 68 samples 105 

each for the Otemma Glacier and Val Roseg Glacier floodplain, where the exact breakdown of 106 

these samples into GFS and TRIB, UP and DOWN (see Methods) are listed in Supplementary 107 

Table 1. 108 

 109 

Deglaciation histories 110 

We identified past glacier extents from historic orthophotos and maps using SWISSIMAGE 111 

journey through time12, and the GLIMS glacier inventory13. These extents were compared with 112 

GLAMOS14 frontal variation measurements to verify glacial readvances. Year of latest glaciation 113 

was thus interpolated for each sample site, which provided the longitudinal deglaciation history. 114 

We further split the reaches of the floodplain into those which were already deglaciated in 2000 115 

(DOWN) and those still glaciated in 2000 (UP) (Supp. Fig. 1a). The lateral gradient is given by 116 

the TRIB that drain the terraces on the margins of the proglacial floodplains.   117 

 118 

Benthic algal biomass 119 

Benthic algal biomass was estimated as chlorophyll ɑ using a modified ethanol extraction protocol 120 

15. For this, the sediment (ca. 2 g) samples were treated with 5 ml of 90 % EtOH and then placed 121 

in a hot water bath (78 °C, 10 min), followed by an incubation in the dark (4 °C, 24 h). They were 122 

thereafter vortexed, centrifuged, and the supernatant read on a plate reader at 436/680 nm 123 

(excitation/emission). Chlorophyll ɑ concentrations were inferred from a spinach standard and 124 

normalised by the sediment dry mass (DM). 125 

 126 

Metabarcoding library preparation, and sequencing 127 

A previously established protocol16 utilising phenol-chloroform was used for DNA extraction from 128 

benthic sediments (ca. 0.5 g). After initial processing, the DNA samples were diluted to a final 129 

concentration of ≤ 2-3 ng/ul. For the 16S rRNA gene metabarcoding analyses, we used the 130 

methodology previously described in Fodelianakis et al.17, where the V3-V4 hypervariable region 131 

of the 16S rRNA gene were targetted with the 341F/785R primers. This was done in line with the 132 

16S library preparation Illumina guidelines for the MiSeq system. The eukaryotic 18S rRNA gene 133 

metabarcoding library preparation was performed similarly but using the TAReuk454F-134 

TAReukREV3 primers18. Based on the MiSeq manufacturer’s protocol, amplicon libraries were 135 

prepared where a second PCR was used to add dual indices to the purified amplicon PCR 136 
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products. This allowed for extensive multiplexing of samples on a single sequencing lane of the 137 

MiSeq (Illumina) platform after quantification and normalisation. Samples were subsequently 138 

sequenced using a 300-base paired-end protocol in the Lausanne Genomic Technologies Facility 139 

(Switzerland).  140 

 141 

Metabarcoding analyses 142 

For the 16S and 18S rRNA metabarcoding data analyses, a combination of Trimmomatic v0.3619 143 

and QIIME2 v.2020.820 were used with the latest SILVA database21 v138.1 for taxonomic 144 

classification of the gene amplicons, i.e. 16S rRNA and 18S rRNA. From the 16S rRNA amplicon 145 

dataset, non-bacterial amplicon sequence variants (ASVs), i.e., archaea, chloroplasts, and 146 

mitochondria, were removed from all downstream analyses. The dataset was not rarefied for the 147 

analyses. The rationale behind discarding the archaeal reads was that the primers used were not 148 

designed, and are therefore not optimal, for detecting all lineages of archaea22. A total of 192 149 

sample libraries were generated for the 16S rRNA sequencing and paired-end sequencing 150 

produced a total of 15,140,043 reads, with an average of 89,586 reads per sample. However, 151 

only 136 were included in the analysis due to absence of paired 18S rRNA information for 56 152 

samples. Meanwhile, singletons and ASVs observed only once were discarded. For the 18S rRNA 153 

amplicon dataset, 136 amplicon sequence libraries from sediment samples were generated (17 154 

samples were discarded due to DNA extraction and amplification issues). The paired-end 155 

sequencing generated a total of 10,837,518 reads, with an average of 64,127 reads per samples. 156 

The 18S ASVs were further clustered into operational taxonomic units (OTUs) based on a 97% 157 

identity threshold using the de novo clustering method in vsearch, which has been implemented 158 

in QIIME2. Non-phototrophic eukaryotes except fungi and protists were discarded from the 18S 159 

rRNA amplicon dataset in all downstream analyses. The 18S rRNA dataset was also not rarefied 160 

and any singletons/OTUs observed in only one sample were removed from downstream analyses, 161 

resulting in an 18S rRNA phototrophs and fungi dataset of 429 OTUs. 162 

 163 

Co-occurrence networks  164 

To study potential interactions between pro- and eukaryotes, co-occurrence network analyses 165 

were performed with samples meeting specific criteria. These included: 1) the presence of both 166 

16S and 18S sequence data for each sample, and 2) samples had to be categorised the same 167 

way across both samplings to ensure replicability (i.e., either designated as GFS or TRIB for both 168 

samplings as described by Brandani et al.8). Due to the dynamic nature of proglacial streams, 169 

GFS tend to migrate, leaving some sites dry or under the influence of TRIB, or even flood samples 170 
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previously under the influence of TRIB streams. Hence, this approach was adopted to avoid 171 

potential confounders arising from miscategorised streams. Subsequently, to reduce the noise 172 

and overall computational effort, any ASVs found in less than 5% of the samples were discarded 173 

from the 16S dataset for the co-occurrence networks. Co-occurrence networks between 16S and 174 

18S (i.e., phototrophs and fungi) were constructed using an average of the distance matrices 175 

created from SparCC23, Spearman's correlation24, and SpiecEasi25 where the networks were 176 

constructed using the Meinshausen and Bühlmann (mb) method (Meinshausen and Bühlmann, 177 

2006). Networks were constructed across reaches, for UP and DOWN segments separately, and 178 

across GFS and TRIB for both Otemma and Val Roseg floodplains. Since our analyses are based 179 

on amplicon sequence data alone, we focused on the positive interactions across domains to 180 

assess potential mutualism within the microbiome. While reports suggest that negative 181 

interactions are indicative of co-exclusion mechanisms, especially in human microbiomes26, the 182 

paucity of information available, especially in poorly characterised ecosystems may be insufficient 183 

to establish via amplicon sequencing data.  184 

 185 

To detect communities in the network analyses, we used the Louvain clustering algorithm27, 186 

removing clusters with less than 5 nodes. Herein, each community is defined as nodes within the 187 

graph with a higher probability of being connected to each other than to the rest of the network. 188 

Following this, we calculated network topology measures, including nodes and edges number, 189 

number of clusters, diameter, edge-density, and modularity. The correlation matrix was visualised 190 

using the igraph package28 in R v4.0.329. Centrality measures, degree and betweenness, were 191 

also estimated per node, using the igraph v1.3.4 package. The fragmentation (f) of the network 192 

was determined as the percentage of the number of disconnected subgraphs over the overall 193 

nodes in each network3. Fragmentation was estimated iteratively by the removal of each 194 

keyplayer, i.e.,  top 10 nodes with both a high degree and a high betweenness in each graph. 195 

This information was further used for the subsequent generation of network topologies such as 196 

the number of clusters following initial Louvain clustering of the network.  197 

Community analyses 198 

To explore the role of keyplayers in structuring biofilm communities, we used constrained 199 

ordinations (db-RDA, R function vegan:capscale) using Bray-Curtis distances. We employed a 200 

forward selection strategy (vegan:ordistep) to identify a non-redundant and significant (p<0.01) 201 

set of both pro- and eukaryotic keyplayers that explained variance in the bacterial community. We 202 

performed this analysis on each floodplain individually. Prior to db-RDA, wisconsin-double 203 
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standardisation was applied to the bacterial community. The relative abundances of keyplayers 204 

were then provided as constraints for stepwise model creation (using 199 permutations). Model 205 

significance was evaluated for each RDA axis and explained variance of the constraints was 206 

extracted. To contrast variance in bacterial community composition that could be explained by 207 

keyplayers, we performed a similar analysis using environmental parameters. For this, important 208 

environmental parameters including pH, water temperature, specific conductivity, dissolved 209 

oxygen (DO), turbidity and major ions and nutrients were first standardised and then supplied to 210 

forward selection in db-RDA as described above.  211 

 212 

Data Analysis 213 

All statistical analyses were performed in R v4.0.3. The ggplot230 package was used for 214 

generating plots in R, while patchwork (https://github.com/thomasp85/patchwork) and Adobe 215 

Illustrator were used to arrange the figures as displayed. 216 

 217 

Results 218 

Cross-domain interactions underlie stream community structure in proglacial floodplains  219 

In both proglacial floodplains, GFS and TRIB harbour diverse microbial communities including 220 

bacteria, fungi and phototrophic eukaryotes (Supp. Fig. 1). Based on covariation of taxon 221 

abundances across samples, we built co-occurrence networks. These networks were based on 222 

1,090 nodes including both pro- and eukaryotes, with an average of 61,115 edges. The 223 

topological characteristics of the individual networks yielded similar metrics, such as density, 224 

modularity, assortativity and transitivity (Supplementary Table 1). In all networks, except 225 

OtemmaDOWN, we identified three dense clusters of co-occurring taxa, one with a majority of 226 

phototrophs, another comprising mainly prokaryotes, and an intersecting third cluster composed 227 

of microbial eukaryotes including fungi and prokaryotes. 228 

 229 

Next, we assessed the relative abundance of taxa present in the networks at the family 230 

level. Across both floodplains and stream types, we found that Acetobacteraceae were 231 

significantly overrepresented in networks constructed from UP compared to DOWN reaches (two-232 

way ANOVA, adj. p < 0.05, Supp. Fig. 2a-b and 3b). On the other hand, Comamonadaceae were 233 

significantly overrepresented in DOWN networks (two-way ANOVA, adj. p < 0.05), especially in 234 

TRIB (Supp. Fig. 2b and 3b). We also found that Chrysophyceae were overrepresented in UP 235 

networks, while Diatomea were decreased in UP networks (two-way ANOVA, adj. p < 0.05) (Supp. 236 

Fig. 2c-d and 3c-d). Chytridiomycota, parasitic fungi infecting algae 31, were prevalent in both GFS 237 
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and TRIB networks, but their abundance did not significantly differ across UP or DOWN sites. 238 

However, Zoopagomycota, also parasitic fungi32, were considerably enriched in DOWN reaches 239 

across stream types and floodplains (Supp. Fig. 2e-f and 3e-f; adj. p < 0.05, Two-way ANOVA).  240 

 241 

Apparent stability of co-occurrence networks 242 

Based on our observations of differential abundance patterns across stream types and 243 

deglaciation gradients, we further assessed the contributions of the individual taxa to the overall 244 

network. For this, we first identified potential keyplayers within each network by identifying the top 245 

10 nodes with both a high degree and a high betweenness in each network (Supp. Fig. 4 and 5). 246 

For example, taxa classified as Dikarya, Phragmoplastophyta, Chlorophyceae, Cryptomycota, 247 

and Diatomea, along with an ASV classified as Burkholderiales, were determined to be keyplayers 248 

in the GFS network at the UP segment of the Otemma Glacier floodplain (Supp. Fig. 4a). 249 

Conversely, at the DOWN segment of the same floodplain, Burkholderiales, Phragmoplastophyta, 250 

Xanthophyceae, Chrysophceae, and Dikarya, for instance, were identified as keyplayers. 251 

Similarly, in the UP segment of the Val Roseg Glacier floodplain, Dikarya, Phragmoplastophyta, 252 

Gemmatales, Burkholderiales, Cryptomycota, and Diatomea, for instance, were identified as 253 

keyplayers contributing to the network topology (Supp. Fig. 5a, and 5c). Finally, we found various 254 

bacteria (e.g., Rhodobacterales, Sphingomonadales) and fungi (e.g., Chytridiomycota) to be 255 

keyplayers in the DOWN reaches within the Val Roseg floodplain (Supp. Fig.5b, and 5d). 256 

 257 

To further understand the role of the keyplayers in community structure and their effect on 258 

overall network stability, we first assessed network fragmentation upon their removal. For this, the 259 

numbers of clusters based on Louvain clustering were determined for each network, following 260 

which, a keyplayer was removed. The fragmentation (f) of the network was assessed before and 261 

after iterative removal of the top ten keyplayers. Interestingly, we found that in the Otemma Glacier 262 

floodplain (Fig. 2a), the fragmentation of the networks constructed from the GFS in the DOWN 263 

reaches, increased upon removal of two to three keyplayers, while the TRIB fragmentation 264 

increased upon removal of five keyplayers. The UP networks, however, appeared more stable, 265 

where fragmentation occurred only upon removal of five or eight keyplayers. In Val Roseg, 266 

especially in TRIB (Fig. 2b), the overall fragmentation of the microbial network was higher 267 

(fmean=0.48) compared to GFS (fmean=0.18) upon removal of four or five keyplayers.  268 

 269 

Finally, we unravelled the role of keyplayers for biofilm community composition. 270 

Constrained ordinations revealed that both, prokaryotic as well as eukaryotic keyplayers can 271 
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explain a substantial fraction of bacterial community dissimilarity at the floodplain scale (Fig. 3). 272 

Specifically, the relative abundance of prokaryotic keyplayers explained 35.0% and 25.4% of 273 

variance in bacterial community similarity in Val Roseg and Otemma, respectively. While 274 

eukaryotic keyplayers appeared particularly important for explaining network stability, they played 275 

a minor role in explaining bacterial community composition (i.e., 8.5% and 2.4% of explained 276 

variance in Val Roseg and Otemma, respectively). This is surprising, particularly in relation to the 277 

variance in bacterial community composition that could be explained by environmental conditions, 278 

which accounted for a mere 16.5% and 14.5%, respectively. The retained environmental 279 

parameters, including streamwater temperature, nutrients (i.e., NO2, PO4) and DOC concentration 280 

explain differences among TRIB and GFS bacterial communities. 281 

 282 

Discussion 283 

Biotic interactions are a salient property of microbial communities, with evidence of cross-domain 284 

interactions reported from various ecosystems, including freshwaters33,34, oceans35 and glaciers36. 285 

To date, such interactions have not been studied in proglacial stream biofilms. Our findings 286 

suggest that biotic interactions, as inferred from co-occurrence patterns, play a pivotal role in 287 

influencing the apparent stability of stream biofilm communities along deglaciation and 288 

environmental gradients in proglacial floodplains. Although previous reports showed structural 289 

and functional differences of the biofilm communities dwelling in different stream types within 290 

proglacial floodplains7,8, we found that the overall network topology was similar between both 291 

proglacial floodplains, stream types, and deglaciation gradients. This contrasts our expectation of 292 

successional imprints owing to deglaciation on co-occurrence networks. On the one hand, biotic 293 

interactions may be established very early on during community succession in streams that drain 294 

recently deglaciated terrain. Indeed, our sampling design covered the successional timescale of 295 

the past 20 (UP sites) and 80 (DOWN) years and both prokaryotic and eukaryotic communities 296 

are likely to assemble much faster. On the other hand, functional redundancies across clades 297 

may also contribute to the apparent similarity of cross-domain interaction networks. Functionally 298 

redundant taxa may transiently occupy the same position in interaction networks and therefore 299 

result in similar network topologies. However, additional work will be necessary to relate network 300 

topology, taxa position and stability with functional characteristics to substantiate this notion. 301 

 302 

Cross-domain networks have the potential to reveal key associations between microbial 303 

taxa37. We found that biofilms in GFS and TRIB draining recently deglaciated terrain (i.e., UP 304 

sites) had relatively more stable networks. This finding suggests that prokaryotic keyplayers are 305 
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important for the apparent stability of the cross-domain interaction networks of biofilms dwelling 306 

in nascent stream ecosystems. Furthermore, our results reveal that keyplayers are typically not 307 

among the most abundant community members, suggesting that low abundance taxa may also 308 

play important roles in stabilising microbial networks, corresponding to the notion of keystone 309 

species38. Our findings agree with observations from recent reports39–41 highlighting the role of 310 

low-abundance taxa in ecosystem function and structure. For example, de Cena et al. recently 311 

hypothesised that low-abundance taxa, albeit in the human microbiome, act as keystone species, 312 

and might often be more metabolically influential within the community39. Similarly, Crump et al.40 313 

identified microbial keystone species that are central to ecosystem-level metabolic activity. 314 

 315 

Work on multi-trophic food webs42 and agroecosystems43 has demonstrated the fragility 316 

of ecological networks towards removal of key nodes. Our fragmentation analysis substantiates 317 

the notion of keyplayers and their role for the stability of the cross-domain network. Interestingly, 318 

we identified several eukaryotes as keyplayers, underscoring their relevance for biofilm structure 319 

and functioning. In GFS in Central Asia, Ren et al. 44 reported that fungi form integral components 320 

of cross-domain interactions networks, forming more clustered networks that are less susceptible 321 

to disturbances. As highlighted previously for stream biofilms45,46, eukaryotic algae serve as 322 

sources of organic matter thereby fuelling phototrophic-heterotrophic interactions. 323 

Simultaneously, parasitic fungi also foster the release of organic compounds from algae via the 324 

‘fungal shunt’31. The prevalence of parasitic fungi has been noted previously in GFS47 and other 325 

cryospheric ecosystems48; our analyses further point to the importance of interactions among 326 

parasitic fungi and their algal host in proglacial stream biofilms. Along these lines, Mo et al.49 327 

recently suggested that interactions of microeukaryotes between them in the Lena River 328 

continental shelf were more stable compared to that of the estuary, potentially explained by 329 

variability in salinity. In contrast, Liu and Jiang (2020), reported that bacteria-bacteria interactions 330 

dominate co-occurrence networks in coastal sea waters of Antarctica50 and related this to 331 

competitive abilities of prokaryotes.  332 

 333 

Taken together, the roles of pro- and eukaryotic keyplayers for ecological networks and 334 

their stability may very much be context dependent. We argue that, likely driven by the 335 

provisioning of organic matter to heterotrophs, eukaryotic algae and their fungal parasites play 336 

central roles in biofilm interaction networks. However, we quantified the relative importance of 337 

pro- and eukaryotic keyplayers to overall bacterial community structure and found that the relative 338 

abundance of prokaryotic keyplayers could explain much of the bacterial community structure. 339 
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This points towards a hierarchical structuring of interactions among eukaryotic and prokaryotic 340 

biofilm members. While eukaryotic primary producers may directly interact with only some 341 

bacterial keyplayers, these bacterial keyplayers themselves interact, likely via the exchange of 342 

secondary metabolites, with a much larger number of prokaryotes in the biofilm assemblage. Such 343 

a hierarchical organisation of interactions is likely sensitive to changes in taxa at the base ( i.e., 344 

the algal primary producers) whereas functional redundancies may dampen the impacts of taxa 345 

replacement. This is particularly relevant in proglacial streams, where low light availability due to 346 

suspended particles and substrate instability typically inhibit algal growth. The current retreat of 347 

glaciers weakens these controls with potential effects on stream microbial communities.  348 

 349 
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Tables 489 

Supplementary table 1. Metadata and network topology. 490 

Glacier metadata including the glacier from which samples were collected, UP or DOWN reaches, 491 

and type of stream, i.e., Glacier-fed (GFS) or tributaries (TRIB), are indicated along with network 492 

topology measures. The dashed line (- - - -) indicates the ‘millennium cut’ based on which samples 493 

were classified as ‘up’ or ‘down’. The solid lines represent the deglaciated history based on the 494 

Glacier Extent Database to determine the date since ‘last glaciation’. 495 

 496 

Supplementary table 2. Chlorophyll-ɑ measurements. 497 

Levels of chlorophyll-ɑ measured at the site for each sample are listed along with the metadata.  498 

 499 

Supplementary table 3. Pro- and eukaryotic keyplayers. 500 

Abundance information for all ASVs detected in the prokaryote (16S) and eukaryote (18S) 501 

datasets are provided alongside their indication of Keyplayers or otherwise. 502 

 503 

Figures legends 504 

Figure 1. Network structure of Glacier-fed streams and tributary streams. 505 

The overall structure of the cross-domain networks from the GFS and TRIB are depicted. (a) GFS 506 

from the UP reaches at Otemma, (b) GFS from the DOWN reaches at Otemma, (c) TRIB from 507 
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the DOWN reaches at Otemma, (d) TRIB from the DOWN reaches at Otemma. From the Val 508 

Roseg glacier, the network structures are depicted as follows: (e) GFS from the UP reaches, (f) 509 

GFS from the DOWN reaches, (g) TRIB from the UP reaches, (h) TRIB from the DOWN reaches. 510 

Each node represents a single amplicon sequence variant (ASV), and the lines represent the 511 

edges between them, while the colours indicate bacteria, phototrophs and fungi. The convex hulls 512 

indicate clusters identified based on Louvain clustering of the overall network. 513 

 514 

Figure 2. Keyplayer removal leads to fragmentation of the network. 515 

The change in fragmentation (f) for (a) Otemma and (b) Val Roseg are indicated in the line plots, 516 

where f was recalculated after each keyplayer was removed from the network. The size of the 517 

symbols indicates the relative abundance of the individual ‘keyplayers’ within the 16S or 18S data 518 

respectively. 519 

 520 

Figure 3 Prokaryotic keyplayers well explains bacterial community composition. 521 

Constrained ordination of Val Roseg (a, b, c) and Otemma (d, e, f) floodplain samples revealed 522 

that prokaryotic keyplayers (b, e), as identified by their position in co-occurrence networks 523 

explained most of the variance in Bray-Curtis distance based bacterial community composition. 524 

This outweighed the role of key environmental parameters (a, d) and of eukaryotic keyplayers (c, 525 

f). 526 

 527 

Supplementary figure legends 528 

Supplementary figure 1. 16S and 18S community profiles. 529 

(a) Bird’s eye-view of the Otemma (left) and Val Roseg (right) floodplains depicting the mainstem 530 

(GFS) and the branching TRIB. The dashed line indicates the ‘Millennium cut’, where samples 531 

were classified as ‘up’ or ‘down’ site above and below, respectively. (b) Family-level profiles of 532 

the top 15 prokaryotes found in the floodplains across reaches and stream types (GFS and TRIB). 533 

(c) Relative abundance of the top 15 eukaryotic taxa. 534 

 535 

Supplementary figure 2. Taxa contributing to cross-domain interactions in Otemma. 536 

Relative abundance of prokaryotes found in the cross-domain networks of the (a) GFS and (b) 537 

TRIB in Otemma. (c) and (d) show the relative abundance of the phototrophs in the GFS and 538 

TRIB respectively, while (e) and (f) depict the relative abundance of the fungi in Otemma. 539 

 540 

Supplementary figure 3. Taxa contributing to cross-domain interactions in Val Roseg. 541 
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Relative abundance of prokaryotes found in Val Roseg in the cross-domain networks of the (a) 542 

GFS and (b) TRIB. Phototroph relative abundances in the (c) GFS and (d) TRIB. (e) and (f) depict 543 

the relative abundance of the fungi in GFS and TRIB in Val Roseg. 544 

 545 

Supplementary figure 4. Keyplayer taxa in Otemma. 546 

The keyplayer taxa for the GFS at the (a) UP and (b) DOWN reaches are highlighted based on 547 

their domain of origin. Keyplayers in the TRIB at the (c) UP and (d) DOWN reaches from the TRIB 548 

are simultaneously shown. The x-axis represents the overall betweenness of the individual taxa, 549 

whereas the y-axis indicates the degree centrality.  550 

 551 

Supplementary figure 5. Keyplayer taxa in Val Roseg. 552 

The keyplayer taxa for the GFS at the (a) UP and (b) DOWN reaches in Val Roseg are highlighted. 553 

Keyplayers in the tributaries at the (c) UP and (d) DOWN reaches from the TRIB are depicted in 554 

the scatter plots. The x-axis represents the overall betweenness of the individual taxa, whereas 555 

the y-axis indicates the degree centrality, i.e., number of connections per node.  556 
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