13 research outputs found

    The autophagic response to Staphylococcus aureus provides an intracellular niche in neutrophils

    Get PDF
    Staphylococcus aureus is a major human pathogen causing multiple pathologies, from cutaneous lesions to life-threatening sepsis. Although neutrophils contribute to immunity against S. aureus, multiple lines of evidence suggest that these phagocytes can provide an intracellular niche for staphylococcal dissemination. However, the mechanism of neutrophil subversion by intracellular S. aureus remains unknown. Targeting of intracellular pathogens by macroautophagy/autophagy is recognized as an important component of host innate immunity, but whether autophagy is beneficial or detrimental to S. aureus-infected hosts remains controversial. Here, using larval zebrafish, we showed that the autophagy marker Lc3 rapidly decorates S. aureus following engulfment by macrophages and neutrophils. Upon phagocytosis by neutrophils, Lc3-positive, non-acidified spacious phagosomes are formed. This response is dependent on phagocyte NADPH oxidase as both cyba/p22phox knockdown and diphenyleneiodonium (DPI) treatment inhibited Lc3 decoration of phagosomes. Importantly, NADPH oxidase inhibition diverted neutrophil S. aureus processing into tight acidified vesicles, which resulted in increased host resistance to the infection. Some intracellular bacteria within neutrophils were also tagged by Sqstm1/p62-GFP fusion protein and loss of Sqstm1 impaired host defense. Together, we have shown that intracellular handling of S. aureus by neutrophils is best explained by Lc3-associated phagocytosis (LAP), which appears to provide an intracellular niche for bacterial pathogenesis, while the selective autophagy receptor Sqstm1 is host-protective. The antagonistic roles of LAP and Sqstm1-mediated pathways in S. aureus-infected neutrophils may explain the conflicting reports relating to anti-staphylococcal autophagy and provide new insights for therapeutic strategies against antimicrobial-resistant Staphylococci

    Phagosomal acidification Is required to kill Streptococcus pneumoniae in a Zebrafish model

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) is a major human pathogen causing invasive disease, including community-acquired bacteraemia, and remains a leading cause of global mortality. Understanding the role of phagocytes in killing bacteria is still limited, especially in vivo. In this study, we established a zebrafish model to study the interaction between intravenously administered pneumococci and professional phagocytes such as macrophages and neutrophils, to unravel bacterial killing mechanisms employed by these immune cells. Our model confirmed the key role of polysaccharide capsule in promoting pneumococcal virulence through inhibition of phagocytosis. Conversely, we show pneumococci lacking a capsule are rapidly internalised by macrophages. Low doses of encapsulated S. pneumoniae cause near 100% mortality within 48 hours postinfection (hpi), while 50 times higher doses of unencapsulated pneumococci are easily cleared. Time course analysis of in vivo bacterial numbers reveals that while encapsulated pneumococcus proliferates to levels exceeding 105 CFU at the time of host death, unencapsulated bacteria are unable to grow and are cleared within 20 hpi. Using genetically induced macrophage depletion, we confirmed an essential role for macrophages in bacterial clearance. Additionally, we show that upon phagocytosis by macrophages, phagosomes undergo rapid acidification. Genetic and chemical inhibition of vacuolar ATPase (v-ATPase) prevents intracellular bacterial killing and induces host death indicating a key role of phagosomal acidification in immunity to invading pneumococci. We also show that our model can be used to study the efficacy of antimicrobials against pneumococci in vivo. Collectively, our data confirm that larval zebrafish can be used to dissect killing mechanisms during pneumococcal infection in vivo and highlight key roles for phagosomal acidification in macrophages for pathogen clearance

    RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum

    Get PDF
    BACKGROUND: The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq). RESULTS: We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745. CONCLUSIONS: Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections

    A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase

    Get PDF
    The neutrophil enzyme myeloperoxidase (MPO) is a major enzyme made by neutrophils to generate antimicrobial and immunomodulatory compounds, notably hypochlorous acid (HOCl), amplifying their capacity for destroying pathogens and regulating inflammation. Despite its roles in innate immunity, the importance of MPO in preventing infection is unclear, as individuals with MPO deficiency are asymptomatic with the exception of an increased risk of candidiasis. Dysregulation of MPO activity is also linked with inflammatory conditions such as atherosclerosis, emphasising a need to understand the roles of the enzyme in greater detail. Consequently, new tools for investigating granular dynamics in vivo can provide useful insights into how MPO localises within neutrophils, aiding understanding of its role in preventing and exacerbating disease. The zebrafish is a powerful model for investigating the immune system in vivo, as it is genetically tractable, and optically transparent. To visualise MPO activity within zebrafish neutrophils, we created a genetic construct that expresses human MPO as a fusion protein with a C-terminal fluorescent tag, driven by the neutrophil-specific promoter lyz. After introducing the construct into the zebrafish genome by Tol2 transgenesis, we established the Tg(lyz:Hsa.MPO-mEmerald,cmlc2:EGFP)sh496 line, and confirmed transgene expression in zebrafish neutrophils. We observed localisation of MPO-mEmerald within a subcellular location resembling neutrophil granules, mirroring MPO in human neutrophils. In Spotless (mpxNL144) larvae - which express a non-functional zebrafish myeloperoxidase - the MPO-mEmerald transgene does not disrupt neutrophil migration to sites of infection or inflammation, suggesting that it is a suitable line for the study of neutrophil granule function. We present a novel transgenic line that can be used to investigate neutrophil granule dynamics in vivo without disrupting neutrophil behaviour, with potential applications in studying processing and maturation of MPO during development

    Neutrophils use selective autophagy receptor Sqstm1/p62 to target Staphylococcus aureus for degradation in vivo in zebrafish

    Get PDF
    Macroautophagy/autophagy functions to degrade cellular components and intracellular pathogens. Autophagy receptors, including SQSTM1/p62, target intracellular pathogens. Staphylococcus aureus is a significant pathogen of humans, especially in immunocompromise. S. aureus may use neutrophils as a proliferative niche, but their intracellular fate following phagocytosis has not been analyzed in vivo. In vitro, SQSTM1 can colocalize with intracellular Staphylococcus aureus, but whether SQSTM1 is beneficial or detrimental in host defense against S. aureus in vivo is unknown. Here we determine the fate and location of S. aureus within neutrophils throughout zebrafish infection. We show Lc3 and Sqstm1 recruitment to phagocytosed S. aureus is altered depending on the bacterial location within the neutrophil and that Lc3 marking of bacterial phagosomes within neutrophils may precede bacterial degradation. Finally, we show Sqstm1 is important for controlling cytosolic bacteria, demonstrating for the first time a key role of Sqstm1 in autophagic control of S. aureus in neutrophils

    Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system

    Get PDF
    Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires a complex network of transcriptional regulators and several genes (oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis

    A Spaetzle-like role for Nerve Growth Factor β in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity

    Polymersomes eradicating intracellular bacteria

    Get PDF
    Mononuclear phagocytes such as monocytes, tissue-specific macrophages, and dendritic cells are primary actors in both innate and adaptive immunity. These professional phagocytes can be parasitized by intracellular bacteria, turning them from housekeepers to hiding places and favoring chronic and/or disseminated infection. One of the most infamous is the bacteria that cause tuberculosis (TB), which is the most pandemic and one of the deadliest diseases, with one-third of the world’s population infected and an average of 1.8 million deaths/year worldwide. Here we demonstrate the effective targeting and intracellular delivery of antibiotics to infected macrophages both in vitro and in vivo, using pH-sensitive nanoscopic polymersomes made of PMPC–PDPA block copolymer. Polymersomes showed the ability to significantly enhance the efficacy of the antibiotics killing Mycobacterium bovis, Mycobacterium tuberculosis, and another established intracellular pathogen, Staphylococcus aureus. Moreover, they demonstrated to easily access TB-like granuloma tissues—one of the harshest environments to penetrate—in zebrafish models. We thus successfully exploited this targeting for the effective eradication of several intracellular bacteria, including M. tuberculosis, the etiological agent of human TB

    Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase

    Get PDF
    Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen Staphylococcus aureus (S. aureus) was originally considered solely as an extracellular bacterium, but is now recognized additionally to invade host cells, which might be crucial for persistence. However, the intracellular fate of S. aureus is incompletely understood. Here, we show for the first time induction of selective autophagy by S. aureus infection, its escape from autophagosomes and proliferation in the cytoplasm using live cell imaging. After invasion, S. aureus becomes ubiquitinated and recognized by receptor proteins such as SQSTM1/p62 leading to phagophore recruitment. Yet, S. aureus evades phagophores and prevents further degradation by a MAPK14/p38a MAP kinase-mediated blockade of autophagy. Our study demonstrates a novel bacterial strategy to block autophagy and secure survival inside the host cell
    corecore