64 research outputs found

    Editorial: Macrophage metabolism and immune responses

    Full text link
    Funded by grants from the Ministry of Science and Innovation (MCI) co-financed with FEDER funds (RTI2018-096494-B-100 to JA and SAF2016-77433-R to RP-R). MM is supported by an ERC Consolidator grant (acronym: ImmunoFit; #773208). RP-R is a Ramon y Cajal Fellow from the MCI. We thank the MCI for the Severo Ochoa Excellence accreditation (SEV-2016-0644)

    Mesoporous Silica Nanoparticles as a Potential Platform for Vaccine Development against Tuberculosis.

    Get PDF
    The increasing emergence of new strains of Mycobacterium tuberculosis (Mtb) highly resistant to antibiotics constitute a public health issue, since tuberculosis still constitutes the primary cause of death in the world due to bacterial infection. Mtb has been shown to produce membrane-derived extracellular vesicles (EVs) containing proteins responsible for modulating the pathological immune response after infection. These natural vesicles were considered a promising alternative to the development of novel vaccines. However, their use was compromised by the observed lack of reproducibility between preparations. In this work, with the aim of developing nanosystems mimicking the extracellular vesicles produced by Mtb, mesoporous silica nanoparticles (MSNs) have been used as nanocarriers of immunomodulatory and vesicle-associated proteins (Ag85B, LprG and LprA). These novel nanosystems have been designed and extensively characterized, demonstrating the e ectiveness of the covalent anchorage of the immunomodulatory proteins to the surface of the MSNs. The immunostimulatory capacity of the designed nanosystems has been demonstrated by measuring the levels of pro- (TNF) and anti-inflammatory (IL-10) cytokines in exposed macrophages. These results open a new possibility for the development of more complex nanosystems, including additional vesicle components or even antitubercular drugs, thus allowing for the combination of immunomodulatory and bactericidal e ects against Mtb.post-print2418 K

    Extracellular Vesicles from Different Pneumococcal Serotypes Are Internalized by Macrophages and Induce Host Immune Responses

    Get PDF
    Bacterial extracellular vesicles are membranous ultrastructures released from the cell surface. They play important roles in the interaction between the host and the bacteria. In this work, we show how extracellular vesicles produced by four different serotypes of the important human pathogen, Streptococcus pneumoniae, are internalized by murine J774A.1 macrophages via fusion with the membrane of the host cells. We also evaluated the capacity of pneumococcal extracellular vesicles to elicit an immune response by macrophages. Macrophages treated with the vesicles underwent a serotype-dependent transient loss of viability, which was further reverted. The vesicles induced the production of proinflammatory cytokines, which was higher for serotype 1 and serotype 8-derived vesicles. These results demonstrate the biological activity of extracellular vesicles of clinically important pneumococcal serotypes

    Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis.

    Get PDF
    Tuberculosis remains the leading cause of death from a single infection agent worldwide. In recent years, the occurrence of tuberculosis cases caused by drug-resistant strains has spread, and is expected to continue to grow. Therefore, the development of new alternative treatments to the use of antibiotics is highly important. In that sense, nanotechnology can play a very relevant role, due to the unique characteristics of nanoparticles. In fact, different types of nanoparticles have already been evaluated both as potential bactericides and as efficient drug delivery vehicles. In this work, the use of selenium nanoparticles has been evaluated to inhibit the growth of two types of mycobacteria: Mycobacterium smegmatis and Mycobacterium tuberculosis. The results showed that selenium nanoparticles are able to inhibit the growth of both types of mycobacteria by damaging their cell envelope integrity. These results open a new opportunity for the use of this type of nanoparticles as antimycobacterial agents by themselves, or for the development of novel nanosystems that combine the action of these nanoparticles with other drugs

    Iron deprivation enhances transcriptional responses to in vitro growth arrest of Mycobacterium tuberculosis

    Get PDF
    The establishment of Mycobacterium tuberculosis (Mtb) long-term infection in vivo depends on several factors, one of which is the availability of key nutrients such as iron (Fe). The relation between Fe deprivation inside and outside the granuloma, and the capacity of Mtb to accumulate lipids and persist in the absence of growth is not well understood. In this context, current knowledge of how Mtb modifies its lipid composition in response to growth arrest, depending on iron availability, is scarce. To shed light on these matters, in this work we compare genome-wide transcriptomic and lipidomic profiles of Mtb at exponential and stationary growth phases using cultures with glycerol as a carbon source, in the presence or absence of iron. As a result, we found that transcriptomic responses to growth arrest, considered as the transition from exponential to stationary phase, are iron dependent for as many as 714 genes (iron-growth interaction contrast, FDR <0.05), and that, in a majority of these genes, iron deprivation enhances the magnitude of the transcriptional responses to growth arrest in either direction. On the one hand, genes whose upregulation upon growth arrest is enhanced by iron deprivation were enriched in functional terms related to homeostasis of ion metals, and responses to several stressful cues considered cardinal features of the intracellular environment. On the other hand, genes showing negative responses to growth arrest that are stronger in iron-poor medium were enriched in energy production processes (TCA cycle, NADH dehydrogenation and cellular respiration), and key controllers of ribosomal activity shut-down, such as the T/A system mazE6/F6. Despite of these findings, a main component of the cell envelope, lipid phthiocerol dimycocerosate (PDIM), was not detected in the stationary phase regardless of iron availability, suggesting that lipid changes during Mtb adaptation to non-dividing phenotypes appear to be iron-independent. Taken together, our results indicate that environmental iron levels act as a key modulator of the intensity of the transcriptional adaptations that take place in the bacterium upon its transition between dividing and dormant-like phenotypes in vitro

    Hypoxia Is Not a Main Stress When Mycobacterium tuberculosis Is in a Dormancy-Like Long-Chain Fatty Acid Environment

    Get PDF
    The capacity of Mycobacterium tuberculosis (Mtb) to sense, respond and adapt to a variable and hostile environment within the host makes it one of the most successful human pathogens. During different stages of infection, Mtb is surrounded by a plethora of lipid molecules and current evidence points out the relevance of fatty acids during the infectious process. In this study, we have compared the transcriptional response of Mtb to hypoxia in cultures supplemented with a mix of even long-chain fatty acids or dextrose as main carbon sources. Using RNA sequencing, we have identified differential expressed genes in early and late hypoxia, defined according to the in vitro Wayne and Hayes model, and compared the results with the exponential phase of growth in both carbon sources. We show that the number of genes over-expressed in the lipid medium was quite low in both, early and late hypoxia, relative to conditions including dextrose, with the exception of transcripts of stable and non-coding RNAs, which were more expressed in the fatty acid medium. We found that sigB and sigE were over-expressed in the early phase of hypoxia, confirming their pivotal role in early adaptation to low oxygen concentration independently of the carbon source. A drastic contrast was found with the transcriptional regulatory factors at early hypoxia. Only 2 transcriptional factors were over-expressed in early hypoxia in the lipid medium compared to 37 that were over-expressed in the dextrose medium. Instead of Rv0081, known to be the central regulator of hypoxia in dextrose, Rv2745c (ClgR), seems to play a main role in hypoxia in the fatty acid medium. The low level of genes associated to the stress-response during their adaptation to hypoxia in fatty acids, suggests that this lipid environment makes hypoxia a less stressful condition for the tubercle bacilli. Taken all together, these results indicate that the presence of lipid molecules shapes the metabolic response of Mtb to an adaptive state for different stresses within the host, including hypoxia. This fact could explain the success of Mtb to establish long-term survival during latent infection

    Immunogenicity of Mycobacterial Extracellular Vesicles Isolated From Host-Related Conditions Informs About Tuberculosis Disease Status

    Get PDF
    Tuberculosis (TB) still represents a major global health problem affecting over 10 million people worldwide. The gold-standard procedures for TB diagnosis are culture and nucleic acid amplification techniques. In this context, both lipoarabinomannan (LAM) urine test and rapid molecular tests have been major game changers. However, the low sensitivity of the former and the cost and the prohibitive infrastructure requirements to scale-up in endemic regions of the latter, make the improvement of the TB diagnostic landscape a priority. Most forms of life produce extracellular vesicles (EVs), including bacteria despite differences in bacterial cell envelope architecture. We demonstrated that Mycobacterium tuberculosis (Mtb), the causative agent of TB, produces EVs in vitro and in vivo as part of a sophisticated mechanism to manipulate host cellular physiology and to evade the host immune system. In a previous serology study, we showed that the recognition of several mycobacterial extracellular vesicles (MEV) associated proteins could have diagnostic properties. In this study, we pursued to expand the capabilities of MEVs in the context of TB diagnostics by analyzing the composition of MEVs isolated from Mtb cultures submitted to iron starvation and, testing their immunogenicity against a new cohort of serum samples derived from TB+ patients, latent TB-infected (LTBI) patients and healthy donors. We found that despite the stringent condition imposed by iron starvation, Mtb reduces the number of MEV associated proteins relative to iron sufficient conditions. In addition, TB serology revealed three new MEV antigens with specific biomarker capacity. These results suggest the feasibility of developing a point-of-care (POC) device based on selected MEV-associated proteins

    A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts

    Get PDF
    The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicit

    Análisis molecular de la patogénesis en Fusarium oxysporum

    Get PDF
    El proceso de infección del hongo Fusarium oxysporum es complejo y requiere algunos mecanismos bien regulados: 1) el reconocimiento de señales de la planta, 2) la adhesión a la superficie de la raíz y la diferenciación de hifas de penetración, 3) la invasión del córtex de la raíz y la degradación de barreras físicas hasta llegar al tejido vascular, 4) adaptación al entorno adverso del tejido vegetal, incluyendo la tolerancia a compuestos antifúngicos, 5) la proliferación de las hifas y producción de conidios en los vasos del xilema y, 6) la secreción de factores de virulencia tales como enzimas, péptidos o fitotoxina
    corecore