9 research outputs found
HdSC: modelagem de alto nível para simulação nativa de plataformas com suporte ao desenvolvimento de HdS
Com os grandes avanços recentes dos sistemas computacionais, houve
a possibilidade de ascensão de dispositivos inovadores, como os modernos
telefones celulares e tablets com telas sensíveis ao toque. Para gerenciar adequadamente
estas diversas interfaces é necessário utilizar o software dependente
do hardware (HdS), que é responsável pelo controle e acesso a estes
dispositivos. Além deste complexo arranjo de componentes, para atender a
crescente demanda por mais funcionalidades integradas, o paradigma de
multiprocessamento vem sendo adotado para aumentar o desempenho das
plataformas.
Devido à lacuna de produtividade de sistemas, tanto a indústria como a
academia têm pesquisado processos mais eficientes para construir e simular
sistemas cada vez mais complexos. A premissa dos trabalhos do estado da
arte está em trabalhar com modelos com alto nível de abstração e de precisão
que permitam ao projetista avaliar rapidamente o sistema, sem ter que
depender de lentos e complexos modelos baseados em ISS.
Neste trabalho é definido um conjunto de construtores para modelagem
de plataformas baseadas em processadores, com suporte para desenvolvimento
de HdS e reusabilidade dos componentes, técnicas para estimativa
estática de tempo simulado em ambiente nativo de simulação e suporte para
plataformas multiprocessadas. Foram realizados experimentos com aplica-
ções de entrada e saída intensiva, computação intensiva e multiprocessada,
com ganho médio de desempenho da ordem de 1.000 vezes e precisão de estimativas
com erro médio inferior a 3%, em comparação com uma plataforma
de referência baseada em ISS._________________________________________________________________________________________ ABSTRACT: The amazing advances of computer systems technology enabled the rise of
innovative devices, such as modern touch sensitive cell phones and tablets. To
properly manage these various interfaces, it is required the use of the Hardwaredependent
Software (HdS) that is responsible for these devices control and access.
Besides this complex arrangement of components, to meet the growing
demand for more integrated features, the multiprocessing paradigm has been
adopted to increase the platforms performance.
Due to the system design gap, both industry and academia have been researching
for more efficient processes to build and simulate systems with this
increasingly complexity. The premise of the state of art works is the development
of high level of abstraction and precise models to enable the designer
to quickly evaluate the system, without having to rely on slow and complex
models based on instruction set simulators (ISS).
This work defined a set of constructors for processor-based platforms modeling,
supporting HdS development and components reusability, techniques for
static simulation timing estimation in native environment and support for multiprocessor
platforms. Experiments were carried out with input and output intensive,
compute intensive and multiprocessed applications leading to an average
performance speed up of about 1,000 times and average timing estimation
accuracy of less than 3%, when compared with a reference platform
based on ISS
RECONHECIMENTO DE ESTADOS DOS OLHOS UTILIZANDO MÁQUINAS DE APRENDIZADO PROFUNDO A PARTIR DE ONDAS CEREBRAIS
The brain-computer interface is one of the emerging fields of human-computer interaction due to its broad spectrum of applications, especially those that deal with human cognition. In this work, electroencephalography (EEG) is used as base data for classifying the state of the eyes (open or closed) by applying Long Short-Term Memory (LSTM) networks and variants. For benchmarking purposes, the EEG data set with the eye state record was used, available in the Machine Learning repository at UCI. The results obtained indicated that the LSTM and GRU bidirectional cells models are applicable to the classification of the data, presenting an accuracy greater than 95%, and that its performance is good compared to the more expensive models computationally.A interface cérebro-computador é um dos campos emergentes da interação homem-computador devido ao seu amplo espectro de aplicações, especialmente as que lidam com a cognição humana. Neste trabalho, a eletroencefalografia (EEG) é usada como dado base para classificar o estado dos olhos (abertos ou fechados) aplicando redes Long Short-Term Memory (LSTM) e variantes. Para fins de benchmarking, foi utilizado o conjunto de dados de EEG com registro do estado do olho, disponível no repositório de Aprendizado de Máquina da UCI. Os resultados obtidos indicaram que os modelos bidirecionais das células LSTM e GRU são aplicáveis na classificação dos dados, apresentando acurácia superior a 95%, e que seu desempenho é bom comparado aos modelos mais caros computacionalmente
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
IVM: uma metodologia de verificação funcional interoperável, iterativa e incremental
A crescente demanda por produtos eletrônicos e a capacidade cada vez maior de integração
criaram sistemas extremamente complexos em chips, conhecidos como Systemon-Chip
ou SoC. Seguindo em sentido oposto a esta tendência, os prazos (time-to-market)
para que estes sistemas sejam construídos vem continuamente sendo reduzidos, obrigando
que muito mais funcionalidades sejam implementadas em períodos cada vez
menores de tempo. A necessidade de um maior controle de qualidade do produto
final demanda a atividade de Verificação Funcional que consiste em utilizar um conjuntos
de técnicas para estimular o sistema em busca de falhas. Esta atividade é a extremamente
dispendiosa e necessária, consumindo até cerca de 80% do custo final do
produto. É neste contexto que se insere este trabalho, propondo uma metodologia de
Verificação Funcional chamada IVM que irá fornecer todos os subsídios para garantir
a entrega de sistemas de alta qualidade, e ainda atingindo as rígidas restrições temporais
impostas pelo mercado. Sendo baseado em metodologias já bastante difundidas
e acreditadas, como o OVM e o VeriSC, o IVM definiu uma organização arquitetural e
um fluxo de atividades que incorporou as principais características de ambas as abordagens
que antes estavam disjuntas. Esta integração de técnicas e conceitos resulta em
um fluxo de verificação mais eficiente, permitindo que sistemas atinjam o custo, prazo
e qualidade esperados._________________________________________________________________________________________ ABSTRACT: The growing demand for electronic devices and its even higher integration capability
created extremely complex systems in chips, known as System-on-Chip or SoC.
In a opposite way to this tendency, the time-to-market for these systems be built have
been continually reduced, forcing much more functionalities be implemented in even
shorten time periods. The final product quality control is assured by the Functional
Verification activity that consists in a set of techniques to stimulate a system in order
to find bugs. This activity is extremely expensive and necessary, responding to around
80% of final product cost. In this context this work is inserted on, proposing a Functional
Verification methodology called IVM that will provide all conditions to deliver
high quality systems, while keeping the hard time restrictions imposed by the market.
Based in well known and trusted methodologies, as OVM and VeriSC, the IVM
defined an architectural organization and an activity flow that incorporates features of
both approaches that were separated from each other. This techniques and concepts
integration resulted in a more efficient verification flow, allowing systems to meet the
desired budget, schedule and quality