2,593 research outputs found

    Thermodynamics of Bose-Condensed Atomic Hydrogen

    Full text link
    We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-Pritchard potential. Such a trapping potential, that models the magnetic trap used in recent experiments with hydrogen, is anharmonic and strongly anisotropic. We calculate the ground-state properties, the condensed and non-condensed fraction and the Bose-Einstein transition temperature. The thermodynamics of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam.Comment: 11 pages, 4 figures, to be published in European Physical Journal

    Thermodynamics of a trapped Bose condensate with negative scattering length

    Full text link
    We study the Bose-Einstein condensation (BEC) for a system of 7Li^7Li atoms, which have negative scattering length (attractive interaction), confined in a harmonic potential. Within the Bogoliubov and Popov approximations, we numerically calculate the density profile for both condensate and non-condensate fractions and the spectrum of elementary excitations. In particular, we analyze the temperature and number-of-boson dependence of these quantities and evaluate the BEC transition temperature TBECT_{BEC}. We calculate the loss rate for inelastic two- and three-body collisions. We find that the total loss rate is strongly dependent on the density profile of the condensate, but this density profile does not appreciably change by increasing the thermal fraction. Moreover, we study, using the quasi-classical Popov approximation, the temperature dependence of the critical number NcN_c of condensed bosons, for which there is the collapse of the condensate. There are different regimes as a function of the total number NN of atoms. For N<NcN<N_c the condensate is always metastable but for N>NcN>N_c the condensate is metastable only for temperatures that exceed a critical value TcT_c.Comment: RevTex, 7 postscript figures, to be published in Journal of Low Temperature Phsyic

    Thermodynamics of Multi-Component Fermi Vapors

    Full text link
    We study the thermodynamical properties of Fermi vapors confined in a harmonic external potential. In the case of the ideal Fermi gas, we compare exact density profiles with their semiclassical approximation in the conditions of recent experiments. Then, we consider the phase-separation of a multi-component Fermi vapor. In particular, we analyze the phase-separation as a function of temperature, number of particles and scattering length. Finally, we discuss the effect of rotation on the stability and thermodynamics of the trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a Special Issue Articl

    The PEP Survey: Infrared Properties of Radio-Selected AGN

    Full text link
    By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable redshift estimate, and sub-divided them into star-forming galaxies and AGN solely on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z<~3.5. 832 radio sources have a counterpart in the PEP catalogue. 175 are AGN. Their redshift distribution closely resembles that of the total radio-selected AGN population, and exhibits two marked peaks at z~0.9 and z~2.5. We find that the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio power and redshift, whereby powerful sources are more likely to be FIR emitters at earlier epochs. This is due to two distinct effects: 1) at all radio luminosities, FIR activity monotonically increases with look-back time and 2) radio activity of AGN origin is increasingly less effective at inhibiting FIR emission. Radio-selected AGN with FIR emission are preferentially located in galaxies which are smaller than those hosting FIR-inactive sources. Furthermore, at all z<~2, there seems to be a preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the chances for FIR emission. We find such FIR (and MIR) emission to be due to processes indistinguishable from those which power star-forming galaxies. It follows that radio emission in at least 35% of the entire AGN population is the sum of two contributions: AGN accretion and star-forming processes within the host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA

    Ideal Quantum Gases in D-dimensional Space and Power-law Potentials

    Full text link
    We investigate ideal quantum gases in D-dimensional space and confined in a generic external potential by using the semiclassical approximation. In particular, we derive density of states, density profiles and critical temperatures for Fermions and Bosons trapped in isotropic power-law potentials. Form such results, one can easily obtain those of quantum gases in a rigid box and in a harmonic trap. Finally, we show that the Bose-Einstein condensation can set up in a confining power-law potential if and only if D/2+D/n>1{D/2}+{D/n}>1, where DD is the space dimension and nn is the power-law exponent.Comment: 18 pages, Latex, to be published in Journal of Mathematical Physic

    A 12um ISOCAM Survey of the ESO-Sculptor Field: Data Reduction and Analysis

    Full text link
    We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al. 1997). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5sigma), is presented above an integrated flux density of 0.24mJy. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and below this flux density the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12um flux density is derived by fitting optical colours from a multi-band chi^2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to Rocca-Volmerange 2007 et al. where the 12um faint galaxy counts are presented and analysed by galaxy type with the evolutionary code PEGASE.3.Comment: 12 pages, 7 figures, figure 1 modified from journal version for size, accepted for publication in A&A, includes psfig.st

    Realization of quantum walks with negligible decoherence in waveguide lattices

    Get PDF
    Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems (similar to 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects

    Quantum limits to center-of-mass measurements

    Get PDF
    We discuss the issue of measuring the mean position (center-of-mass) of a group of bosonic or fermionic quantum particles, including particle number fluctuations. We introduce a standard quantum limit for these measurements at ultra-low temperatures, and discuss this limit in the context of both photons and ultra-cold atoms. In the case of fermions, we present evidence that the Pauli exclusion principle has a strongly beneficial effect, giving rise to a 1/N scaling in the position standard-deviation -- as opposed to a 1/N1/\sqrt{N} scaling for bosons. The difference between the actual mean-position fluctuation and this limit is evidence for quantum wave-packet spreading in the center-of-mass. This macroscopic quantum effect cannot be readily observed for non-interacting particles, due to classical pulse broadening. For this reason, we also study the evolution of photonic and matter-wave solitons, where classical dispersion is suppressed. In the photonic case, we show that the intrinsic quantum diffusion of the mean position can contribute significantly to uncertainties in soliton pulse arrival times. We also discuss ways in which the relatively long lifetimes of attractive bosons in matter-wave solitons may be used to demonstrate quantum interference between massive objects composed of thousands of particles.Comment: 12 pages, 6 figures. Submitted to PRA. Revised to include more references as well as a discussion of fermionic center-of-mas

    UVB radiation induced effects on cells studied by FTIR spectroscopy

    Full text link
    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments

    Fibrinogen-elongated Chain Inhibits Thrombin-induced Platelet Response, Hindering the Interaction with Different Receptors

    Get PDF
    The expression of the elongated fibrinogen γ chain, termed γ′, derives from alternative splicing of mRNA and causes an insertion sequence of 20 amino acids. This insertion domain interacts with the anion-binding exosite (ABE)-II of thrombin. This study investigated whether and how γ′ chain binding to ABE-II affects thrombin interaction with its platelet receptors, i.e. glycoprotein Ibα (GpIbα), protease-activated receptor (PAR) 1, and PAR4. Both synthetic γ′ peptide and fibrinogen fragment D*, containing the elongated γ′ chain, inhibited thrombin-induced platelet aggregation up to 70%, with IC50 values of 42 ± 3.5 and 0.47 ± 0.03 μm, respectively. Solid-phase binding and spectrofluorimetric assays showed that both fragment D* and the synthetic γ′ peptide specifically bind to thrombin ABE-II and competitively inhibit the thrombin binding to GpIbα with a mean Ki ≈ 0.5 and ≈35 μm, respectively. Both these γ′ chain-containing ligands allosterically inhibited thrombin cleavage of a synthetic PAR1 peptide, of native PAR1 molecules on intact platelets, and of the synthetic chromogenic peptide d-Phe-pipecolyl-Arg-p-nitroanilide. PAR4 cleavage was unaffected. In summary, fibrinogen γ′ chain binds with high affinity to thrombin and inhibits with combined mechanisms the platelet response to thrombin. Thus, its variations in vivo may affect the hemostatic balance in arterial circulation
    corecore