533 research outputs found

    Motion Tomography of a single trapped ion

    Full text link
    A method for the experimental reconstruction of the quantum state of motion for a single trapped ion is proposed. It is based on the measurement of the ground state population of the trap after a sudden change of the trapping potential. In particular, we show how the Q function and the quadrature distribution can be measured directly. In an example we demonstrate the principle and analyze the sensibility of the reconstruction process to experimental uncertainties as well as to finite grid limitations. Our method is not restricted to the Lamb-Dicke Limit and works in one or more dimensions.Comment: 4 pages, Revtex format, 4 postscript figures, changed typographical error

    Transpiration of montane <I>Pinus sylvestris</I> L. and <I>Quercus pubescens</I> Willd. forest stands measured with sap flow sensors in NE Spain

    No full text
    International audienceStand transpiration was measured during the 2003 and 2004 growing seasons using heat dissipation sap flow sensors in a Scots pine (Pinus sylvestris L.) and a pubescent oak (Quercus pubescens Willd.) forest located in a montane area of the Eastern Pyrenees (NE Spain). The first aim of the study was to assess the differences in quantitative estimates of transpiration (Ec) and the response to evaporative demand of the two stands. Over the studied period of 2003, characterised by a severe drought episode during the summer, the oak stand Ec was only 110mm compared to the 239 mm transpired by the Scots pine stand, although the ratio of transpiration to reference evapotranspiration (Ec/ET0) in the oak stand compares well with the expected values predicted for low leaf area index (LAI) oak forests in southern Europe. Scots pine showed a strong reduction in Ec/ET0 as the drought developed, whereas pubescent oak was less affected by soil moisture deficits in the upper soil. As a second objective, and given the contrasting meteorological conditions between 2003 and 2004 summer periods, the interanual variability of transpiration was studied in the Scots pine plot. Rainfall during the summer months (June-September) in 2003 was almost 40% less than in the same interval in 2004. Accordingly, transpiration was also reduced about 25% in 2003. Finally, Scots pine data from 2003 and 2004 was used to calibrate a simple transpiration model using ET0 and soil moisture deficit (SMD) as input variables, and implicitly including stomatal responses to high vapour pressure deficits (D?) and soil water status

    Transpiration of montane Pinus sylvestris L. and Quercus pubescens Willd. forest stands measured with sap flow sensors in NE Spain

    Get PDF
    Stand transpiration was measured during the 2003 and 2004 growing seasons using heat dissipation sap flow sensors in a Scots pine (Pinus sylvestris L.) and a pubescent oak (Quercus pubescens Willd.) forests located in a montane area of the Eastern Pyrenees (NE Spain). The first aim of the study was to assess the differences in quantitative estimates of transpiration (Ec) and the response to evaporative demand of the two stands. Over the studied period of 2003, characterised by a severe drought episode during the summer, the oak stand E2 was only 110 turn compared to the 239 mm transpired by the Scots pine stand, although the ratio of transpiration to reference evapotranspiration (Ec/ET0) in the oak stand compares well with the expected values predicted for low leaf area index (LAI) oak forests in southern Europe. Scots pine showed a strong reduction in Ec/ET0) as the drought developed, whereas pubescent oak was less affected by soil moisture deficits in the upper soil. As a second objective, and given the contrasting meteorological conditions between 2003 and 2004 summer periods, the interannual variability of transpiration was studied in the Scots pine plot. Rainfall during the summer months (June-September) in 2003 was almost 40% less than in the same interval in 2004. Accordingly, transpiration was also reduced about 25% in 2003. Finally, Scots pine data from 2003 and 2004 was used to calibrate a simple transpiration model using ET0 and soil moisture deficit (SMD) as input variables, and implicitly including stomatal responses to high vapour pressure deficits (Dd) and soil water status. © 2005 Author(s). This work is licensed under a Creative Commons License.This research was supported by the projects PROHISEM (REN2001-2268-C02-01/HID), PIRIHEROS (REN2003-08768/HID) and CANOA (CGL2004-04919-C02- 01), funded by the Spanish Ministerio de Ciencia y Tecnología (MCYT)/Ministerio de Educación y Ciencia (MEC). The Vallcebre research area also operates with support from the RESEL network through an agreement between the CSIC and DGCONA.Peer Reviewe

    Seasonal controls on net branch CO2 assimilation in sub-Arctic Mountain Birch (Betula pubescens ssp. czerepanovii (Orlova) Hamet-Ahti)

    Get PDF
    Forests at northern high latitudes are experiencing climate-induced changes in growth and productivity, but our knowledge on the underlying mechanisms driving seasonal CO2 fluxes in northern boreal trees comes almost exclusively from ecosystem-level studies on evergreen conifers. In this study, we measured growing season whole-branch CO2 exchange in a deciduous tree species of the tundra-taiga ecotone, Mountain Birch (Betula pubescens ssp. czerepanovii (Orlova) Hamet-Ahti), at two locations in northern Fennoscandia: Abisko (Sweden) and Kevo (Finland). We identified strong seasonal and environmental controls on both photosynthesis and respiration by analysing the parameters of light response curves. Branch-level photosynthetic parameters showed a delayed response to temperature, and, at Kevo, they were well described by sigmoid functions of the state of acclimation (S). Temperature acclimation was slower (time constant, τ = 7 days) for maximum photosynthesis (βbr) than for quantum efficiency (αbr) (τ = 5 days). High temperature-independent values of the respiration parameter (γbr) during leaf and shoot expansion were consistent with associated higher growth respiration rates. The ratio γbr/βbr was positively related to temperature, a result consistent with substrate-induced variations in leaf respiration rates at the branch level. Differences in stand structure and within-site variation in the active period of C uptake determined the spatiotemporal patterns in net assimilation amongst branches. Growing season CO2 uptake of individual branches on a leaf area basis did not show a significant relationship with total incident photosynthetically active radiation, and did not differ across sites, averaging ca. 640 g CO2 m−2

    Quantum gates with "hot" trapped ions

    Full text link
    We propose a scheme to perform a fundamental two-qubit gate between two trapped ions using ideas from atom interferometry. As opposed to the scheme considered by J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995), it does not require laser cooling to the motional ground state.Comment: 4 pages, 2 eps figure

    Minimal measurements of the gate fidelity of a qudit map

    Get PDF
    We obtain a simple formula for the average gate fidelity of a linear map acting on qudits. It is given in terms of minimal sets of pure state preparations alone, which may be interesting from the experimental point of view. These preparations can be seen as the outcomes of certain minimal positive operator valued measures. The connection of our results with these generalized measurements is briefly discussed

    A Stochastic Liouville Equation Approach for the Effect of Noise in Quantum Computations

    Full text link
    We propose a model based on a generalized effective Hamiltonian for studying the effect of noise in quantum computations. The system-environment interactions are taken into account by including stochastic fluctuating terms in the system Hamiltonian. Treating these fluctuations as Gaussian Markov processes with zero mean and delta function correlation times, we derive an exact equation of motion describing the dissipative dynamics for a system of n qubits. We then apply this model to study the effect of noise on the quantum teleportation and a generic quantum controlled-NOT (CNOT) gate. For the quantum CNOT gate, we study the effect of noise on a set of one- and two-qubit quantum gates, and show that the results can be assembled together to investigate the quality of a quantum CNOT gate operation. We compute the averaged gate fidelity and gate purity for the quantum CNOT gate, and investigate phase, bit-flip, and flip-flop errors during the CNOT gate operation. The effects of direct inter-qubit coupling and fluctuations on the control fields are also studied. We discuss the limitations and possible extensions of this model. In sum, we demonstrate a simple model that enables us to investigate the effect of noise in arbitrary quantum circuits under realistic device conditions.Comment: 36 pages, 6 figures; to be submitted to Phys. Rev.

    Decoherence and robustness of parity-dependent entanglement in the dynamics of a trapped ion

    Get PDF
    We study the entanglement between the 2D vibrational motion and two ground state hyperfine levels of a trapped ion, Under particular conditions this entanglement depends on the parity of the total initial vibrational quanta. We study the robustness of this quantum coherence effect with respect to the presence of non-dissipative sources of decoherence, and of an imperfect initial state preparation.Comment: 13 pages, 5 figure
    corecore