9,703 research outputs found
Nonlinear actuator disk theory and flow field calculations, including nonuniform loading
Actuator disk theory and flow field calculations for propeller induced flow with nonuniform circulation distributio
A Reply to Verbeeck and Kearsley: Addressing the Challenges of Including lianas in Global Vegetation Models
Verbeeck and Kearsley (1) rightfully point out that global vegetation models would greatly benefit from implicitly including the effects of lianas. Recent experimental evidence that lianas substantially reduce the capacity of tropical forests to uptake and store carbon is compelling (2, 3). Furthermore, lianas are increasing relative to trees rapidly in many neotropical forests (4), which will further change the way that forests uptake, cycle, and store carbon
Contribution of Lianas to Plant Area Index and Canopy Structure in A Panamanian Forest
Lianas are an important component of tropical forests, where they reduce tree growth, fecundity, and survival. Competition for light from lianas may be intense; however, the amount of light that lianas intercept is poorly understood. We used a large-scale liana-removal experiment to quantify light interception by lianas in a Panamanian secondary forest. We measured the change in plant area index (PAI) and forest structure before and after cutting lianas (for 4 yr) in eight 80 m × 80 m plots and eight control plots (16 plots total). We used ground-based LiDAR to measure the 3-dimensional canopy structure before cutting lianas, and then annually for 2 yr afterwards. Six weeks after cutting lianas, mean plot PAI was 20% higher in control vs. liana removal plots. One yr after cutting lianas, mean plot PAI was ~17% higher in control plots. The differences between treatments diminished significantly 2 yr after liana cutting and, after 4 yr, trees had fully compensated for liana removal. Ground-based LiDAR revealed that lianas attenuated light in the upper- and middle-forest canopy layers, and not only in the upper canopy as was previously suspected. Thus, lianas compete with trees by intercepting light in the upper- and mid-canopy of this forest
System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity
Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five) played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8) or minimally (STC1) significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti-stromal therapeutic strategies will need to be multi-targeted
Global Opportunities to Increase Agricultural Independence Through Phosphorus Recycling
Food production hinges largely upon access to phosphorus (P) fertilizer. Most fertilizer P used in the global agricultural system comes from mining of nonrenewable phosphate rock deposits located within few countries. However, P contained in livestock manure or urban wastes represents a recyclable source of P. To inform development of P recycling technologies and policies, we examined subnational, national, and global spatial patterns for two intersections of land use affording high P recycling potential: (a) manure‐rich cultivated areas and (b) populous cultivated areas. In turn, we examined overlap between P recycling potential and nation‐level P fertilizer import dependency. Populous cultivated areas were less abundant globally than manure‐rich cultivated areas, reflecting greater segregation between crops and people compared to crops and livestock, especially in the Americas. Based on a global hexagonal grid (290‐km2 grid cell area), disproportionately large shares of subnational “hot spots” for P recycling potential occurred in India, China, Southeast Asia, Europe, and parts of Africa. Outside of China, most of the remaining manure‐rich or populous cultivated areas occurred within nations that had relatively high imports of P fertilizer (net P import:consumption ratios ≥0.4) or substantial increases in fertilizer demand between the 2000s (2002–2006) and 2010s (2010–2014). Manure‐rich cultivated grid cells (those above the 75th percentiles for both manure and cropland extent) represented 12% of the global grid after excluding cropless cells. Annually, the global sum of animal manure P was at least 5 times that contained in human excreta, and among cultivated cells the ratio was frequently higher (median = 8.9). The abundance of potential P recycling hot spots within nations that have depended on fertilizer imports or experienced rising fertilizer demand could prove useful for developing local P sources and maintaining agricultural independence
Relationships between the Precision of High-Resolution Protein NMR Structures, Solution-Order Parameters, and Crystallographic B Factors
One of the principal motivations for studying proteins by nuclear magnetic resonance stems from the desire to describe the solution structure of these molecules as compared to the generally perceived static picture obtained by X-ray crystallography. Indeed, it is one of the unique features of NMR spectroscopy that in addition to structural data, dynamic properties can be probed and characterized by measuring relaxation parameters. Furthermore, any mobility of the protein in solution will necessarily modulate the measured NMR parameters and should influence the resulting structure. It has been argued that regions of a protein that are highly mobile would be expected to be defined to a lesser degree of precision than regions that are rigid (1. 2 )
Blue-Throated Hummingbird Song: A Pinnacle of Nonoscine Vocalizations
Little is known about the structure and function of hummingbird vocalizations. We studied the vocalizations of Blue-throated Hummingbirds (Lampornis clemenciae) at two sites in southeastern Arizona. Songs were produced by males and females. Male songs consisted of arrays of notes organized in clusters of ‘‘song units.’’ Within sites, all males shared the same song units. Individual differences occurred in some temporal aspects of song, and slight but consistent differences in note structure occurred between the two sites. The organization of units within songs was marked by rigid syntax, and long songs were produced by agglutination of units. Male songs may function in territorial advertisement and mate attraction. Female songs were very different acoustically from those of males and typically were given when females were within a few centimeters of a male. In these situations, the female’s song often overlapped temporally with the male’s song. Of the hummingbird species studied so far, the Blue-throated Hummingbird has the most complex songs and is the only known species with complex female songs. Blue-throated Hummingbirds show convergence with oscines in vocal complexity, song organization, song function, and possible learning of some song elements
The Index of (White) Noises and their Product Systems
(See detailed abstract in the article.) We single out the correct class of
spatial product systems (and the spatial endomorphism semigroups with which the
product systems are associated) that allows the most far reaching analogy in
their classifiaction when compared with Arveson systems. The main differences
are that mere existence of a unit is not it sufficient: The unit must be
CENTRAL. And the tensor product under which the index is additive is not
available for product systems of Hilbert modules. It must be replaced by a new
product that even for Arveson systems need not coincide with the tensor
product
- …