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NONLINEAR ACTUATOR DISK THEORY AND FLOW FIELD CALCULATIONS,
INCLUDING NONUNIFORM -LOADING
By Michael D. Greenberg* and Stephen R. Powers
Sage Action, Inc.

SUMMARY

The axisymmetric flow induced by an actuator disk with prescribed non-
uniform circulation distribution is conﬁidered. Coupled, nonlinear, singular
integral equations governing the wake geometry and vortex density are de-
veloped from the force-free condition and discussed from physical and
mathematical points of view. An iterative solution based partly on the
method of successive approximations and partly on the Newton~-Raphson method
is put forward, together with convergent numerical results for illustrative
cases, both static and nonstatic. Corresponding detailed flow field calcu-

lations are included.
INTRODUCTION

The increasing importance of "nonclassical" propeller theory over the
past decade has led to the development of a substantial research effort,
encompassing sophisticated mathematical models, performance tests and flow
visualization studies, e.g. see Ref. 1. At the recent Third CAL/AVLABS
Symposium, a comprehensive bibliography to earlier work was given in a paper
by J. C. Erickson, Jr. (Ref. 2).

Most of the theoretical effort to date by others has been directed
toward the development of finite-bladed models. 1In contrast, we have con-
centrated on the case of infinite blade number, that is, the actuator disk
model. This model, of course, suffers from a number of inherent physical
limitations. Two of these limitations will become clearer later on. One
concerns the possibility of reverse flow at the blade tip and the other, the
relationship of the resultant flow field to the mean or zeroth harmonic of the

finite-bladed flow field.

* Now Assistant Professor, University Of Delaware, Dept. of Mechanical and
Aerospace Engineering, and Staff Consultant to SAI.



On the other hand, the actuator disk model enjoys a substantial advantage
in its relative simplicity. This greatly facilitates the derivation of both
qualitative and quantitative information about the flow field, particularly
’the flow field external to the slipstream. As a result, it should prove to
be a basic building block of understanding in the static and low speed regime,
somewhat the same as it has for light loading in forward flight.

Linear theory for the actuator disk model has been established for some
time, e.g. see Ref. 3. However, the first important paper on the nonfinean
theory did not appear until 1962 by T. Y. Wu. In Ref. 4, he formulated the
boundary value problem very elegantly and proposed an iterative scheme for
its solution. As far as we know, this solution has not been completed.

Further work has been done by others along the lines of Wu's formulation.
One analysis not reviewed in Ref. 2 is the analysis by B. W. Cox (Ref. 5) who
used discrete vortex rings. Rather than concentrate on the details for static
and low speed operation explicitly, he turned his attention to approximations
for a number of other complications, such as a nonuniform free stream and
wind tunnel wall interference.

In our first investigation of a nonlinear actuator disk theory (Ref. 6),
we confined our efforts to the simplest case of a prescribed uniform circu-
lation distribution. Taking an approach somewhat different than Wu's, we
developed an equivalent vortex model. With this model, converged solutions
were obtained for operation anywhere between the static condition and cruise.

The present study is, principally, an extension of the analysis of Ref. 6
to the more practical case of a nonund{form circulation distribution, which is
approximated by a piecewise constant distribution. At the same time, though,
a new and more physical derivation of the governing equations has been de-
rived and significant improvements have been incorporated into the numerical
analysis.

The authors would like to express their thanks to Dr. D. E. Ordway of
SAI for his encouragement and helpful advice throughout the course of this

work.



PRINCIPAL NOMENCLATURE

coefficients in representation of vortex density for kth
vortex tube

coefficients in representation of the shape of the kth vortex

tube

coefficients in GT, see Egs. (14) and (15)
exponents in matching functions gkj

thrust coefficient referenced to B(QR)z(ﬂRz)
slipstream region

matching functions for vortex tube shapes, see Egs. (30)
and (32) ’

twice the right hand side of Eq. (24)

matching functions for vortex density of the kth vortex tube,
see Egs. (31) and (33)

Green's function for governing partial differential equation
on ¥

3G/ 3T

shorthand for GT(E,tv;x,Tk)

unit vectors in the r, x, ... directions, respectively
matching function index, e.g. see Egs. (30) - (33)

index to distinguish the K different vortex tubes

total number of vortex tubes or, equivalently, the total
number of steps in the piecewise constant circulation
distribution

number of axial stations used in the stream function
interpolation

number of collocation points used in solving for the vortex
density on the Kth yortex tube

number of collocation points used in solving for the vortex
density on the vortex tubes k = 1 through (K-1)
number of blades

1
fluid velocity, (u2+v2+w2)/2

Legendre functions of second kind and degree *%
propeller radius

radial location of the kth

step in circulation distribution
meridional coordinate, see Fig. 3b

slipstream surface, see Fig. 3a



th

t, T radius of K vortex tube, with arguments £ and x,
respectively

tk’ Tk radius gf kth vortex tube, with arguments £ and x,
respectively

u,v,w X,r,0 velocity components

u',v',w' x,¥,0 perturbational velocity components

Uy axial velocity on the kth vortex tube, see Eg. (25)

U free-stream speed

X,r,9 cylindrical coordinate system, see Fig. 1

ayr Bv axial stations used in solving for the vortex densities

Yr Yg vortex density on S for constant I'(r); circulation per unit
x-length and s-length, respectively

Yir Ysx vortex density on kth vortex tgbe; circulation per unit
x-length and s-length, respectively

I'(r) circulation distribution

Fk piecewise constant circulation distribution

Gv axial stations used in stream function interpolation

z meridional velocity, (u2-+-v2)1/2

A advance ratio, U/OR

v dummy index for k in tk and Y

£,0 dummy x,f variables, respectively

) fluid mass density

b4 stream function

w fluid vorticity vector with components w_,w_,w, in

- s,n,Bd directions, respectively s''n’"8

@, El, 52 Legendre function arguments, see Eg. (6) and pp. 10 and 54

Q propeller rotational velocity, radians per unit time

( )X subscripted variablg denotes partial differentiation with
respect to that wvariable

(), asymptotic value at x = «

( )(n) nth iterate

Vi shorthand for [1-+(dT/dx)2]%, i.e. ds/dx

NOTE: Prior to Eg. (23), all quantities are in dimensionaf form.
Starting with Eq. (23), they are all nondimensionalized as
follows: lengths with respect to R; velocities, y and Yg with



respect to QR; T with respect to QR2; and ¥ with respect to QR3.

Howeven, for notational simplicity we omit any explicii nreminden
04 nondimensionalization, such as primes orn astenishs.

THEORETICAL DEVELOPMENT

Problem Statement And Formulation. Let us consider a propeller of blade

radius R, operating with angular velocity Q relative to a uniform free stream
U > 0. With the blade circulation distribution prescribed, our objective is
the éalculation of the induced flow field.

We consider the blade number to .be infinite, the so-called "actuator disk”
model, and view the steady axisymmetric flow from a Newtonian x,r,8 coordinate

system; see Fig. 1 in which we have sketched one of the infinitely many blades.

Figure 1. Coordinates And Geometry

The flow field, assumed to be inviscid and incompressible, is defined by
the x,r,6 velocity components u,v,w respectively, or equivalently, by w and

a stream function ¥, such that
u=tJ+u'=Wr/r (1)
— xr!' = -
v =v'= Wx/r (2)

where the primed terms are perturbational quantities and the subscripts

indicate partial differentiation.



It has been shown by Wu (Ref. 4) that Y must satisfy the nonlinear

partial differential equation

V- ¥ /r+¥ = - (Qr2 +wr) d(wr)/ay (3)

An alternative derivation to Eg. (3) is based on the calculation of the cir-
culation about an elemental meridional area dxdr in two different ways. That
is, on the one hand, it may be computed from Stokes' Theorem as the 8 component
of vorticity, (vx-ur), times the area dxdr or, on the other hand, as the line
integral of "g.dr" around the circumference of the element. Equating these
two results produces Eq. (3). The details are given in Appendix A.l

The gquantities wr and d(wr)/d¥ on the right hand side cause considerable
complication since the functional dependence wr = £(¥) is not known a priori.
(We do know wr for x = 0" and 0 < r < R since the circulation distribution
T'(r) = - 2mwr is prescribed there, but we do noft know wr as a function of V¥
throughout the field.) Whereas Kelvin's Theorem implies that £(¥) = 0 outside
the slipstream region D, we do not know the shape of D at the outset.

Due to these complications, an analytical solution of the resulting
nonlinear free-boundary problem seems to be out of the question and we
choose instead to pursue an iterative approach. Toward this end, it is
helpful to first recast Eq. (3) in the form of an 4integraf equation, which
can be expected to be more amenable to numerical solution. This has already
been done (Refs. 4 and 5) and the resulting integral equation can be expressed

in the form,
¥Y(x,r) = Ur2/2 + ff G(g,p;x,r) (Qp+w) d(wp)/d¥Y dpdg (4)
D

The Green's function,
G(E,p;x,r) = Vrp Q,/Z(G)/Zﬂ (5)

may be identified as the stream function at a field point (x,r,8) due to a
ring vortex of unit strength, oriented as shown in Fig. 2, where QL(U) is a
2

Legendre function of second kind and degree %, with argument

T =1+ [(€-x)%+ (p-1)%] / 20r (6)
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“{X,r.8)

Figure 2. Interpretation Of The Green's Function

Recall that we mentioned that the flow field is completely determined by
the stream function Y(x,r) and the tangential velocity field w(x,r). Once Y
is calculated from Eg. (4), w can be found throughout D by application of
Kelvin's Theorem. The hard part, of course, is the calculation of ¥. This

will be the subject of the following sections.

Vortex Model. Whereas Wu deals with Eg. (4) directly, we elected to work
with an equivalent vortex model and limit our attention to piecewise constant
blade circulation distributions. That is, we prescribe constants Rl’ ey RK

and T I'., such that T'(r) = T, over R < r < Rk’ where R0 = 0 and

17 =" K k k-1

R, = R. Consequently, d(wr)/d¥ is zero everywhere in D, except on the stream-
tubes, or vortex tubes, which pass through x = 0, R = Rl’ ey RK. On these
streamtubes, it has a delta function type behavior. The p integration thus
reduces to a finite summation over the discrete vortex tubes and Eg. (4) may
be re-expressed formally as

o

K
v(x,r) = Ur’/2 + 3, G(E, tyix,x) v, dE (7)
k=1 0

where tk = tk(E) and Y = Yk(E) are the radius and circulation per unit
£~length, respectively, of the kth vortex tube. Our objective, then, is the
calculation of the unknown "shapes" tk(g) and "vortex densities" Yk(E).

At this point, we would like to relate the local disk loading to the

circulation distribution. If we refer to the analysis of Ref. 7, we see that



the radial distribution of circulation will be essentially proportional to the
radial distribution of annulus or local disk loading. The local disk loading,

of course, varies as the blade loading divided by r.

Force-Free Condition. Whereas the boundary value problem on Y(x,r) is

completely contained in Eg. (4), the unknown tk(g)'s and Yk(g)'s are not
determined by Eg. (7) because we have, in going from Eq. (4) to Eq. (7),

taken certain terms defined in terms of ¥ and simply called them Yk(E). This,
in effect, introduced additional unknowns.

In order to obtain a sufficient number of equations, it is necessary to
impose the physical condition that the trailing vorticity drifts force-free.
More specifically, the trailing vortices must be afigned with streamlfines if
the Kutta-Joukowski forces on them are to be precluded. It can, in fact, be
verified that this is just the information that was "lost" above.

Since the extension to the piecewise constant case can be accomplished
easily, let us first consider the case where I'(r) is a constant, say I'. The

vortex system then is as sketched in Fig. 3a. It consists of an infinite

(a) (b)

Figure 3. Vortex System For Constant T (r)

number of radial vortex lines which represent the blades, not shown here,
together with an equal number of distorted helical vortices trailing from the
blade tips and a concentrated "hub" vortex of strength T on the positive

x axis. All of these vortices are to be force-free except, of course, the



radial or bound blade vortices.

As shown in Fig. 3b, the trailing vorticity may be decomposed into an
equivalent orthogonal system consisting of ring vortices plus vortices lying
along the intersection of the slipstream surface S and the meridional planes
of constant 6. Let the ring vortices be of strength Yg per unit s-~length or,
alternatively, Y per unit x-length. From conservation of vorticity we see
that the strength of the meridional vorticity is equal to T divided by the
local circumference, or I'/2mt per unit tangential length as indicated.

Alignment of the trailing vorticity with the streamlines requires, first,
that the velocity component noaimaf to S be zero everywhere on this surface, or¥*

o«

¥(x,T) = UT2/2 + j. G(E,t;x,T) vy dE = ¥(0,R) (8)
0

and, second, that

(L/2mT) /vy = &/ (QT +w) (9)
1

on r = T(x), where 7 is the meridional velocity component (u2-+v2)4. Since
ysc = yu and w(T) = [w(T+0) +w(T-0)]/2 = (0 -T/27T)/2, the condition of Egq. (9)
becomes

yu = Qr/2m - rv2/8n2r2 (10)
on ¥ = T(x). Thus, if we substitute u = Wr,/r, we have finally

¥ [U + %-j. Gp (E,5%,T) dg] = qr/2m - r2/8n?r? (11)

0

on r = T(x), where the integral is to be evaluated in the Cauchy principal

value sense.
We now see that the coupled, singular, nonlinear integral equations of
Egs. (8) and (11) suffice to determine the two unknowns, T(x) and y(x). The

kernels are as follows. For Egq. (8), we have from Eg. (5)

* It will be convenient to express the slipstream radius as t or T depending
~on whether the argument is the integration variable & or the field point x,
respectively.



G = /Tt Q, (W) /27
=OWnlg-x[) , & ~»x
- 0g™?) ;B (12)
where »., is identical to W, with p and r replaced by t and T, respectively.

1
Using the relation,

dg, (z)/dz = [20,(2z) - Q_, (2)] /2(z% - 1) (13)

we find for Eq. (11),

_ ~ ~ ~2
Gp = [AQ,/Z(wl) + BQ_,/Z(wl)] / (wy~1)
—oE-x)"t , £+ x
= 0™ , £ (14)

where A and B are given by,
A= 7% - £2 + (g-x)2%1 /87 Vrt3
B = (t? - 72 + (£-x)%] /8n VeT3 (15)

As we said, satisfaction of Eg. (8) precludes any flow normal to S,
and hence any Kutta-Joukowski forces directed ftangent to that surface. Align-
ment of the vorticity and velocity vectors on S, guaranteed by Eq. (11),
further precludes any Kutta-Joukowski forces directed noimal to that surface.
Thus, Eg. (11) must be equivalent to the statement that the pressure dif-
ference across S is zero and this equation could have been derived by appli-
cation of Bernoulli's Equation. A derivation along these lines can be found
in Ref. 6.

Notice that insofar as the two governing equations are concerned, the
effect of swirl, i.e., the induced tangential velocity, is limited to the
presence of the second term in the right hand side of Egq. (10). Since, for
I''s and Q's within the range of general interest, this term turns out to be
negligible compared to QI'/2mw, the neglect of swirl by other investigators,

e.g. Refs. 5 and 8, is not unreasonable. We choose to retain it, however,

10



because its presence in no way complicates our solution and, more importantly,
we suspect that it may not be negligible for the innermost vortex tubes in the
case of non-constant circulation. We will clarify this point when we discuss

our numerical results.

Relation Between Actuator Disk Model And Zeroth Harmonic Flow. Before

we go ahead, let us pause to consider a gquestion of both fundamental and
practical interest. Namely, 44 the actuator disk §Low equal to the zeroith
cincumferential harmonic of Zhe fLow field induced by a ginite N-bladed
propellen having the same T(r) distribution, as found in linearized theory
(Ref. 3)7? -

For simplicity, we consider the case of constant I'(r) again and visualize
the axisymmetric surface S which contains the N trailing tip vortices. As
above, the force-free condition requires the alignment of the vorticity vector
w = Vxg and the velocity ¢ relative to that vorticity, hence relative to a

blade-fixed coordinate system, over the surface S to which the tip-trailing

vorticity is confined. 1In other words,
=s -n ie
wxgqg = ws wn we = 0 (1l6)
z g-in QT+w

on S, where the unit vectors are orthonormal, with En normal to S and is

and ie tangent to S in the s and 8 directions respectively. Noting that
wn = 0, we have the three scalar equations
wg(g-i ) =0 (17)
w(g-i ) =0 (18)
wS(QT+w) - wgt = 0 (19)

As N » o, Wy * Yo Wy /27T and w » ~-I'/4mT, so that both Egs. (17)
and (18) imply that g-in = 0 on S. This coincides with the previous con-
dition of Eg. (8), and Eg. (19) reduces to the condition of Eq. (9), thus

recovering our actuator disk equations.

11



Turning now to finite N, we only need to discuss any one of the three
equations, Egs. (17) - (19), for example, Eg. (17). Now, Wy will be zero
for all 6's except at the N circumferential trailing vortex locations, where

it will have a delta function character such that its zeroth, Nth, 2Nth,

ceey
harmonics will be nonzero. The idea, therefore, is to expand Wy and g-in
into these harmonics, multiply, and equate the resulting coefficients of the
different harmonics to zero. If the resulting zeroth harmonic is simply the
zeroth harmonic of we times the zeroth harmonic of g-in, then equating this

to zero would imply that the zeroth harmonic of g.i is zero — in agreement

=n

with our actuator disk flow. However, additional contributions to the zeroth
harmonic can arise through the product of higher harmonics; for example, we
have cos NO cos N8 = (% + % cos 2N6). Since there is no reason why these
contributions should exactly cancel each other, it appears that the zeroth
harmonic of g-in may noi be zero. In that case the actuator disk flow would
not equal the zeroth harmonic of the flow field induced by a finite-bladed
propeller.

For the special case of £ight foading, i.e., the classical linearized
theory, though, the perturbational velocities can be neglected and the
trailing vortices are undeformed so that ﬂ'in = Uix'in = 0, and Egs. (17) -

(19) become

0 =0 (20)
0=20 (21)
wSQT - weU =0 (22)

Since QT and U are independent of 6, we have no products of higher
harmonics and the identity of the actuator disk with the zeroth harmonic is
again established for the linearized case, cf. Ref. 3.

These results imply that caution must be used in trying to apply actuator
disk results for cases with both low blade number, N < 6 or so, and heavy
loading. This is especially true with respect to the inflow over the outer

portions of the blades.

12



Extension To The Case Of Piecewise Constant Circulation. First, let us

put our equations in nondimensional form, referring lengths to R; velocities,
Yy and Yg to QR; T to QR2; and ¥ to QRB. For convenience, we wifl omit any
explicit notation in the nemaindern of the nreport to distinguish these quanti-
ties from theirn dimensional form.

Now, extension of Egs. (8) and (10) for the case of piecewise constant

circulation is quite straightforward and results in the equations

K o
2 .
Y(0,R) = ATy /2 + 2 G(E,t,ix,Ty) v, dE (23)
v=1 Y0 .
_ _ _ 2 _ .2 2.2
YUy = (Pk Fk+l),/2n (Fk Fk+l),/8n Tk (24)
to be satisfied on each vortex tube r = Tk(x). The advance ratio A is

defined as U/QR and

K =)
1
u=)\+—2f G (E, £ 5%,T.) v, dE (25)
k Tk v=1 J0 T v k v
It is understood that FK+1 = 0,

Egs. (23) and (24) constitute the final set of 2K coupled, nonlinear,

singular integral equations in the 2K unknowns T, and Yy r for kK = 1 through K.

k
Asymptotic Behavior Of The Unknowns. Let us examine the equations at
X = 0 and «, starting with x = «.
As x - ®», it is known that Tk(x) approaches a constant, say Tkw, and
vY(x), say Yoo With these quantities constant at x = «, the integrals in
Egs. (23) - (25) can be evaluated analytically. Instead of pursuing the

details of these integrations, we use the known result (e.g., Ref. 3) that

an infinite solenoid of constant radius and constant vortex density, Tkm

and Yoo in our case, induces a velocity field given by

(u',v',w') = (0,0,0) , r o> Ty,
= (Yyw/ 2,0,0) ' r="T,
= (Y3ewr0,0) ' r < T, (26)



Since 2mY¥(§,p) is the dimensionless volume flow through the disk r < p

at x = £, we then see by virtue of Eq. (26) that Egq. (23) must reduce to

2 2 K k-1 2
29(0,R) = AT + T Ek Yoo * vE_ZI TS oY e (27)

as x » =,

In order to look at Eg. (24) as x =+ =, we have with the help of Eg. (26)

that U~ (A + %ka + Yk+l,w + ... + YKw)' Calling the right hand side of
Eg. (24), %Fk, we can write the limiting form of this equation therefore as

k = K : Yreo (2A F Yro) = Frog

k = K-1 : YK—l,w(ZA + YR-1, e + 2vgp,) = FK—l,w

k =1 : Ylm(ZA + Ylw + 2Y2oo + ... + ZYKm) = Fl°° (28)
where ka is simply Fk at x = », that is, with Tk replaced by Tkm. These

equations are K simultaneous algebraic equations in the asymptotic values

Y1w through YRoo® Their form is such that they can be solved successively

for YRoo! YK—l,w’ s Yo yielding
? >
Y =- A+ VA + F , A= XA+ Y (29)
koo k vekal V®
for k = K, K-1, ..., 1 in turn. It is understood that A = A for k = K.

Of these various results, Eq. (27) will be used to put T(O,Rk) in
Eq. (23) in terms of the unknown Tk's and Yk's, and Eq. (29) will be used
in constructing a suitable analytic form for our solution.

It is important to note that the asymptotic relations of Egs. (27) and
(29) constitute 2K equations in 3K unknowns, the W(O,Rk)'s, Tkm's and Ykm's.
Thus, the {inal slipstream contracition, for example, cannct be computed imme-
diately Ain fterms of Zhe operating conditions simply by Linvestigation of the
asymptotic behavior, but must await the complete solution of the governding

integnral equations.

14
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Consider now the behavior of the vortex densities as x - 0+. For A =0
the flow in each meridional plane makes a full turn around the slipstream lip.
Consequently, it is clear that a classical square root singularity 1is present
in the outermost vortex density, so that YK(x) = O(x_%) as x - 0+. This
singularity should, we believe, persist even in the nonstatic case, A > 0, and
vanish only in the light loading limit when the induced flow is negligible
compared to the free stream and the yk(x)'s and Tk(x)'s are all constant. On
the other hand, we anticipate that the inner vortex tubes will not be singular,

so that Yk(x) = 0(1) as x » o7 for all k < K.

Assumed Form Of The Unknowns. It will be convenient to assume the

following approximate form for the unknowns,

M
T, (x) = R + }_: by £y (x) (30)
j=1 :
(x) = [1 + (@t /ax) %1% y_, (x)
Y 1% = k/ ¢ Yk ¥
Ny
= "(/O, " Yoy Lt jgl a5 Iy g (%) (31)
where the fj's and gkj's are "matching functions". All of these functions

are chosen to be regular, except for gg1’ which provides the necessary sqgquare
root singularity for YK at x = 0. In selecting suitable matching functions,
we require that fj(O) = 0 so that Tk(O) =R, . We also require that all of

' co i ~ 1 ~ .
the gkj s >0 as x + ., With di/dx 0 this ensures that Yk(x) ka

The reason for the k subscript on N is that we would like to be able

to do a particularly good job in calculating Yg which is generally quite a

bit larger than the other Yk's, and singular as well. In practice, we have
found it efficient to use Nk ~ 6 for all k's < K and NK ~ 9. Since we will
always use Nl = N2 = ... = NK—l’ let us simply denote these values by a

single name, say N', and Ny simply by N.
By trial and error over a number of calculations, we have decided upon

the following set of matching functions,

£50x) = e7Ix _

15



gkj(x) =X e ’ k =K j =
c.
=xJ e 3x ' k =K i > 2
= e I% , k <K (33)

with the cj's positive constants ranging from about 0.2 to about 4.

General Outline Of Iterative Solution. We will first outline our

iterative solution in general terms. Starting with zeroth iterates which

are constant, namely,

(0) =
0 0
Y]i Y (x) = Y]iw) (35)

we compute improved vortex tube shapes Tél) based upon Eq. (23). With
Tk = Tél) we then compute improved vortex densities Yél) from Eqg. (24). With
Y = yél) we, in turn, compute Téz)'s, and so on until suitable convergence
is attained. Our notation is to be interpreted in the obvious way. For
example, Yég) is given by Eqg. (29) with Tég) set equal to R in Fég).

In Ref. 6 the improved shapes and vortex densities were obtained by
applying a Newton-Raphson technique to Egs. (23) and (24), respectively. For
the present case, where K > 1, we found this scheme to be generally inappro-
priate for the vortex tube shape calculations since closely spaced tubes
usually crossed each other, producing a divergent situation. Instead of a
Newton-Raphson technique, we now proceed along different lines.
(n)

s and Yk

)

(n),
k

Vortex Tube Shape Calculation. Regarding the T 's as known,

we determine the Tk(n+l)'s as follows. We first compute Y(n

(O’Rk) for k = 1,

K and then seek these stream function values at each of M selected axial

L 4

stations, x = 61, ey GM. To accomplish this, at a given station dv we cal-
(n) . . (n) (n) (n) (n)
culate VY at the radial points Tl (5v)/2, Tl (Gv), [Tl (Gv) + T2 (6v)]/2’
(n) (n) (n) , ,
ey [TK_l(Gv) + TK (Gv)]/z and TK (Gv), and then use three point radial
interpolation to find the radius at which each of the values W(n)(O,Rk) result.
With these points in hand, say Té3+l), we get the bé?+l)'s by "fitting". That

is, recalling Eq. (30), we have

16



M

where v = 1, ..., M for each fixed k. Inversion of these K MxM matrix
equations yields the desired bé?+l)'s.

W(n)'s cannot be found in the

It may happen that one or more of the
radial search at a given Gv station. Consider the case where X = 1, If

W(n)(o,l) > W(n)[év,T(n)(év)] and X is close enough to zero or the static case,

1
we will not be able to find W(n)(o,l) in our radial search at x = GV because
the stream function drops off as we go out radially beyond T{n)(6v). At such
a location we should choose T{n+1)(6v) sufficiently larger than T{n)(év) so as
to gain the required additional volume flow. In particular, we put
27 { v,y - v s 2™ sy }=
(n+1) s (n) 2
n {012 - r™ette G
(n)

Now, u =~ [A + Y ] for 6 large, whereas u = [A + Yln)/2] for 6 small.

Therefore, let us use the approximation

5v-+0.15 (n)
u=~ A+ _— (6 ) (38)
§ +0.30
v
and Eg. (37) can be solved for T{n+l)(6v). Of course, any error induced by
the approximation of Eg. (38) will tend to zero as the iteration converges.

As we have already said, for K > 1 it is conceivable that a number of the
outer ?(n)'s cannot be found. Adopting the same argument as described above
for K = 1, we arrive at the following logic. If we cannot find W(n)(O,Rk)

at Gv, we set

(n+1) _\/ (n) 2 (n) () (n)
0% (5 ) = Y™ 5,012 + 208 ™ 0,m) ~ ¥ M s 2 (5 )11 /0

§ . +0.15
us A+ (—JL——————> { (n)(d ) + ...+ Y(n)(d ) } (39)
Gv-+0.30

1



As our final comment on the shape calculation, we note that the radial
three point interpolation interval should not be permitted to c4044 a vortex
tube. For example, T3, (T3-+T4)/2 and T4 would be a suitable set of inter-
polation points whereas (T3-+T4)/2, T4 and (T4-+T5)/2 cross the fourth vortex
tube and therefore would not be suitable. The reason is that the stream
function, considered as a function of radius, has abrupt changes in slope, or

"kinks", when we cross a vortex tube, so that parabolic interpolation would

not be very accurate,.

Vortex Density Calculation. Take k < K. For the class of circulation

distributions of practical interest, it turns out that the contribution to

u,_ in Eg. (24) by the kth vortex tube itself is small compared to the contri-

k
bution by the Kth vortex tube. This implies that the dependence of . on vy

is rather weak and suggests that a simple successive approximation scheme,

namely,

Y(n+l)

- (n)
X = (F /2u) (40)

should suffice. The superscript (n) on the right hand side is somewhat

misleading. Remember according to our overall scheme, we calculate the

Tén+l)'s and then the Yén+l)'s. As a result, when we reach Eg. (40), the
Tén+l)'s are already available and we might as well use them. Thus, the right
hand side of Eg. (40) is computed with the Tén+l)'s and the Yén)'s, and by
means of Egs. (31) and (33), this equation may be written in its final form,

Lty -3 (n)

n+ i P: S _ n

jgl a it eI < { Fp / 2V 0/, u - 1 } (41)
where U is given by Eg. (25) and the superscript (n) on the right is inter-
preted as indicated above. For each k =1, 2, ..., (K-1) we demand satis-
faction of Eg. (41l) at the discrete points x = al, cey Oy This produces

(K-1) N' xN' matrix equations which are then solved for the unknown aé?+l)'s

For k = K, however, Uy is not weakly dependent on Yg+ SO that a simple
successive approximation scheme can be expected to be only very slowly con-

vergent at best, or divergent at worst. We therefore choose to adapt the

more powerful Newton-Raphson Method, as developed in Ref. 6. Briefly, we

18



L2

re—-express Eg. (24) as u

the nth iterate,

K= FK,/ZYK and expand the nonlinear term l/YK about

l/Yén+l) ~ l/Yén) - [1/Yén)]2[Yén+l) -Yén)] (42)

Since u, as well as the right hand side of Egq. (42) are £{inear in the unknown

K
Yén+l)’ the re-expressed form of Eq. (24) can be reduced to a system of

algebraic equations in the unknown a(n+l)'s

K3 . Omitting the details, we obtain

% F.T (V%) /224x/wG o), dag ) (m) gletl)
& K KIK] K’/ “¥K o Tg Kj k 9% 8K3 =

( [ {2YK—wa(/Z)K}{FK/2Y12<} - AJ (Tg 7 Yo

fm Vi d-LKilwa ag ) (») (43)
0 GTKK( My gt Yew v=1 Jo Tok 'V : )
where GTvk is a shorthand notation for GT(E,tv;x,Tk). Again the superscript
(n) is used, but the guantities involved are to be computed taking the n+lth
shapes and nth vortex densities. Demanding satisfaction of Eg. (43) at the
discrete points x = Bl, ey BN produces an N XN matrix equation for the
unknown aé?+l)'s

We wish to emphasize that the approximation of Eg. (42) tends to an

equaflity as the iteration converges, so that the essential nonlinear character
of Eg. (24) is noi compromised by the expansion of Eg. (42).
Finally, we note that the numerical calculation of the Legendre functions

, involved in G and G

Q is discussed in Appendix A.2 and the numerical

TI

integration scheme in Appendix A.3 . Descriptions and listings of the various

£

computer codes that were developed for the general calculations are given in

Appendix A.4

NUMERICAL RESULTS

Thrust Coefficient. 1In selecting circulation distributions for our

numerical examples, we will take two "representative" distributions and scale

their magnitude so that the resulting thrust coefficient C, is within the range

T
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of engineering interest. Defining CT as the thrust divided by B(QR)z(nRZ),

with p the fluid mass density, we have from the Kutta-Joukowski Law,

1
cp = %fo {r - P4(1Tr]3 } T(r) dr (44)

Representative Circulations. Let us consider the two representative

distributions I'(r) = T, a constant, and T(r) = Ar/1-r (Ref. 3), with the
constants I' and A chosen so that CT = 0.01, say, which is a typical value
for a hovering helicopter.

For Case 1, T(r) = T, the swirl term I'/4wr causes the integral to
diverge. In reality, of course, a finite hub would preclude this divergence.
In selecting a value for I', then, we simply neglect the swirl term in Eq. (44)

and CT = 0.01 = T'/2nm. Let us therefore take I' = 0.021 .

For Case 2, I'(r) = Arv1-r, the integral does exist and A = 0.21 results
in the desired thrust coefficient CT = 0.01 . Next, see Fig. 4, we approximate

1 =t

0.04 [ //

0.00 L 1 i | 1 1 1 ] 1 [
0.0 0.5 1.0
r
Figure 4. Representative Nonuniform Circulation And

Its Piecewise Constant Approximation
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T'(r) by a piecewise constant representation. For our purposes, an eight step

representation seems to permit a suitably close fit, namely,

k 1 2 3 4 5 6 7 8
Rk 0.15 0.25 0.35 0.45 0.55 0.80 0.90 1.00 (45)
Fk 0.015 0.037 0.052 0.065 0.074 0.079 0.069 0.045

We do not claim that this particular representation provides a "best" fit in
any special sense, but just that it appears to be entirely reasonable. Al-
though there is a fair amount of latitude in the choice of the Rk's and Fk's,

we must have Pl > 0 for reasons of convergence that will be discussed later.

Case 1 Results And Discussion. Let us first look at the uniform cir-

culation case where K = 1, Rl = 1.0, Fl = 0.02m and A = 0. To define our

numerical solution, we chose N = 9; the B8.'s = 0.02, 0.05, 0.10, 0.18, 0.30,
v

0.50, 0.85, 1.40, 2.50; the cj's = 0.18, 0.69, 1.20, 1.71, 2.22, 2.73,

3.24, 3.75; M = 6; the 6 's = 0.1, 0.3, 0.6, 1.0, 2.0, 5.0; and the a{g)'s,
{9 g = 0, so that T{% (x) = 1 ana v{®) (x) = 0.14107
15 1 1
As seen from Fig. 5, the iteration is very nicely convergent, with Tl(x)
essentially converged after only two iterations, and Yl(x) after three. The

NSWTH input variable, explained in Appendix A.3, was set equal to 3 so that
the more accurate integration schemes were employed, beginning with the third

iteration. The results of the fourth and final iteration are

a{?’ = 0.14676, -2.70486, 21.20489, -98.70655, 272.84574,
-428.19646, 374.74065, -170.60165, 31.97000
b{?’ = -0.11037, 1.30353, -5.85472, 12.71052, -12.66851,

4.87670

for j = 1 through 9, and 1 through 6, respectively.
Representative streamtubes and meridional velocities have also been com-

puted, using the results of the fourth iterate, and are presented in Fig. 6.

21
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Figure 5. Successive Iterates For Case 1, A = 0
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To emphasize the appreciable difference between these results and those of the
classical linearized theory, we have compared the respective streamtubes in
Fig. 7. Actually, the term "linearized theory" does not make any sense for
the static condition since there is no stream about which to linearize. But,
in the linear theory it is known (Ref. 3) that the axial inflow u'(0,r) is
proportional to the circulation distribution T'(r). We can extend this idea
down to the static condition and shall define the term "linearized theory"

for aff conditions, static and nonstatic, to correspond to a set of uncon-
tracted vortex tubes of constant pitch, with their vortex densities chosen
such that u'(0,r) is proportional to T(r).

Results similar to these have already been reported in Ref. 6. We have
repeated them here because our present solution is somewhat different and more
accurate. In particular, both the ¥ interpolation scheme for computing the
vortex tube shapes and the Gauss-Chebyshev integration schemes appear to be
somewhat better than their counterparts in Ref. 6.

It is important to note that f{ocir this case, where T(r) =T and X = 0, the
strneamtube patifenn {5 virntually independent of T over a wide range of T values.
To see this analytically, we go back to the governing equations, Egs. (8) and
(10). For A and hence U = 0, the T dependence cancels out of Eg. (8) since
both ¥(0,R) and y are proportional to y_ which, in turn, contains the T
dependence. From Eg. (10), we see that if we discard the swirl term F2/8n2T2,
Y will simply be proportional to /T for A = 0. With the swirl term omitted,
it follows that the streamtube pattern will be compfetelfy independent of T

although, of course, the velocities will scale proportional to vT. With the

swirl term included, this result is no longer true in an exact sense. However,
for a wide range of I's, T2/8m2T% << QI/27 in Eq. (10) — recall that Eq. (10)
is in dimensional form — so our statement remains true in an approximate

sense. To see this numerically, we re-ran Case 1 with I increased by a factor
of ten and superimposed some typical streamtube points, indicated by small
solid circles, on our original flow field in Fig. 6. They are seen to
virtually coincide with the original streamtubes!

Next, we repeated Case 1 for the nonstatic cases A = 0.01 and X = 0.10

The speed of convergence improved slightly as X increased. This is not
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surprising because as A + », for a fixed circulation distribution, the solution
tends to the linearized solution* which, in fact, coincides with our zeroth
iterate.

The results of the final converged iterations are as follows. For

A = 0.01, where four iterations were still needed,

a{§) 0.13100, -2.24111, 17.34041, -79.79524, 222.82574,

~-355.64068, 317.69153, -148.11018, 28.55134

(4)

15 -0.09605, 1.16135, -5.19913, 11.32189, -11.29768,

b

4.34854

1

and for A 0.10, where only three iterations were needed,

aig) = 0.01933, -0.09949, 2.38665, -12.98060, 41.98347,
~-77.22364, 81.43538, -45.68608, 10.80515
big) = -0.00527, 0.28224, -1.22071, 2.85614, -2.97316,

1.16874

The final vortex densities are compared in Fig. 8 and the corresponding
flow fields are shown in Figs. 9 and 10 for A = 0.01 and 0.10 respectively.

Several striking results are apparent upon comparison of the three flow
fields, Figs. 6, 9 and 10. First, we note a substantial change in the flow
field as A varies merely from 0.00 to 0.01 . For XA = 0.01 a "dividing stream-
tube", labeled DS in Figs. 9 and 10, appears, having the same ¥ value as the
slipstream vortex tube. All fluid particles to the left of this streamtube
eventually pass through the actuator disk and into the slipstream, whereas all
other particles do not. Although we had anticipated that this streamtube
would attach itself to the slipstream vortex tube at x = 0.5, our streamtube

calculations seem to indicate that it turns downstream, perhaps joining the

* Physically, the pitch of the trailing vortices tends to infinity as
A+ o, so that y(x) = 0. Analytically, we see from Egq. (29) that
Y, ~ F_/2)x2 = O(1/A2) as A » » for I fixed.

26



Le

0.22
(

018
A=0.00 4TH<0.1408
0.14 0.01 4TH~01312

0.10 (\‘

0.10 3RD.0.0728

0.06 *“

L i l I

00 0.5 1.0 1.5

Figure 8. Comparison Of Converged Vortex Densities For Case 1,
A = 0.00, 0.01, 0.10



8¢

1.5

N >
L) VELOCITY SCALE:
L i i
0.0 0.1QR
].O B \ DS
\
\\
0.5 \
\\
0.0
-0.6 0.0 0.6 1.2
Figure 9. Streamtubes And Velocity Box For Case 1, A = 0.01



62

VELOCITY
SCALE:

| —
0.0 0.1QR

0.0

Figure 10. Streamtubes And Velocity Box For Case 1, A



vortex tube at x = «. In the absence of 100% numerical accuracy, we are not
at present in a position to clarify this point. For A = 0.10 the dividing
streamtube almost blends smoothly with the slipstream vortex tube.

In static and low speed propeller testing, accurate performance measure-
ments have been very difficult to obtain. That is, significant differences
are found from test to test under seemingly identical conditions. Quite
likely, though, there are small differences in the effective advance ratio
due to recirculation within a closed test facility or due to ambient winds
about an outside test facility. As a result, it is possible that the extreme
sensitivity of the dividing streamtube to A near A = 0 and the associated
changes in the fundamental nature of the flow may help to explain these
measurement difficulties.

Finally, let us examine the nature of the flow in the important lip
region. Theoretically, the flow around the lip persists for all finite A's,
disappearing only in the limiting case of A = «, Practically, though, the
lip flow has nearly disappeared at A = 0.10 and is afmost regular. For any
given A, then, the sguare root singularity in the vortex density Ysl(x) will

be present, but its coefficient a will decrease rapidly as A increases.

11

For example, the a..'s of the final iterates are 0.14676, 0.13100 and 0.01854

11
for A = 0.00, 0.01 and 0.10 respectively.

Since the product of the vortex density Yq and the meridional velocity ¢
tends to a constant as x 0+, as stated by Eg. (9), the singularity in Yg
implies that ¢ must tend to zero as x > 0¥. It follows that the pitch of the
trhadiling helical vorntices tends to zerno as x - O+, even fon X > 0, causing the
trailing vortices to Lingern in Zhe disk plane! This general behavior is in
agreement with flow visualization studies and has an important bearing on the
axial inflow over the outer portion of the blades and hence, on the blade
design problem.

Whereas the meridional drift velocity on the slipstream tends to zero as
x -+ 0+, the flow atound the lip is singular, of course, due to the square root
singularity in the vortex density. Thus, the axial inflow u'(0,r) is singular

as r » 1.0, see Fig. 11. Notice that the singular flow is gquite localized,

being limited to the outer 2% of the disk for X = 0.00 and 0.01 . For A = 0.10
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it is not even discernible in the plot. By way of comparison, the inflows
predicted by linearized theory, e.g. Ref. 3, are proportional to I'(r) and

hence constant.

Case 2 Results And Discussion. For our piecewise constant representation

of the nonuniform circulation, as defined by Eq. (45) and Fig. 4, we took N,
the Bv's and the cj's to be the same as in Case 1l; N' = 6; the av‘s = 0.02,
0.1, 0.3, 0.7, 1.2, 2.0; M = 7; the Gv's = 0.1, 0.2, 0.4, 0.7, 1.2, 2.0, 5.0;
the aég)'s, bég)'s = 0 and NSWTH = 3, see Appendix A.3

We ran this case, through five iterations, for the same three advance
ratios as in Case 1, namely, A = 0.00, 0.01 and 0.10 . As in Case 1, excellent
convergence was again obtained, although not quite as fast. For both X = 0.00
and 0.01 the fourth and fifth iterates were virtually identical, with the
second and third iterates in equally good agreement for A = 0.10 .

Despite this success, though, we should hasten to point out that the
convergence was very sensitive to whether Fl is nonzero or not. We made
several attempts to include a "cutout" or Fl = 0, both with and without a
singular vortex density, and were unable to achieve convergence. Physically,
this is due to the fact that the innermost vortex tubes are situated in what
is essentially a "dead air" or recirculatory flow region. With Fl # 0, the
axial velocity is positive everywhere within the slipstream and the problem
is eliminated, albeit the details of the flow downstream near the axis are
sacrificed and the remainder of the flow field is somewhat modified.

The akj's of the final iterations are presented in Tables 1, 3 and 5 for
A = 0.00, 0.0l and 0.10, respectively. The corresponding bkj's are given in
Tables 2, 4 and 6.

The final vortex densities are plotted for A = 0.00, 0.01 and 0.10 in
Figs. 12 - 14, respectively, and the corresponding flow fields in Figs. 15 -
17. The axial inflow u'(0,r) is plotted in Fig. 18. 1In Fig. 19 the stream-
lines are superimposed on the streamlines from the linearized theory of
G. R. Hough and D. E. Ordway (Ref. 9).

Virtually all of our discussion of Case 1 applies equally well to Case 2.

Two differences are apparent, however, upon comparison of the flow patterns;

see, for example, Fig. 6 for Case 1 and Fig. 12 for Case 2, both with A = 0.
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-5.31005
0.11810
0.19159
0.13525
0.09775
0.02776

-0.02689

0.09994

87.80304
-0.64985
-2.33840
-1.65158
-1.13730

0.00785

0.98278

-1.81353

0.05161
0.01628
~-0.00255
-0.00058
0.00660
0.05533
0.15479

0.37301

TABLE 1.

-454,

0.

11.

8.

5

-1

-7.

22.

79934
92539
11373

01838

.41043

.31852

25287

48694

TABLE 2.

-0.

-0

-0

-2.

-5.

78685

.21965
.08792
.07347
.02383

.72943

24066

60574

VORTEX DENSITY COEFFICIENTS a

CASE

1042.
11.
~-17.

-13

20.

~-170

2, A

77150
93209

85558

.78819
.24617

.89481

66315

.80608

VORTEX TUBE
CASE 2, A =

12

32.

.08883
.54549
.40993
.43210
.05808
.99908

.81023

62229

= 0.00

-1020.
-21.
12.
10.

6.

-8

-24

663.

SHAPE COEFFICIENTS bkj

0.00

-15.

-10

-35.

-92.

40424
40161
54242
46978

86168

.77157

.98613

82119

86698

.88033
.37209
.86958
.74672

.19713

51269

69815

FOR 5T

kj

355.

10.

10.

-1341.

25.

14

52.

139.

89366

21576

.82460
.46419
. 34285

.56386

90950

73931

94582

.02835
.11246
.50070
.28391

.63116

86604

47186

H

ITERATE

1440.63761

FOR STH ITERATE

~-19.88912
-7.77928
0.05569
1.44753
0.83792
-10.91492
-40.11554

-106.28259

-776.87557

5.52934
2.37572
0.11061
-0.33873
~-0.20402
3.35289
12.27317

32.41277

165.23356
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-1.75754 29
0.17389 -1.
0.17604 -2
0.11808 ~1.
0.08265 -0
0.00864 0

~0.04620 1
0.09226 -1

0
-0
-0
-0

0

0

0

0

.66592

74082

.14618

39736

.90922
.23016
.13156

.35003

.02944
.00255
.00987
.00574
.00034
.03608
.11007

.27699

TABLE 3.

-152.98610
8.09622
10.92054
7.21523
4.62577
-1.92230
-7.09940

14.89530

TABLE 4.

-0.45679
0.04998
0.17477
0.11874
0.03180

-0.49598

-1.62809

-4.19914

VORTEX DENSITY COEFFICIENTS a

CASE 2, X = 0.01
362.90569 -359.78171
-7.26364 -0.31797
-19.11806 15.07162
-13.07435 10.64075
-8.29021 6.58843
6.34250 -8.48524
18.77593 -21.82192
-107.78903 422.62259

VORTEX TUBE
CASE 2, A =

3.10690
0.03410
-0.80554
-0.53751
-0.06996
2.91415
9.54367

24.68756

SHAPE COEFFICIENTS b

0.01

-9.78935
-0.44590
2.51764
2.06430
0.90286
-7.47287
-26.59581

-70.39518

kj

124.92775
2.01773
-4.15971
-2.83983
-1.49248
4.23359
9.35000

-867.39451

k3

16.56024

2.22628
-3.00991
-2.86688
-1.47366
10.75838
39.72253

106.22631

945.

-13.

-30.

-81.

FOR STH ITERATE

06865

FOR 57 TTERATE

08587

.73368
.56192
.78849
.99641

.02290

19566

15959

-516.50995

3.69735
0.94900
-0.33663
-0.45220
-0.26013
2.46645
9.26035

24.83005

111.40570



Era

Gg

0.16124
0.11348
0.09587
0.08332
0.07653
0.05075
0.03905

0.02080

-0

-0

-0

-0

-0

0

0

-0

-0

0

0

0

0

.05617
.10530
.18512
.19473
.21103
.06674
.33492

. 38777

.00069
.00641
.00786
.01033
.01256
.01829
.02575

.04066

TABLE 5.

1.05246
1.07897
1.33877
1.26576
1.24212
-0.44597
-1.91290

4.56174

TABLE 6.

0.12995
0.05556
0.05871
0.04072
0.02444
-0.02246
-0.11497

-0.31024

VORTEX DENSITY COEFFICIENTS a

CASE 2, A = 0.10
-0.13647 -0.79711
~-1.07704 0.39278
-2.12354 1.74859
-2.22080 2.03598
~2.31904 2.23864

1.51121 -1.91270
4.86096 -5.41043
-18.63800 49.91276

VORTEX TUBE
CASE 2, A =

-0

.66299

.18654
.17408
.04899
.05661
.33786
.88749

.04324

SHAPE COEFFICIENTS b

0.10

2.00702
0.68083
0.65474
0.30271
0.00597
-0.81393
-2.45422

-5.83484

-85.

-3.

-1.

-1.

-0

-0

FOR 3RD ITERATE

kj

.01866
.14728
.60581
.69016
.74307
.99381

.31422

94686

90.69305

FOR 3RD ITERATE

kj

01333
07260

04374

.52871
.09730
.14311
.71240

.89683

2.20558
0.76284
0.74826
0.38212
0.08656
-0.81561
-2.83834

-6.84617

-52.12858

-0.65428
-0.22515
-0.21939
-0.11404
-0.03245

0.24079

0.88275

2.12269

12.63717
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First, the dnneamost vortex ftubes expand initially for Case 2, whereas
the radial flow is purely negative fthaoughout the slipstream for Case 1. This
is due, of course, to the negative vorticity of the innermost vortex tubes and
is predicted even by lfineardized theory — as seen in Fig. 19 for the static
case. The expansion of the innermost vortex tubes is seen clearly, too, in
the smoke pictures of J. B. Rorke and C. D. Wells (Ref. 10). In fact, a very
close correlation is observed overall between our computed static flow field,
Fig. 15, and the corresponding smoke picture in Fig. 3 of Ref. 10 for about
the same CT. Their actual circulation distribution, of course, and our
prescribed piecewise constant distribution are undoubtedly somewhat dissimilar,
but probably not enough to invalidate a comparison of the two flow fields.

The worse dissimilarity most likely is the fact that Fl # 0. As discussed
above, therefore, we can not expect the flow field to be predicted properly
along the axis in the slipstream. This is just what we find, Fig. 3 of Ref. 10
showing a trace of reverse flow.

Second, the nonundifoam circulation nesults in a shaaper contraction of
the sfipstream. At x = 0.1 and «, say, the contraction is 15.4% and 29.3% for
Case 2, compared with 11.3% and 25.6% for Case 1. The reason appears to be as
follows. Consider the outermost vortex tube k = K = 8 all by itself. Its
self-induced contraction would be virtually the same as for Case 1. Now in-
clude the effect of the interior vortex tubes. The tubes for k = 6 and 7
carry positive vorticity and hence induce an additional contraction, whereas
the other tubes, k = 1, ..., 5, carry negative vorticity and induce an ex-
pans.on. The inward flow induced on the outermost tube by the tubes for
k = 6 and 7 is much stronger, on the other hand, because of their close
proximity to tlhis tube, so that the net effect is an additional contraction.
Numerically, these results are also in good accord with the experimeutal data
of Rorke and Wells, at x = 0.1, see Fig. 6 of Ref. 10. They can not be com-
pared exactly at x = =, but with extrapolation they would seem to agree except
that the experimental values for the respective contractions are much nearer
together. In line with our previous comments, this discrepancy may arise
because Tl # 0. That is, the presence of recirculatory flow along the slip-

stream axis would reduce the downstream contraction and so decrease the
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differences in contraction between the cases for uniform and nonuniform
circulation distributions.

We should make two further points. One concerns the axial velocity
distribution within the slipstream. We see from Figs. 15, 16 and 18 that
for small A's this distribution is appreciably more uniform downstream than
it is at the disk. The other point concerns the dependency of the streamtube
pattern on the magnitude of the circulation distribution, or the thrust co-
efficient. We recall for the case of uniform circulation that the effects
of swirl can be neglected and that the streamtube pattern is practically in-
dependent of T over a wide range of values. For Case 2, however, we found
this is not true — at least as far as the inner flow is concerned, say within
r < 0.3, where the swirl is strongest. To illustrate, we scaled our piecewise
constant circulation distribution by a factor of five and the initial expansion
of the innermost vortex tubes completely disappeared. Again, this could be

related to the fact that Pl # 0.

CONCLUSIONS

The axisymmetric flow field induced by an actuator disk with a prescribed
nonuniform circulation distribution is considered. Coupled, nonlinear integral
equations governing the wake geometry and the vortex density are developed from
the force-free condition. These are discussed from both physical and mathe-
matical points of view and an iterative solution 1is put forward.

Numerical results are presented, first for the case of a uniform circu-
lation and then for a nonuniform circulation approximated by an eight-step,
piecewise constant distribution. For each case, three different advance
ratios, including *the static condition are solved. All of these solutions
are rapidly convergent for finite circulation at the hub axis.

The most important conclusions to be drawn from this study may be
summarized as follows:

1. The flow around the lip of the outermost vortex tube trailing from
the blade tips is singular for the static case and all finite advance ratios.
As a result, the downstream drift velocity of the vorticity goes to zero at

the lip and the strong trailing vortices emitted from the blade tips tend to
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linger in the disk plane. This important feature of the flow, generally
speaking, agrees with many flow visualization studies. It is only in the
limit of infinite advance ratio that the singularity disappears.

2. Drastic changes in the flow pattern occur as the advance ratio is
slightly increased from zero. Most pronounced of all is the sudden appearance
of a "dividing streamtube", outside of the slipstream, which moves forward
rapidly toward the lip with increasing advance ratio. It appears that this
extreme sensitivity of the flow near the static condition may be the mechanism
to help explain the difficulties of consistent propeller performance measure-
ments at the static condition.

3. The streamtube pattern for the uniform circulation case is virtually
independent of the magnitude of the disk loading. This is noi true for the
case of nonuniform circulation as far as the inner flow, out to about 30% of
the blade radius, is concerned. This may be a consequence of the effect of
swirl coupled with the finite value of circulation that we assumed for the
first step in the distribution at the axis.

4., Comparison of the results for the uniform and the nonuniform cases,
together with the observed nature of the interaction of adjacent vortex tubes,
indicates that the faster the blade circulation drops off to zero at the blade
tips, the less severe the slipstream contraction will be. These results are
in good accord with experiment.

5. The computed flow patterns look gquite reasonable and contain overall
the main features observed in flow visualization studies. One feature that is
lost, though, is the details of the dead air or recirculatory flow region in
the slipstream along the axis. This is due to the finite value of circulation

required at the axis, within the present numerical framework, for convergence.
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APPENDIX A.1
ALTERNATE DERIVATION OF EQ. (3)-

Whereas Wu's derivation of Eq. (3) proceeds directly from Lamb's form
of the equations of motion, we would like to offer a somewhat different ap-
proach.

First, let us make a change of "meridional" variables, from (x,r) to
(s,¥). We define the s variable so that the surfaces of constant s are

orthogonal to the surfaces of constant ¥. Thus,
V¥.Vs = Wrsr + Wxsx = urs, - vrs = 0 (A.1.1)

To relate 9/3s and 3/3Y to 3/3x and 3/3r, we write

Q¥/3Y =1 = Wrrw + Yxxw = urry - Vrxy (A.1.2)

3s/3¥ = 0 = S, Yy + S Xy (A.1.3)
Combining Egs. (A.l.l1l) and (A.1.3), we have

Vry + uxy = 0, (A.1.4)
and Egs. (A.1.2) and (A.l.4) finally yield

3/3% = (ud/dr - vd/3x) / re2 (A.1.5)

9/3s = (vd/3r +ud/3x) / ¢ (A.1.6)
where £ is the meridional velocity component, 7 = (uz-kvz)%.

Now, the circulation around an elemental meridional area dxdr is equal

to the 6 component of vorticity, (vx-—ur), times the area dxdr. By means of

the Jacobian, and Bgs. (A.1.5), (A.1.6), (1) and (2), we have

_ _ 2
(vx-ur) dxdr = (Wrr Wr/r-kwxx) dsd¥ /xr ¢ (A.1.7)
since
Ve = U = - Wxx/r - (‘{’r/r)r (A.1.8)
and
dxdr = |3(x,r)/3(s,¥)] dsdy
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SO

dxdr = lxsrw-xwrs| dsdy

dsd¥ /rg (A.1.9)

Alternatively, the differential of the circulation can be computed as

Yg ds, see Fig. 3b and the accompanying discussion. Eg. (9) gives Yg for

the special case T = T'(r), if we replace I' and T by ~dT and r, respectively.
Thus,
Y ds = (-ar/2mwr) (Rr+w) ds /¢ (A.1.10)
Egquating Egs. (A.1.7) and (A.1.10), and recalling that T = -2mwr,

produces the desired result of Eq. (3).
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NUMERICAL CALCULATION OF THE LEGENDRE FUNCTIONS

APPENDIX A.2

Our calculation of Q,, is based upon the relationship between Q,, and the
E2 =%

complete elliptic integrals of the first and second kind, K and E, respective-

ly, together with the remarkable approximations by C. Hastings

these functions*, each accurate to within + 2 x 10

8

(Ref. 11) for

Using nested multiplication for maximum efficiency, we have, for all

values of z > 0,

Q_%(l+z) =
Q+%(l+z) = (1+z) ©Q
where 2z' = z/(z2+2), and
al = 0.03742563713
a2 = 0.03590092383
ay = 0.09666344259
A = 1.38629436112
bl = 0.03328355346
b2 =.0.06880248576
b3 = 0.12498593597
B = 0.5+ b3z'
Cl = 0.0475738354¢6
e, = 0.06260601220
ey = 0.44325141463
p— t
c =1+ c32
dl = 0.04069697526
d2 = 0.09200180037

v2/(2z+2) {A-B&nz'}

(1+z) - v2(z+2) {C-D4&nz'}

%
AI BI

+ 0.014511962122"
+ a,z!

+ a,z'

+ 0.00441787012z"
1
+ blz

+ bzz

+ 0.01736506451z"

+ 0.00526449639z"'

+ dlz

C and D are computed as

follows,

(r.2.1)

(A.2.2)

(A.2.3)

(A.2.4)

(A.2.5)

* We might mention that there is an error in the reproduction of Hastings'

formulas for K and E in Ref. 12.

17.3.33 - 36 should be

replaced by (1 -m2).
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<%
It

0.24998368310 + dzz'

S
[l

d3z' (a.2.6)

We would like to emphasize the numerical importance of treating the
argument of Q:g as (l1+z) rather than simply @, say. The point is that
Qt%(l+z) ~ -%4fnz as z ~ 0 so that if we compute first z and then (1+z) = G,
to compute £n z we must recompute z = (W-1). For very small z's the process

of adding unity and then subtracting it again leads to very sizeable round-

off errors in z, and hence in £nz, and hence in Q+P(l+z).
-2
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APPENDIX A.3
NUMERICAL INTEGRATION SCHEMES -

Y(x,r) Calculations In MAIN CODE. Consider the calculation of any of the

integrals, say Iv’ which occur in the stream function,

K -
¥(x,r) = Ar’/2 + 3 GE, tyix,r) v, (E) dE
v=1 0
2 K
= Ar</2 + Y I,(x,x) (A.3.1)
v=1 .

For x = 0, the singularities of the integrand are as follows: G = Q({ng)
-1
as £ »- 0 if r = Rv’ but is regular otherwise, and Yy = 0(& 6) as § ~ 0 1if

v = K, but is regular otherwise. Depending on these circumstances, the inte-

1
le]

grand is either O(§ n€), OMUnE&E) or O(l) as & » 0; in any event it is

O(£_3) as £ - o, Therefore, we first introduce a new variable p defined by

ul'l-+u3). The effect of the u3 term is to compress the "tail" portion

£ =
so that we can, with very good accuracy, replace the upper limit § = « by

1.1

U =5, say. The effect of the term is to alter the behavior at the origin

to 0(u %% nyuy, o048

1
=%

) or O(1l). Since the woist possible singularity is
now weakes than p *°, the p integration is well suited to Gauss-Chebyshev inte-
gration, which is capable of coping with singqularities up to sguare root

strength at one or both end points. For this integration scheme, we then set

U = 2.5(t+l) to change the interval to -1 < 1 < 1 and obtain,

L
.. 2.5m (2£-1)m
1,(0,r) = 55— KZ F [cos —ZL—_] (a.3.2)
=1
where
F(t) = /1-1% GI&,t,(8);0,r] (.10 1+ 3% v (@) (a.3.3)

For x > 0, we split the £ integral into two parts, 0 to x and x to «,
and proceed along lines similar to the x = 0 case for each of these parts.

This gives
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L
. T (22-1) 7 (2£-1)m
I,(x,r) = Ei-ééa { XFy [cos ——?ﬁT——]-+ 5F, [cos ——jﬁr——] } (A.3.4)

taking Fl and F2 as

Fo(t) = V1-1% GLE,t (E)sx,x] v, (£)

F2(T) = /{jzz G[&,tv(i);x,r] (l-+3u2) Yv(E) (A.3.5)
w;th the change of variables here of & = x(1+1)/2 in Fl and £ = (x-+u-+p3),
g = 2.5(t+1l) in F2.

From experience, we use L = 80 in Eg. (A.3.2) if r # Rv’ and L = 160 if
r = Rv' In Eq. (A.3.4), we use L = 40 if r is nof on tV(E), and L = 80 if
it 44,

As an example of the accuracy thus achieved, we note that with K = 1,
Tl(x) = 1.0, Yl(x) = 1.0 and A = 0, for example, we compute ¥(0,1) = 0.25002
compared with an exact value of 0.25

Actually, it is uneconomical to require such a high level of accuracy
for all steps of the iteration, since the first couple of iterates are not
particularly close to the exact solution anyway. As a consequence, wé have
introduced an integer input variable NSWTH into our MAIN CODE. For all
iterations < NSWTH we let L = 20 for aff integrals in the MAIN CODE, including

those in the vortex density calculation, to be discussed below, and for all

iterations > NSWTH we switch to the more accurate scheme. By way of com-
parison, for the above case with K = 1, Tl(X) = 1.0, Yl(x) = 1.0 and A = 0,
we compute ¥(0,1) = 0.25179 for L = 20, compared with the more accurate value

of 0.25002 for L = 160.

All Vortex Density Integrals In MAIN CODE. For any one of the integrals

involved in the calculation of the vortex density, say,

I(x,r) = j~ F(g;x,r) dg&
0

we utilize the following Gauss-Chebyshev scheme,
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L
I(x,r) = 5 F [cos 13£1£L1] . (A.3.6)

3T 2 2L
where
F(r) = /1-1° { x FL0.5x(T+1) ;x,r] +
x FL0.5%(T+3) ;x,r] + 15u2F[(2x+u3);x,r]} (A.3.7)

with u = 2.5(1t+1) and L = 20 for all iterations < NSWTH, and L = 40 for all

iterations > NSWTH.

¥(x,r) Calculations In STREAMTUBE CODE. For x < 0 we compute our ¥'s
according to Egs. (A.3.1) - (A.3.3), and for x > 0 according to Egs. (A.3.1),
(A.3.4) and (A.3.5). If |x| < 0.05, we use L = 160 and if |x| > 0.05, we

use L = 80.

Velocity Integrals In VELOCITY BOX CODE. To determine the velocity com-

ponents, we have to evaluate the expressions,

K o
1
ulx,r) = A + = Y, j. G_(g,t, :x,r) v, d& r >0
4 r 1 Yo r k k !
1 & ® 3 2. .2,-3/2
=X+ 3 2; _[ ty [(E-%) %+t ] v, g , r =20
k=1 Y0
1 & *®
vix,xr) = - 3 G (E,tyix,x) v, d&  , r >0
k=1 Y0
=0 , r=20 (A.3.8)

In these equations, Gr and GX may be derived from Eg. (5) with the help of

Eg. (13). We find that Gr is identical to G see Egs. (14) and (15), if we

TI
replace t by ty and T by r and interpret all lengths in their nondimensional

form. For GX we obtain
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x-€
~2
4ﬂ(m2-l)/rtk

GX(E,tk;x,r) = [wzQ%(wz) -Q (wz)] (A.3.9)

P
~%

in which the argument o, is identical to » of Eg. (6) with p replaced by t

2

Instead of a Gauss-Chebyshev scheme for the integrals appearing in

K*

Egs. (A.3.8), better accuracy was achieved by splitting each integral into
thirteen parts, from 0 to 0.001, 0.001 to 0.01], 0.01 to 0.1, 0.1 to 0.5, 0.5
to 1.1, 1.1 to 1.19, 1.19 to 1.2, 1.2 to 1.21, 1.21 to 1.3, 1.3 to 2.0, 2.0 to
10, 10 to 50, and 50 to 200, and then using a ten point Gauss-Legendre formula
on each part.

As a measure of the accuracy of this approach, consider again the simple
special case K = 1, Tl(x) = 1.0, Yl(x) = 1.0 and X = 0. We compute u(0,0),
u(0,0.5), u(0,0.9), u(0,0.99) and u(0,0.999) all equal to 0.499992, compared
with the exact value 0.5, and u(0,1.0) = 0.24995, compared with the exact

value 0.25
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APPENDIX A.4
COMPUTER CODES AND LISTINGS

Description Of MAIN CODE. The MAIN CODE, written in Fortran IV for the

IBM 1130 Computer at Sage Action, Inc., contains the iterative solution for

én)(x), as described in the foregoing

the shapes Tén)(x) and vortex densities ¥y
THEORETICAL DEVELOPMENT.
The physical input consists of A, K, the Rk's, and the Pk's for k = 1

through K, where Ry = 1.0 . Important non-physical input includes N and the

associated Bv's and cj's, N' and the associated av's, M and the associated

§.'s, and the initial vortex density and shape coefficients aég) and bﬁg).

v
(0), (0)
K kj S
but this need not be the case.

Generally, all of the a s, b = 0, as implied by Egs. (34) and (35),

Maximum allowable values of K, N, N' and M are K < 18, N < 11, N' < 8
and M < 10.

As a measure of the computing cost, the machine time per iteration for
Cases 1 and 2 was approximately 10 minutes and 3 hours respectively, with the
more accurate final iterations taking about twice as long. This is not as
bad as it sounds, however, since the IBM 1130 is a relatively slow machine,
with a correspondingly modest hourly cost.

Finally, as a word of caution, we note that convergence of the iteration
depends somewhat on the choice of the Bv's, cj's and dv's. The values used

in Cases 1 and 2 were arrived at essentially by trial, but they seem to work

well for a variety of other cases as well.

Description Of STREAMTUBE CODE. The purpose of the STREAMTUBE CODE is to

compute the streamtube pattern corresponding to the vortex wake configuration
obtained from the MAIN CODE.

Basically, we first compute ¥(x,r) at 25 or less specified (x,r) "field
points", and then search for those Y values by interpolation throughout a
network of computed values. The "interpolation net" is broken into two
regions. Region 1 consists of the intersection of the prescribed x and r
values; 20 or less negative x's, say from 0.0 back to -0.6, and 25 or less r's,
say from 0.0 up to 1.5 — not necessarily evenly spaced. Region 2 is defined

by 27 or less positive x's, say from 0.0 to 1.2, and 20 or less evenly spaced
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r's, from TK(x) up to some prescribed constant such as 1.5 . Since Region 1
is rectangular, we use three point interpolation in both x and r there, whereas
we interpolate only in r in Region 2 because of the nonlinear slipstream
boundary. The interpolated locations are then printed out.

To trace these streamtubes in the sfipstream region, X > 0 and
0 <r < TK(x), we usually interpolate by hand from the interpolation net
printed out in the last iteration of the MAIN CODE. For the special case of
K = 1, though, we can simply rerun the STREAMTUBE CODE with the constant r
boundary of Region 2 replaced by r = 0 and avoid excessive duplication of the
upstream calculation by use of only one (x,r) point in Region 1.

Besides the field points and net points, the input consists of A, N, N',

M and K and the R I'N's, a, .'s, b,.'s and c.'s.

1
k % 'k kj kj 3

Description Of VELOCITY BOX CODE. The VELOCITY BOX CODE simply computes
2

the meridional velocity (u -+-v2)1/2 and its inclination tan_l(v/u) at arbitrarily
many (x,r) field points on the propeller disk, x = 0 and 0 < r < 1, and on the
"box" defined by x = -0.6 and 0 £ r < 1.5, -0.6 £ x £ 1.2 and r = 1.5, and
x =1.2 and 0 <r < 1.5

The input consists of the (x,r) field points, plus A, N, N', M and K and

the R r.'s, s, b,.'s and cj's.

] 1
k 57 'k 23 k3

All three codes use extended precision.

Computer Code Listings. Listings of the three computer codes are re-

produced on the following pages.
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MATN CODE
MPROG
THE MAIN CODE CONSI1STS OF THREE DISTINCT PROGRAMS LINKED TOGETHER =

MPROG 1S THE PROGRAM INITIALLY EXECUTEDs IT DIRECTS ALL INPUT AND
INITIALIZATIONs UPON COMPLETIONs A LINK IS TAKEN TO SPROGe

SPROG CONTROLS THE SHAPE CALCULATION PORTION OF THE MAIN CODEe UPON
COMPLETION OF EACH ITERATIONs A LINK IS TAKEN TO GPROGe

GPROG DIRECTS THE VORTEX DENSITY CALCULATION OF THE MAIN CODEs UPON
COMPLETION OF EACH ITERATIONs THE MOST RECENT SET OF COEFFICIENTS
ARE STOREDs IF MORE ITERATIONS ARE TO BE PERFORMEDs A LINK IS TAKEN
BACK TO SPROGe

ALL INPUT FOR THE MAIN CODE IS5 DONE IN SUBROUTINE INITLs
INPUT VARIABLES ARE AS FOLLOWS =

VARTABLE NAME DESCRIPTION
M TWO DIGIT MONTH OF THE YEAR
IC TWO DIGIT DAY OF THE MONTH
Iy TWO DIGIT YEAR
KASE TEN CHARACTER CASE IDENTIFICATICN
LAMBA ADVANCE RATIO
NN NUMBER OF COLLOCATION POINTS IN SOLUTION OF VORTEX DENSITY

FOR OUTER VORTEX TUBE = ALSO NUMBER OF TERMS IN
VORTEX DENSITY FUNCTION FOR OUTER VORTEX TUBE

NP NUMBER OF COLLOCATION POINTS IN SOLUTION OF VORTEX DENSITY
FOR INNER VORTEX TUBES = ALSO NUMBER OF TERMS IN
VORTEX DENSITY FUNCTION FOR INNER VCORTEX TUBES

MM NUMBER OF AXIAL STATIONS USED IN STREAM FUNCTION
INTERPOLATION = ALSO NUMBER OF TERMS IN STREAM
FUNCTION
KK NUMBER OF STEPS IN THE PIECEWISE CONSTANT CIRCULATION
DISTRIBUTION
ITBEG BEGINNING ITERATION NUMBER
ITEND ENDING ITERATION NUMBER
NPLOT NUMBER OF ITERATIONS TO BE PLOTTED ON ONE GRID
NSWTH NUMBER OF ITERATION AT WHICH INTEGRATION ACCURACY IS TO
BE INCREASED
RR RADIAL LOCATIONS OF STEPS IN CIRCULATION DISTRIBUTION
CAPGM PIECEWISE CONSTANT CIRCULATION DISTRIBUTICN
BETA AXTAL STATIONS USED IN SOLVING FOR THE VORTEX DENSITY
ON THE OUTER VORTEX TUBE
ALPHA AXTAL STATIONS USED IN SOLVING FOR THE VORTEX DENSITIES
ON ALL BUT THE OUTER VORTEX TUBE
DELTA AX1AL STATIONS USED IN STREAM FUNCTION INTERPOLATION
C EXPONENTS IN MATCHING FUNCTION FOR VORTEX DENSITY ON
OUTER VORTEX TUBE
B COEFFICIENTS IN REPRESENTATION OF VORTEX TUBE SHAPE
A COEFFICIENTS IN REPRESENTATION OF VORTEX DENSITY

NOTES ON INPUT =
1 IF KK=1ly NP AND BETA NEED NOT BE SPECIFIED
2 IF 1ITBEG=0s A AND B COEFFICIENTS ARE SET TO ZERO
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10

20

10

10

REAL LAMBA

COMMON IMyID9IYsKASE(S5) s LAMBAINNINP sMMeKK9IREC19IREC2
¥RR{18!9CAPGMIL19) »GMINF(2918)sA(11)sB(10)sC(11),
*ITBEGIITENDoNPLOTsNSWTHINPSI s ITERTWPSINF{18) sBETA{11)+ALPHA(8)
*DELTACLIO0) 9o TRHS(L11911) s TLHS(11)»TAUL(80) s TAU2(40)sTAU3(20)

DEFINE FILE 1(189329UsIRECL)s 2(36+33sUsIREC2)s 31(1+320sUsIREC3)

* 4(193200UsIREC&L)Y s 5{2049320sUyIRECS)
CALL INITL

CALL GAMIN

ITERT=ITBEG=1

CALL BPLOT

DO 10 K=1sKK

CALL SPLOT(K)
CONTINUE

DO 20 K=19KK

CALL GPLOT(K)
CONTINUE

CALL EPLOT(1+540+0.0)
CALL LINK(EPROG)

END
SPROG
REAL LAMBA

COMMON IMeID»1YSKASE(S) s LAMBA SNNINPIMMeKKs IRECL19IREC2
*RR(18) 9sCAPGM(19) sGMINF(2918)+A(11)+B(10)sC(11)y
*TTBEGY ITENDsNPLOT oNSWTHINPSI» ITERTsPSINF (18} 9BETA(11) sALPHA(B)
#DELTA(10) s TRHS(12911)sTLHS(11)»TAUL(BO) s TAU2(40)»TAU3(20)
DEFINE FILE 1(18932sUsIRECL)s 2(36333sUsIREC2)s 3(193209UsIREC3)
* 4(193200UsIRECG) Y 5(10+320sU9IRECS)

CALL SCALE(1e40914095405040)

ITERT=ITERT+1

CALL BPLOT

CALL PSINIL

CALL PSIN2

DO 10 K=1sKK

CALL REGIN(K)

CALL ESOLV(TRHS»TLHS#BsMM)

WRITE(LIIK) (B(J) sJd=19MM)

CALL SPLOTI(K)

CONTINUE

CALL EPLOT{1+5405040)

CALL LINK(GPROG)

END
GPROG
REAL LAMBA

COMMON IMsosIDsIYsKASE(S) sLAMBAINNINPsMMsKKsIRECI9IREC2)

*RR{18) 9 CAPGM{19) sGMINF{29s18) 9A{11)sB(10)»C(11)y
*ITBEGIITENDsNPLOTsNSWTHINPSI 9 ITERTsPSINF(18)eBETA(L11)9ALPHA(B)
#DELTA(CL10)»TRHS(11s12)sTLUHS(11)9TAUL(BO) »TAU2(40)9sTAU3(20)

DEFINE FILE 1(189329UsIRECL)s 2(36933sUsIREC2)s 3(193209UsIREC3)

* 4{193209UsIREC4) s 5(109320sUsIREC5)
* 6L18Cs32+UsIRECOE) 70180933 9UsIRECT!
CALL SCALE(140314035eC9060)

CALL GAMIN

KLES1=2KK=1

IF(KLESY1)40930+10
DO 20 K=14sKLES1
CALL GAMM1(K)
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20
30

40

50

60
70

C EQU

10

20

30

40

3000
3001

C INT

CALL ESOLV(TRHS»TLHS3AWNP)
K2=18+K

WRITE(2'K2) (A(J)eJ=19NP)
CALL GPLOT(K)

CONTINUE

CALL GAMM2 (KK}

CALL ESOLV(TRHSsTLHSsAsNN)
K2=18+KK

WRITE(2'K2) (A(J)9J=1eNN)}
CALL GPLOT(KK)

DO 50 K=1¢KK

K2=l8+K
READ(2'K2) {A(J) 9J=1sNN)
WRITE(2'K)I(A(J) eJ=19NN}
CONTINUE

CALL PUTCF
IF(ITERT=ITEND)&60s70970
CALL EPLOT(195404040)
CALL LINK(SPROG)

CALL EPLOT(1418009040)
CALL EXIT

END

SUBROUTINE PSIN1

REAL LAMBA

COMMON IMeIDsIYSKASE(S5) sLAMBAINNINPIMMeKKes IRECL1sIREC2
#RR{18)9sCAPGM(19)sGMINF (29181 4A(11)+B(10)sC(11)
*ITBEGs ITENDINPLOT s MNSWTHINPSI o ITERTHIPSINF(18)eBETA(L11)sALPHA(B) s
#DELTA(I0) s TRHS(11911)sTLHS(11)sTAUL(BO)»TAUZ2(40)»TAU3(20)
ATION 23

WRITE(393000)

CALL TAUFT(1lsL1l)

CALL TAUFTI(2sL2)

DO 40 K=1sKK

PSINF(K)}=040

DO 30 NU=1sKK

IF(NU=K)20910+20

CALL ONINT(TAUlsL1sRR(K)sNUsSUM)

PSINF(K)=PSINF (K)+SUM

GO TO 30

CALL ONINT(TAU2sL2sRR(K)NUISUM)

PSINF(K)=PSINF (K)}+SUM

CONTINUE

PSINF(K)=LAMBAXRR(K)*#2/240+PSINF(K)
WRITE(343001)RR({K)sPSINFI(K)}

CONTINUE

RETURN

FORMAT(//' PSI AT X = 0 AND R = R SUB K!'/}
FORMAT (10X 'PSI(Os'sFba2s') =19E20411)

END

SUBROUTINE ONINT(TAUsLLIRsKsSUM)
DIMENSION TAU(1)

EGRATION FOR EQUATION 23

SUM=040

DO 10 L=1sLL

S1=245#(140+TAU(L))
52=2¢5%(10=TAU(L})
X1=S51%#]41+51%#51%#S51
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X2=52%%] ¢ 14+52%#52%52
T1=TTFCT(KsX1)
T2=TTFCT{(K»X2)
G1=GGFCT(X1sT15040sR)
G2=GGFCT(X2sT29040sR)
TERM1=141%#S1%%#0,41+340%#51%51
TERM2=1,41%52%%041+340%#52#52
GAM1=GMFCT(2sKsX1)
GAM2=GMFCT (29K 9X2)
ROOT=SQRT(1e0=TAU(L)*%2)
F1=ROOT*C]1#TERM]1*GAM1
F2=ROOT*G2%TERM2 *GAM2
SUM=SUM+F1+F2

10 CONTINUE
SUM=SUM%3,926990816/LL
RETURN
END

SUBROUTINE PSIN2

REAL LAMBA

DIMENSION TT(37)sPSI(37)

COMMON IMsIDsIYIKASE(S5) s LAMBASNNINP oeMMeKK 9 IRECLIREC2
*RR(18) 9CAPGM{19) sGMINF(2918) sA(11)98(20)eC{11)>
*ITREGy ITENDyNPLOTyNSWTHINPSI» ITERTsPSINF {181 sBETA(11)sALPHA(B)»
*DELTACLOY s TRHS(11911)oTLHS(11)sTAUL(B8O) s TAUZ2(40)9TAUA(20)

C EQUATION A3.1

WRITE(343000)

CALL TAUFT(2sL2)

CALL TAUFT(3+L3)

TT(1)=040

PSI{11=040

DO 50 J=1MM

DC 20 I=2yNPSI

PSI(1)=040

IF(1=2%(]1/2))20+10+20

10 TTUI+1)=TTFCT({1+1)/2yDELTA(J))
TT(I)=ATT(1+1)+TT(1=1))/240

20 CONTINUE
DO 30 K=1»KK
CALL TWINT(TAU29sL2+DELTA(J) 9K o TT(2%K+1) 9 SUM)
PS1{2#K+1)=PSI(2%K+1)+SUM
CALL THINT(TAU3SL3WDELTA(J I sK s TTePSI¢NPST)

30 CONTINUE
DO 40 I=2sNPS]

PSI(1)=LAMBAXTT(I)%%2/240+PSI(1I)

40 CONTINUE
WRITE(343001)DELTA(Y) o (TT(LI)sPSI(I)el=1eNPSI)
WRITE(SYJ)(PSI(I)sTT(I)sI=19NPSI)

50 CONTINUE

RETURN
3000 FORMAT(///' PSI NET FOR INTERPOLATION'//14Xe1HX99Xe1lHRs12Xs8HPSI (X
*3R))
3001 FORMAT(5X92F10e5+E20410/(15X9F10e59E20410))
END

SUBROUTINE TWINT(TAUsLL 9XsKsR s SUM}

DIMENSION TAUI(1)
C INTEGRATION FOR EQUATICN A3.1 WHEN R IS ON VORTEX TUBE K

SUM=Ce0
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DO 10 L=1sLL

X1=X%#{140+TAUIL)) /240

X2=X%(160=TAU(L)) /240

Tl=TTFCT(KsX1)

T2=TTFCT(KeX2)
SUM=SUM+X/2sO0*SQRT (1 e0=TAU(L ) ##2 )} # (GGFCT(X19sT1leoXsR)*GMFCT(2sKeX1)+
* GGFCT(X29T29XsR)I*GMFCT (29K sX2))
S1=22s5%(1e0+TAU(L))

S2=2+5%#(140~TAU(L))

X1=X+S1+S1%#51#S51

X2=X+S2+52%#52#%#52

Tl=TTFCT(KsX1}

T2=TTFCT(KeX2) )

SUM=SUM+2 ¢ 5%SQRT (1 0=TAU(L ) %%2) %
* (GGFCT(X19T1oXoRI*(140+3e0%#S1%S]1)*#GMFCT(29KeX1)+
* GGFCT(X29T29XsR)%{140+340%52%S2)%#CGMFCT(29KsX2))

10 CONTINUE

SUM=SUM%1,45707963268/LL

RETURN

END

SUBROUTINE THINT(TAUSLLXsKsTTePSIsNPSI)
DIMENSION TAU(L1)oTT(1})ePSI({1)

C INTEGRATION FOR EQUATION A3,1 WHEN R IS NOT ON VORTEX TUBE K
DO 10 I=2sNPSI
PSI(II=PSI(1)I*LL/1e5707963268

10 CONTINUE
DO 40 L=1lsLL
S3u245%(1e0+TAVILY))
S4=245%(140=TAU(L))
X1=X%(1s0+TAUIL)) /240
X2=X%(1e¢0=TAU(L) )/ 240
X3uX+53+53%#53#53
XG=X+544+S54%S54%54
Tl=TTFCT(KeX1}
T2=TTFCT(KsX2)
T3=TTFCT(KsX3)
Ta=TTFCT(KsX4)
GAM1=GMFCT(2sKoX1)
GAM2=GMFCT (29K 9X2)
GAM3=GMFCT(2¢K9X3)
GAM4=GMFCT( 29K s X4)
ROOT=SQRT(140=TAU(L ) *%2)
TERM1=ROOTH#0 (5% X*GAM]
TERM2=ROOT#(0¢5%X*GAM2
TERM3=ROOTH(2e5+7¢5%53%#53 ) #GAM3
TERM&4=ROOTH {2e5+T e 5%S4%#54 ) ¥GAM4
DO 30 1=2sNPSI
IF(2%K+1=1)20930420
20 R=TT(1)
PSI{II=PSI(I)4+GGFCT(X1sTLoXsR)IHTERMI+GGFCTIX29T2¢X9sR)*TERM2+
* GGFCT{X3sT2eXsRI®TERMI+GGFCT(X49T49XsR)*TERMG
30 CONTINUE
40 CONTINUE
DO 50 I=2sNPS1
PSI(])=PSI(1)1#1,57079632268/LL
50 CONTINUE
RETURN
END
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SUBROUTINE REGIN(K)
REAL LAMBA
DIMENSION TT(37)sPS1(37)
COMMON IMsIDsIYsKASE(S) sLAMBASNNINPIsMMsKKs IREC19IREC2)
*RR(18) sCAPGM(19) sGMINF{2+18)sA(11)9B(10)sC(11)s
*ITBEGs I TENDsNPLOT sNSWTHeNPSI s ITERT9PSINF(18)sBETA{11l)sALPHA(B)»
*DELTA(L10) s TRHS(11s11)sTLHS(11)»TAUL(BO)»TAUZ(40)9TAU3(20)
C SHAPE INTERPCLATION FOR EQUATION 36
READ(311) ((TRHS(JaNU) sNU=19MM) s J=1 syMM)
DO 60 J=1sMM
READ(5'J)(PST(L) s TT(L)sL=1sNPSI)
CO 10 NREGN=3sNPSIs2
IF(PSI{(NREGN)=PSINF{(K})10+20420
10 CONTINUE
GAMSM=0,40
DO 15 KSUM=KsKK
GAMSM=GAMSM+GMFCT(2+sKSUMIBETA(J) )
15 CONTINUE
TLHS(J)=SQRT(TTFCT(KsDELTA(J) ) % #2424 0% {PSINF(K)=PSI(2%K+1}))/
* (LAMBA+GAMSM*(DELTA(J)+0e15)/(DELTA(J)+0e30) ) )1=RR(K]}
GO TO 50
20 T1=TTINREGN)
T2=TT(NREGN=1)
T3=TT(NREGN=2)
P1=PSI(NREGN)
P2=PSI (NREGN=1)
P3=PSI(NREGN=2)
CCOEF=(P3=Pl+(T1=T3)*(Pl=P2)/(T1l=T2))/ (T1%T2=T1%#T3=T2%T34+T3%T3)
BCOEF=(P1=P2)/(T1=T2)=CCOEF*(T1+T2)
ACOEF=P1=BCOEF*T1=CCOEF*T1%*T1
TPLUS=SQRT (BCOEF*BCOEF =4 ¢ O%CCOEF* (ACOEF=PSINF{K)))
TMINS==(BCCEF+TPLUS)/(2+40%CCOEF)
TPLUS==~(BCOEF=TPLUS)/{2+0%CCOEF)
IF(T1=TPLUS)Y20940925
25 IF({TPLUS=T3)20940+40
30 TLHS{JI=TMINS=RR(K)
GO TO 50
40 TLHS(J)=TPLUS=RR({K)
50 CONTINUE
NREGN=NREGN/2
60 CONTINUE
RETURN
END

FUNCTION GGFCT(XIsTsXXsTT)

C EQUATION 5
TERM1=TT*T
DEL= (XX=XT1)%¥%*2
Z=((TT=T)%*24+DEL)/(240*TERM1)
CALL QQPMH(ZsQPHsQMH)
GGFCT=SQRT(TERM1)/642821853072%QPH
RETURN
END

SUBROUTINE SPLOT(K)

REAL LAMBA

DIMENSION XW{ll)sTTW(11)

COMMON IMoIDsIYsKASE(5) sLAMBA SNNsNPsMMoKKs IRECL9IREC2
*RR(18) 9CAPGM{19)sGMINF(2918)9A(11)sB(10)sC(11)
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#]TBEGo ITENDINPLOT oNSWTHoNPSI s ITERTPSINF(18)9BETA(11)9ALPHA(8)
*DELTA{1C) s TRHS(11911)»TLHS(11)9TAUL(80)»TAU2(40)»TAU3(20)
C PRINT AND PLOT ROUTINE FOR VORTEX TUBE SHAPE
XW(1)=0,01
DO 8 J=1s10
IF(J=MM)4 496
4 XW{J+1)=DELTA(J)
GO TO 8
6 XW(J+1l)==2,0%%125
TTW(J)==240%%125
8 CONTINUE
KGO=ITERT=ITBEG+1
KGO=KGO={NPLOT+1)#(KGO/(NPLOT+1})
KGO=K=1+( {KGO+2 ) *(KGO+3))/2
KPEN=1
DO 40 I=1,101
XC=(I=140)/50e0
YC=TTFCT(KsXC)
IF(YC)30410010
10 IF(1e0=YC)30+20420
20 XP=10=XC*540
YP=YC#5,0
CALL EPLOT(KPENsYPsXP)
KPEN=2
IF(1=KGO*(1/KGQO) 140930940
30 KPEN=1
40 CONTINUE
IF(K=1)50+504960
50 WRITE(3+3001){(XW{(I)eI=1910)
60 MPLUS=MM+1
DO 70 I=19sMPLUS
TTWLI)=TTFCT(KsXW(1))
70 CONTINUE
TKINF=TTFCT(K9100040)
WRITE(3+3002)Ke(TTWII)}oI=1910)sTKINFe(B(J)sJ=1sMM)
WRITE(3+3003)
RETURN
3001 FORMAT(///12Xs1HX92X910F9e3 95X s4HINFe/)
3002 FORMAT(8BH ' T SUB#I12+5X9s11F9¢5/2H '/11H ' B COEFFS+9Xe5E18410/
*(2H '+18X95E1841C))
3003 FORMAT(2H *'/2H ')
END

SUBROUTINE GAMM1 (K)

REAL LAMBA

COMMON IMseIDsIYIKASE(5) s LAMBA SNNINPsMMoKK s IREC1IREC2
*RR(18)sCAPGM(19) sGMINF(2918)»A(11)sB(10)sC(11)
*ITBEGY ITENDsNPLOT sNSWTHINPSI s ITERT9PSINF(18)sBETA(11)sALPHA(B)»
*DELTA(L10) 9 TRHS(11922) s TLHS(11)sTAUL(80)sTAUZ2(40)+TAU3(20)

C EQUATION 41

CALL TAUFT(3,L3)

DO 20 J=1sNP

TT=TTFCT{KsALPHALJ))

FAC=SQRT(1e0+TPFCT(KsALPHA(J) ) #%2)
FF=(CAPGM(K)=CAPGM(K+1)=(CAPGM(K) #%2=CAPGM(K+1)%%2)/
* (1245663706144%TT*%2))/{642831853072#GMINF (29K} *FAC)
TLHS(J) =060

DO 10 NU=]1sKK

CALL FOINT(OsTAU3WL3sALPHA(JI) » TToNUISUM)

TLHS (J)=TLHS{J)+SUM
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10 CONTINUE

20

C EQU

1¢
20

30
40

50
60

C INT

10

20
30

TLHS(J)=FF/(LAMBA+TLHS(J)}/TT) =140
CONTINUVE

READ(4 Y1) L (TRHS({JaNU) sNU=1oNP ) s J=1sNP)
RETURN

END

SUBROUTINE GAMM2 (K)

REAL LAMBA

COMMON IMsIDs1YIKASE(S) o LAMBASNNINPIMMeKKs IRECL1SIREC2
*RR(18)9»CAPGMI19) sGMINF(2+18)9Al11)9»BL10)»C(11)s
*ITBEGY I TENDsNPLOTosNSWTHINPSTI s ITERTsPSINF(18)9BETA(11)9ALPHA(B)»
*DELTA(L10) s TRHS(11s11)9TLHS(11)»TAUL(B0)sTAU2(40)sTAU3(20)
ATION 43

CALL TAUFT(3sL3)

DO 60 J=14eNN

TT=TTECT(KeBETA(J))

FAC=SQRT(1e0+TPFCT(KsBETA(J) ) %%2)
FF=(CAPGM(K)=CAPGM(K+1)={CAPGM{K) #%#2=CAPGM(K+1)%#%2)/
* (1265663706144 TT%%2)) /341415926536
GAMMA=GMFCT (19K eBETA(JI} )

CALL FOINT(JsTAU3L3sBETA{J) 9 TTeKeSUM}

TLHSIJ)={FF/ (2 0%#GAMMARGAMMA) % (2 4 0 %#GAMMA=GMINF (29K ) #FAC)=_AMBA)
* *TT=GMINF (29K ) *SUM

IF(KK=1)40+40+10

DO 30 NuU=1sKK

IF(NU-K)20+30920

CALL FOINT{(OsTAU3SL39BETA(JI) s TToNUSUM)
TLHS(J)=TLHS(J)=SUM

CONTINUE

TLHS(J)=TLHS(J) /GMINF (24K)

TERM=FF*TT#FAC/ (2¢0*GAMMA*GAMMA )

DO 50 I=1e¢NN
TRHS(JeI)=TERM*EXP (=3 40%*BETA(J) ) *BETA(J)#%C(I)+TRHS(Js1)
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE FOINT(IsTAUsLLsXsRs»K9eSUM)

REAL LAMBA

DIMENSION TAU(1)

COMMON IMyIDsIYsKASE(5) s LAMBASNNINPsMMyKKs IRECL9»IREC2Y
*RR(18)9CAPGM(19) sGMINF (29181 +A(11)9B(20)sC(11)s
*]TBEGe ITENDsNPLOToNSWTHeNPSTIs ITERT9PSINF(18)9sBETA(11)sALPHA(S8) s
#ODELTACLIC) 9 TRHS(11911)9TLMS(11)sTAUL(BO) s TAUZ(40)sTAU3(20)
EGRATION FOR EQUATIONS 41 AND 43
FACO(K#XO)=SQRT(1eO0+TPFCT(KeX0)*%2)
FUNCO(TAUOSFTLIsFT29FT39FT4sFT59FTE)I=SQRT(140=TAUOXTAUD) *
* (FT1+FT24FT3+FT4+FT5+FT6)
FUNCLIFOWXCoCO)=FOXEXP (=3 ,40%#X0)*X0%#CO

IF(I)3C+30y10

DO 20 J=1sNN

TRHS(19J)=0e0

CONTINUE

SUM=0e0

XOVR2=X/240

DO 70 L=1sLL

TAUL=TAU(L}
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__,._,,_,< |

S3=245%(140+TAUL}
S6=245%(160=TAUL)
X1=sXOVR2%#(1e0+TAUL)
X2=XOVR2#({340+TAUL)
X3m240%X+S53#S53 %83
X&4aXOVR2#*(1e0=TAUL)

X5 XOVR2# (3.0=TAUL)

X622 9 O#X+SEHSHEHSE
Tl=TTFCT(KeX1l)
T2=TTFCT(KsX2)
T3=TTFCT(K9X3)
To=eTTFCT(KsX4)
TS=TTFCTY(KeX5)
T6=TTFCT(KsX6)
FlaXOVRZ*GTFCT(X19T1lsXsR)
F2=XOVRZ2*GTFCT(X29T2sXsR)
F3xT7¢5%#S53%S3%GTFCT(X39T39XeR)
F4aXOVR2*¥GTFCT(Xa9T4eXeR)
F5=XOVR2#GTFCT(X59T59X»R)
F6=Te5%#S6*S6%GTFCT(X69TEsXsR)
IF({1)140440950 .

40 Fl=F1*GMFCT(1sKsX1)
F2eF2*GMFCT(1eK9X2)
F3=F3%GMFCT(19KeX3)
FaaFa%xGMFCT (19K 9 X4)
FO=FS5*GMFCT (19K eX5)
FeeFO6*GMFCT (19K 9 X6)
SUM=SUM+FUNCO(TAUL9FLeF2eF39F49F59eF6)
GO TO 70

50 Fl=F1l*FACO(KsX1)
F2=F2%FACO(KoX2}
F3mF3#FACO{K9X3)
Fua=F4*FACO(KoX4)
F52FS5#FACO(KeX5)
FO=FE*FACO(K9X6)
SUMESUM+FUNCO(TAULsF1sF29sF39F&4pF54F6)
DO 60 J=1sNN
Tl=FUNCL(FlsX1leC(J}))
T2=FUNCL(F24X2sC(J))
T3=FUNCI{F3eX3,4C(J))
Ta4xFUNCI(F49X4eC(J))
TS=FUNC1(F5eX50C(J))
T6=FUNC1(F69X6eC(J))
TRHS(IsJ)=TRHS(I9J)+FUNCO(TAUL»TL9oT29T39T4sT59T6)

60 CONTINUE

70 CONTINUE
SUM=SUM#] ¢5707963268/LL
IF(1)100+100+80

80 DO 90 J=1sNN
TRHS(I9J)=TRHS{1eJ)%1e5707963268/LL

90 CONTINUE

100 RETURN
END

FUNCTION GTFCT(XIsTsXXsTT)
C EQUATION 14

TERM1=TT#T

DEL= (XX=XI ) #%2

Z=((TT=T)**24DEL)/ (20 O*#TERM1)

CALL QQPMH(Z9QPHsQMH)
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C PRI

20

30
40

50
60

80

9C
100
3001
3002

3003

TERM2=TT*TT=T¥T
GTFCT=(TT#(DEL+TERM2) #QPH+T* (DEL=TERM2) ¥GMH) /
* (250132741229%SQRT(TERMI*TERM1#TERM1) *Z*(Z+240) )
RETURN
END

SUBROUTINE GPLOTI(K)

REAL LAMBA

DIMENSION XW({11l)sGMW(11)

COMMON IMsIDsIYIKASE(5) 9 LAMBAWNNINPosMMsKKIIRECL9IREC2
#RR{1B)sCAPCM(19) sGMINF (29181 sA(11)sB(10)9C(11)y
*ITBEGe ITENDoNPLOT yNSWTHsNPSI s ITERTSPSINF(18)9BETA(L11) sALPHA(B)
*DELTACI0) 9 TRHS({119112)sTLHS(11)sTAUL(80)sTAU2(40)sTAU3(20)
NT AND PLOT ROUTINE FOR VORTEX DENSITY

XW{1)=0a01

DO 8 J=1sl0

IF(J=MM) 49446

XW{J+1)=DELTA(J)

GO TO 8

XW(J+1)==240%%]125

GMW(J)==2,0%%125

CONTINUE

KGO=ITERT=ITBEG+1

KGO=KGO=(NPLOT+1)*(KGO/(NPLOT+1))

KGO=K=14{ (KGO+2 ) * (KGO+3)})/2

KPEN=1

DO 40 I=1+100

XC=1/5040

TPRIM=TPFCT(K e XC)

YC=GMFCT{29KeXC)/SQRT(1¢O0+TPRIM*TPRIM)

IF(0e25=ABS(YC) 130020420

XP=l10=XC#5,40

YP=YC*2040+1045

CALL EPLOT(KPENsYPoXP)

KPEN=2

IF{1=KGO*(]/KGO) 40930440

KPEN=]

CONTINUE

IF(K=1)50450+60

WRITE(343001)ITERT

MPLUS=MM+1

DO 80 I=1sMPLUS

TPRIM=TPFCT{KeXW(I))

GMW(I)=GMFCT(2sKeXW(I))/SQRT{1eO+TPRIM®TPRIM)

CONTINUE

WRITE(3+3002)Ke(GMW(I)oIx1910)sGMINF(2sK)s(A{J)sJ=1sNN)

IF(KK=K}10091004990

WRITE(3+3003)

RETURN

FORMAT(11H ITERATION s12/2H '/2H ')

FORMAT(12H ' GAMMA SUB#I291Xs11F9e5/2H '/11H ' A COEFFS19Xs5E18e10

*/{2H '»18Xs5E18410))
FORMAT(2H '/2H '}
END

SUBROUTINE INITL

REAL LAMBA

COMMON IMsIDsIYIKASE(S) o LAMBASNNINPIMMoKK o IRECLISIREC2
*¥RR(18)sCAPGM(19) sGMINF(2918)9A(11)9B(10)sCl11)s
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*ITBEGY ITENDsNPLOT oNSWTHINPSI» ITERTsPSINF(18)9BETA(L1)sALPHA(B)
*DELTA(10) 9 TRHS{11911)9TLHS(11)sTAUL(BO)sTAU2(40)+TAU3(20)
READ(292001)IMsIDs 1Y

WRITE{(343001)IMsIDs1Y

READ(292002) (KASE(I)sI=195) s LAMBAYNNINP sMMsKKeITBEGeITENDINPLOT»
* NSWTH

WRITE(293002) (KASE(I)sIx195)sLAMBAINNINP sMMsKKsITBEGsITENDINPLOT
* NSWTH

KLES1=KK=1

NPSI=2%KK+1

IF(NPLOT)10910520

10 NPLOT=]

20 READ{2+2003) (RRIK) sK=19KK)
WRITE(343003)(RR(K)sK=1pKK)
READ(292003) (CAPGM(K) sK=]19KK )
WRITE(3+3004) (CAPGM(K) sK=1 KK )
CAPGM{KK+1)=0e0
READ(2+2003) (BETAtJ) 9 J=1 9NN}
WRITE(343005)(BETA(J) pJ=xlsNN)
IF(KLES1)40+40530

30 READ(2+2003)(ALPHA(J) 9sJm1eNP)
WRITE(393006) (ALPHA(J) sJ=1sNP)

40 READ(232003)(DELTA(J) sJ=19MM)
WRITE(343007)(DELTA(J) sJ=19MM)
READ(292003)(C{J)sJ=1sNN)
WRITE(3+3008)(C(J)sJ=1sNN)
IF(ITBEG)1305100950

50 DO 60 K=]1sKK
READ(2+92004)(B{J)sJ=19sMM)
WRITE(L'KI(B(J) sd=]19MM)

60 CONTINUE
IF(KLES1114045904+70

70 DO 80 K=1sKLES1
READ{(2+2004) (A(J) sJ=19NP)
WRITE(2'K)(A(J)aJ=1eNP)
K2=18+K
WRITE(2tK2)(A{J) sd=1sNP}

B0 CONTINUE

90 READ(2+2004) (A(J)sJ=19NN}
WRITE(2'KK) (A(J) s J=1sNN)
K2=18+KK
WRITE(2'K2)(A(J)9J=1sNN)

GO TO 140
100 DO 110 JU=1s10
B(J)=0.0
110 CONTINUE
DO 115 J=1,11
AlJ)=0,0
115 CONTINUE
DO 120 K=]1 KK
WRITE(L1'K)(B(J)eJd=1s10)}
WRITE(2'K) (A(J)eJd=1911)
K2=18+K
WRITE(2'K2)(A(J)eJd=1911)
120 CONTINUE
1TBEG=1
GO TO 140
130 ITBEG==1TBEG+]
140 DO 160 J=lsMM
DO 150 NU=1sMM
TRHS{JsNU) =FFCT (NUsDELTA(J))
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150
160

170

180
190

200
2001
2002
2003
2004
3001
3002

3003
3004
3005
3Cc06
3C07
3c08

10
20
30

40

50
3001

< EQU

CONTINUE

CONTINUE

WRITE(3'1) ((TRHS(JsNU) sNU=1sMM) 3 J=14MM)

IF(KLES1)200+2004+170

DO 190 J=1sNP

DO 180 NU=lsNP

TRHS{JaNU) =EXP (=NU*ALPHA(J) )

CONTINUE

CONTINUE

WRITE(4'1) ( (TRHS(JsNU)sNU=1sNP ) »Jx19NP)

RETURN

FORMAT(315)

FORMAT (5A2sF10405815)

FORMAT (8F1040)

FORMAT(4E20411)

FORMAT(1RH1////% PRINTOUT OF INPUT FOR MAIN CODE'///1Xs315//71}
FORMAT (1X95A2/10Xs 7THLAMBA =9F1064/10X94HNN =9]13/10X04HNP =913/10X»
*4HMM 9 13/10X94HKK =913/10X97HITBEG =913/10X97HITEND =913/10Xy
*THNPLOT =413/10XsTHNSWTH =4913//)

FORMAT(//8H RR = $10F10e45/8X98F10e5)

FORMAT(//8H CAPGM =310F10+45/8X98F1065)

FORMAT(//8H BETA = »11F10e5)
FORMAT (//8H ALPHA =98F1045)
FORMAT(//78H DELTA =910F10e5)
FORMAT(//8H C = $11F1045)
END

SUBROUTINE BPLOT

REAL LAMBA

COMMON IMsIDsIYIKASE(S) s LAMBASNNSINP sMMIKK9 IRECLIIREC2
*RR(181ICAPCM{19) oGMINF(2+18)9A(11)9B(10)eC({11)y
*ITBEGYITENDsNPLOTsNSWTHINPSI S ITERTIPSINF(18)sBETA(L1)sALPHALS)
#DELTA(L10} 9 TRHS(11911) o TLHS(11) o TAUL(BO)sTAUZ(40)sTAU3(20)
WRITE(333C0L)YIMyIDsIYs(KASE(I)sI=1s5)sITERT
IF(ITERT=ITBEC)10+50920

CALL SCALE{1e0351s050s091260)

GO TO 40

JPLOT=ITERT=1TBEG+1

IF(JPLOCT=NPLOT*#(JPLOT/NPLOT)})50930450

CALL EPLOTI(19166e59040)

CALL SCALE(1e091eCs0e09140)

CALL EPLOT(190s09040)

CALL SCALE(14091e¢040s09=0438)

CALL EGRID(1+0409000026504)

CALL EGRID(030e091060914095)

CALL EGRID{(045e5910409140s10)

CALL EGRID(3+10e¢5910¢002e544)

RETURN

FORMAT (1H19I201H/91201H/91295X95A245X s ' ITERATION NUMBER'913//)
END

FUNCTION TTFCT(K#X)

REAL LAMBA

COMMON IMoIDsIYIKASE(S5) +»LAMBASNNINP sMMIKK9 IRECI9IREC2
*RR(18)sCAPGM(19) sGMINF(2s18)9A(11)9B(10)sC(11)
*]TBEGI ITENDINPLOTsNSWTHINPSI s ITERT9PSINF(18)+BETA(LL1)sALPHA(S8)»
*CELTACL0)9TRHS(11911)9TLHS(11)sTAUL(BO)»TAU2(40)9TAU3(20)
ATION 30

IF(K=IREC1+1)10920910
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10
20

30

C FIR
10
20

30

C EQU

C EQU

10
20
30

40

50
60

CALL GETCF(1lsKsBoMM)
2zEXP (=X)

BB=B(MM)

TTFCT=B(1)

DO 30 Jx2¢MM
TTFCT=TTFCT+B(J)
NUzMM=J+1
BBaB{NU)+2%BB
CONTINUE
TTFCT=RR(K)=TTFCT+2Z*BB
RETURN

END

FUNCTION TPFCT(KeX)

REAL LAMBA

COMMON IMeIDsIYIKASE(S) »LAMBAISNNSNPsMMeKK» IRECL9IREC2
#¥RR(18)+CAPCGM(19) oGMINF(2918)»A(11)eB(10)sC(11)»
*ITBEGs ITENDsNPLOT oNSWTHINPSI s ITERTIPSINF(18)sBETA(11)sALPHA(B)
*DELTA(LO) s TRHS(11911) s TLHS(211)sTAUL(80) s TAU2(40)»TAU3(2Q)
IF(K~=IREC14+1110920910
ST DERIVATIVE WITH RESPECT TO X OF EQUATION 30

CALL GETCF{lsKosBoMM)

Z=EXP (=X)

CC=MM*B (MM)

DO 30 J=2 MM

NU=MMeJj+1]

CC=NU*B(NU ) +2#CC

CONTINUE

TPFCT==2%CC

RETURN

END

FUNCTION FFCT(JsX)
ATION 32
FFCTaEXP(=J#X)=1,0
RETURN

END

FUNCTION GMFCT{(NEWLD#KsX)

REAL LAMBA

COMMON IMsIDs»IYsKASE(S) sLAMBAINNINPsMMyKK s IREC1sIREC2
#RR(18)9CAPCMIL19)9GMINF(2918)9A(11)sB(10)sC(11)y
*ITBEGs ITEND sNPLOT oNSWTHINPSI ITERTIPSINF(18)+BETA(L1)sALPHA(B)
*DELTA(L10) o TRHS(11411)sTLHS(11)sTAUL(B80)»TAU2(40)»TAU3(20)
ATIONS 31 AND 33

FACZSQRT({1e0+TPFCT(KoX)®%2)

K2=18%(NEWLD=1)+K

IF(KK=K}10910950

IF(K2=IREC2+1)20+30920

CALL GETCF(2+K29AsNN)

GMFCT=040

DO 40 J=14NN

GMFCT2GMFCT+A(J) xX%xC{J)

CONTINUE
GMFCT=GMINF(NEWLD oK) X (1o O0+EXP(=340#X) *GMFCT ) #FAC

RETURN

IF(K2=IREC2+1)60+70560

CALL GETCF(2sK2sA9NP)
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70

80

C EQU

10

C LEG

2=EXP (=X

EE=A{NP)}

DO 80 J=24NP

NU=NP=J+1

EE=A(NU}+2#EE

CONTINUE
GMFCT=GMINF(NEWLDsK)*(140+Z*EE ) *FAC
RETURN

END

SUBROUTINE GAMIN

REAL LAMBA

COMMON IMsIDsIYsKASE(5) sLAMBAINNINP oMMIKK s IRECLIIREC2

*¥RR{18) 9 CAPGM(19) sGMINF(2918)sA(11)9B(10)sC(11)»
*]TBEGs I TENDsNPLOT sNSWTHsNPSI 9 ITERTHIPSINF(18)9BETA(LL1)»ALPHA(B)
*DELTA(L10)9TRHS(11911)sTLHS{(11)sTAUL(BO)sTAU2(40}»TAU3(20)

ATION 29

SUM=040

DO 10 I=1sKK

NU=KK=I+1

TKSQR=TTFCT(NU+100040) %22
FF=(CAPGM(NU)=CAPGM(NU+1)}=(CAPGM{NU) %%2~CAPGM(NU+1)%#2) /
* (1245663C8*TKSQR) ) /341415927

GMINF (1 oNU)=GMINF (24NU)

GMINF(Z29NU) ==(LAMBA+SUM)+SQRT { { LAMBA+SUM) ##2+FF }
SUM=SUM+GMINF (2 sNU)

CONTINUE

RETURN

END

SUBROUTINE QQPMH(ZsQPHIQMH)

ENDRE FUNCTIONS AS DESCRIBED IN APPENDIX Ae2

Y=2/(Z+4240)

YLOG=ALOG(Y)

SQROT=SQRT(Z+240)
Az0+03742563713+0601451196212%*Y
A=0,03590092383+A%Y
A=0e09666344259+A%Y
A=1438629436112+A%Y
B=0e03328355346+0400441787012*Y
B=0+06880248576+B*Y
B=0e12498593597+B*Y

B=0e5+BxY
C=0e04757383546+0601736506451 %Y
C=06062606012204+C%Y
C=0e443251414634+CHY

C=1:0+C*Y
D=0e04069697526+0400526449639%Y
D20e¢092001800374+D*Y
D=20e249583683104+D%Y

D=D»Y
QMH=14414213562373/SQROT*(A=8%*YLOG!
OPH={Z+1¢0)#QOMH=14414213562373#SQROT*(C~D*YLOG)
RETURN

END
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SUBROUTINE ESOLV{AsBsSOLUTeN) .
DIMENSION A(11911)e8(11)9SOLUT(11.9IPIVI11)9sINDEX(112)sPIVOTI(11)
C SOLUTION OF EQUATIONS IN MATRIX FCORM
DETER=140
DO 10 I=1sN
IPIV{I)=0
10 CONTINUE
DO 200 l=]lsN
AMAX=0,0
DO 60 J=1lsN
IF(IPIVIJI=1)20+604+20
20 DO 50 K=1M
IF(IPIVIK)=11309509210 .
30 IF(ABS(AAAY)=ABS{A(JIK))I)I&0950050
40 IROWs=J
1COL=K
AMAX=A(JeK)
50 CONTINUE
60 CONTINUE
IPIV{ICOL)=IPIV(ICOL)+1
IF{IROW=ICOL)70s110970
70 DETER==DETER
DO 80 L=1¢N
SWAP=A{ IROWsL)
AUIROWeL)I=A{ICOL L)
A{ICOLsL)=SWAP
80 CONTINUE
SWAP=B( IROW)
B(IROW}=RB(1COL)
B{ICOL)=SWAP
110 INDEX(Is+1)=1ROW
INDEX(192)=1C0L
PIVOT(I)=A{ICOLsICOL)
DETER=DETER®#PIVOT(I)
A(ICOL»ICOLY=100
DO 120 L=1sN
A(ICOLsL)=ALICOLSL)/PIVOTID)
120 CONTINUE
BlIcoLi=8(1COL)/PIVOTI(])
DO 200 Ll=1sN
IF(L1=1COL)Y16042005160
160 T=A(L1sICOL)}
A{L1sICOL)=060
DO 170 L=1eN
ALLIoL)mALLL oL )=mA{ICOLsL)*T
170 CONTINUE
B(L1)=B(L1)=B(ICOL)*T
200 CONTINUE
210 CONTINUE
DO 220 1I=1sN
SOLUT(I)=B(11)
220 CONTINUE
RETURN
END

SUBROUTINE TAUFT(KGOsLL)

REAL LAMBA

COMMON IMy»IDsIYIKASE(S) s LAMBASNNINPsMMoKKIREC1sIREC2
#RR{18)»CAPGM(19) sGMINF (2918} sA(11)9B(10)sC(11)y
*ITBEGs ITENDoNPLOTINSWTHINPSI 9o ITERTsPSINF(18)9BETA{11)sALPHA(B)»
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*DELTA(10) s TRHS{11911)sTLHS(11)sTAULIB0)9sTAU2(40)»TAU3(20)
C TAUS TO BE USED IN GAUSS=CHEBYSHEV AS DESCRIBED IN APPENDIX Ae3
IF{ITERT~NSWTH110920%20
10 LL=10
GO TO 30
20 LL=10#2%%(4=KGO)
30 DO 70 L=1l.LL
TAU=COS5(341415926536%{240%L=1e0)/(440%LL))
GO TO (40+50460)9s KGO
40 TAUl(L)=TAU
GO TO 70
50 TAU2(L)=TAU
GO TO 70
60 TAU3(L)=TAU
70 CONTINUE
RETURN
END

SUBROUTINE GETCF(NFILEsNRECD» VECTRINUMBR)
DIMENSION VECTR(1)

C RETRIEVE CORRECT SET OF A OR B COEFFICIENTS
READ(NFILE'NRECD)(VECTR(I)sI=19sNUMBR)
RETURN
END

SUBRQUTINE PUTCF

REAL LAMBA

COMMON IMoIDsIYSIKASE(S) s LAMBAINNINPsMMyKK s IRECLI9IREC2S

*RR(18) 9sCAPGMI19)sGMINF(2918)9A111)sB(10)sC(11)>

#ITBEGY ITENDINPLOToNSWTHONPSI s ITERTsPSINF(18) sBETA(1I1)2ALPHA(B)

*DELTA(LO) o TRHS(11911) 9 TLHS{11)»TAUL(B80}sTAUZ(40)»TAL3(20)

C STORE A & B COEFFICIENTS TO BE PUNCHED AND USED AS INPUT

DO 40 K=1sKK

IREC=18%*(TERT=1})+K

CALL GETCF(1lsK»BsMM)

WRITE(SYIRECI(B(J) 9sJ=19MM)
10 IF{KK=K)20420430
20 CALL GETCF({2sKsAsNN)

WRITE(7VIREC) (A(J) sJ=14NN)

GO TO 40
30 CALL GETCF(2sKsAsNP)

WRITE(T7YIREC)(A(J) s J=14NP)
40 CONTINUE

RETURN

END
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NONOAOONNONANNONANAOANNANAONONDNOONNOODNNNONOHNNNDNDND

STREAMTUBE CO0ODE
PSNET

ALL INPUT FOR THE STREAMLINE CODE IS DONE IN SUBROUTINE INPUT.
INPUT VARIABLES ARE AS FOLLOWS =

VARIABLE NAME DESCRIPTION
M TWO DIGIT MONTH OF THE YEAR
1D TWO DIGIT DAY OF THE MONTH
1Y TWO DIGIT YEAR
KASE TEN CHARACTER CASE IDENTIFICATION
LAMBA ADVANCE RATIO
NN NUMBER OF TERMS IN VORTEX DENSITY FUNCTION FOR OUTER
VORTEX TUBE
NP NUMBER OF TERMS IN VORTEX DENSITY FUNCTION FOR INNER
VORTEX TUBES
MM NUMBER OF TERMS IN STREAM FUNCTION
KK NUMBER OF STEPS IN THE PIECEWISE CONSTANT CIRCULATION
DISTRIBUTION
NPF NUMBER OF FIELD POINTS
NX1 NUMBER OF AXIAL MESH POINTS IN REGION 1
NR1 NUMBER OF RADIAL MESH POINTS IN REGION 1
NX2 NUMBER OF AXIAL MESH POINTS IN REGION 2
NR2 NUMBER OF RADIAL MESH POINTS IN REGION 2
RR RADIAL LOCATIONS OF STEPS IN CIRCULATION DISTRIBUTION
CAPGM PIECEWISE CONSTANT CIRCULATION DISTRIBUTION
B COEFFICIENTS IN REPRESENTATION OF VORTEX TUBE SHAPE
A COEFFICIENTS IN REPRESENTATION OF VORTEX DENSITY
c EXPONENTS IN MATCHING FUNCTION FOR VORTEX DENSITY ON
OUTER VORTEX TUBE
XF AXIAL POSITIONS OF FIELD POINTS
RF RADIAL POSITIONS OF FIELD POINTS
X1 AXIAL POSITIONS OF MESH POINTS IN REGION 1
X2 AXIAL POSITIONS OF MESH POINTS IN REGION 2
R1 RADIAL POSITIONS OF MESH POINTS IN REGION 1
c UPPER BOUND FOR RADIAL MESH POINTS IN REGION 2

NOTES ON INPUT =
b IF XK=1s NP NEED NOT BE SPECIFIED

REAL LAMBA
COMMON IMsIDs»IYIKASE(S) sLAMBAINNINPsMMsKK9 IREC19IREC2
#RR(18)9CAPGM(19) sGMINF(2+18)9A(11)9B(10)sC(11)s
¥NPFoNX1sNR1IINX29NR29XF(25) oRF (25)9X1(20)9sR1(25)9X2(27)9R2(20)
*PSI(25)sTAUL(80)»sTAUZ2(40)
DEFINE FILE 1(18932sUsIRECL1)y 2(36933sUsIREC2)s 3(100+75sUsIREC3)
CALL INPUT(CC)
CALL GAMIN
IREC=1
WRITE(3453001)
DO 5 I=1sNPF
IF(ABSI{XF({I))=0e05)29343
2 CALL PINTG(TAU1s80sXF(I)sRF(I)sloKKsPSIsLAMBA)
GO TO &4
CALL PINTC(TAU29s40eXFII)sRF(I)91sKKsPSI s AMBA)
CALL OUTPT{IRECHAF(I)sRF(1)919sPSI)
CONTINUE
WRITE(3,3002)

AV T\
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o w3

40

3001
3002
3003
3004
3005

10

20

DO 10 I=1sNX1

IF(ABS{X1(I))=0s05)69797

CALL PINTG(TAULsB80sX1{I)»R1sNR1sKK»PSIsLAMBA)
GC TO 8

CALL PINTG{TAU2+40sX1(1)9sR1sNR1I9KKsPSI»LAMBA)
CALL OUTPT(IRECsX1(I)sR1sNR19PSI)

CONTINUE

WRITE(34+3003)

DO 30 I=1sNX2

TT=TTFCT(KKsX2(1I)}

DO 20 J=1sNR2
R2(J)=TT+(CC=TT)%#(J=160)/(NR2=160)

CONTINUE

IF(ABSIX2(1))=0as05)14916116

CALL PINTG(TAUL1»80sX2(1)sR29NR2sKKPSIsLAMBA)
GO TO 18

CALL PINTG(TAU24+409X2(I)9sR29NR2sKKsPSTsLAMBA)
CALL OUTPT(IRECHX2(I1)9R29NR29PSI)

CONTINUE

WRITE(3+3004)

DO 40 I=1sNPF

READ(3'I)PSI(I)

WRITE(343005)PSI(])

IREC=NPF

CALL REGN1(IRECsNX1sNR1sX1sR1sPSI(1))

CALL REGN2(IRECHINX29NR29X29R2¢PSTI(1)sKKsCC)
CONTINUE

CALL EXIT

FORMAT('1FIELD POINTS'/}

FORMAT(//// ' REGION 1 POINTS'!/)
FORMAT(/////' REGION 2 POINTS'/)

FORMAT (1H1)

FORMAT(////"' PS1='3sE176410s!' IS AT!)

END

SUBROUTINE INPUTI(CC)

REAL LAMRA

COMMON IMyIDsIYsKASE(S) s LAMBASNNINPsMMyeKK e IRECL9IREC2
#¥RR{18)9CAPGMI(19) sGMINF(2+18)9A{11)sB{10)9C(11)>
*NPF sNX19NRY sNX2sNR2oXF{25)sRF (25)9X1(20)sR1(25)9X2(27)9R2(20)»
#PST(25)9TAULIBOY»TAU2(40)

READ(24+2001)IMsIDs 1Y

WRITE(343001)IMsIDs!IY
READ(292002)(KASE(IYsI=135) 9 AMBASNNINPsMMyKKsNPFINXIINR]I +NX29NR2
WRITE(343002)(KASE{I)sI=105) s LAMBAINN oNP sMMsKKsNPFINX19sNRL1INX29NR2
READ(2+2003}(RR(K) sK=1pKK)}

WRITE(343003) (RR{K) sK=1sXK)

READ(292003) (CAPGM(K) sK=19KK)

WRITE(393004) (CAPGM(K) sK=19KK)

CAPGM(KK+11=040

WRITE(343005)

DO 10 K=1sKK

READ(292004)(B{J)rJ=1sMM)

WRITE(393006)(B(J)sJ=19eMM)

WRITE(L1I!K)(B(J)eJd=1sMM)

CONTINUE

WRITE(393007)

DO 50 K=1yKK

K2=18+K

IF(KK=K)30030040
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30 READ(2+2004) (A(J)eJd=1sNN)
WRITE(3s3006)(A(J)sJ=1sNN)
WRITE(2'K2) (A(J) s J=1sNN)

GO TO 50

40 READ(2+2004)(A(J)sJ=1sNP)
WRITE(3+3006)(AlJ)sJu=1sNP])
WRITE(2'K2) (A(J) sJ=19sNP)

50 CONTINUE
READ(242003)(C(J)sJm14NN)
WRITE(3+3008)(C(J}sJ=1sNN)
READ(2+2003)(XF(1)sI=1sNPF)
WRITE(393009)(XF{I)sI=1sNPF)

READ{2+2003) (RF({I)sIx1sNPF)
WRITE(3+3010)(RF{I}el=1sNPF)
READ(2+2003)(X1(1)sI=1sNX1)
WRITE(343011)(X1{I)sl=1sNX1)
READ(292003) (R1(I)sI=1sNR1)
WRITE(3+3012)(R1(1)sI=14NR1)
READ(2+2003)(X2(1)sI=1sNX2)
WRITE(343013)(X2(1)eI=1sNX2}
READ{2+2003}CC
WRITE(343014)CC

DO 60 L=1,80
TAUL(L)=2COS((2e0%L=1e0)%#341415926536/320,0)

60 CONTINUE
DO 70 L=1940
TAU2(L)2COS((240%L=1640)%#341415926536/160,0)

70 CONTINUE
RETURN

2001 FORMAT(315)
2002 FORMAT(5A2+F10e09915)
2003 FORMAT(8F1040)}
2004 FORMAT(4E20410)
3001 FORMAT(1H1////% PRINTOUT OF INPUT FOR STREAMLINE CODE'///1X#315//)
3002 FORMAT(1X»5A2/10Xs THLAMBA =9F10e4/10Xs4HNN =9I3/10Xs4HNP =913/10Xy
#4HMM =9 13/10X94HKK =913/10X95HNPF =313/10Xe5HNX] =913/10Xs5HNRL =»
#I13/10X95HNX2 =913/10Xe5HNR2 =413//)
3003 FORMAT{//BH RR = 10F10e5/8X98F1045)
3004 FORMAT(//8H CAPGM =410F10e5/8X98F1045)
3005 FORMAT(////' SHAPE COEFFICIENTS'/)
3006 FORMAT{6E20410)}
3007 FORMAT(////% GAMMA COEFFICIENTS'/)
3008 FORMAT(//' C (EXPONENTS FOR G FUNCTION WITH K=KK) ='/11F10e5)
3009 FORMAT(////' FIELD POINTSs X=!(/10F1246))
3010 FORMAT(/ ' FIELD POINTS» R='{/10F126))
3011 FORMAT(////' REGION 1 MESH POINTSs X='(/10F1246))
3012 FORMATI(/ ' REGION 1 MESH POINTSs R='(/10F1246))
3013 FORMAT(////' REGION 2 MESH POINTSs X='(/10F1246)}
3014 FORMATI(/ ' REGION 2 UPPER BOUNDs C='/F1246)
END

SUBROUTINE PINTG{TAUsLLeXsRINRsKKsPSIsLAMBA)
REAL LAMBA
DIMENSION TAU(1)sR(1)sPSIC(1)
DO 10 I=1sNR
PSI(1)=040
10 CONTINUE
DO 70 K=19KK
DO 60 L=1sltL
IF(X=0400001120+20940
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20 S1=245%(10+TAU(L))
52=2¢5%(1e0=-TAU(L))
X12S1%¥#]41+51%S51%S]
X2=G2%%]41452%52%#S52
Tl2aTTFCT(KeX1)
T2=TTFCT(KsX2"
GAM1=GMFCT (29K s X1)
GAMZ2=GMFCT (29K 9X2)
ROOT=SQRT(140=TAU(L)%#2)
TERM1=ROOT#(1e1#S1%#%0e14340%S1%#81) %GAM]
TERM2=ROOT#(1e1#S2%%0s1+3e0%S2#52) #GAM2
DO 30 I=1sNR
PSI(I)=PSI(I)+TERMI*GGFCT(X1sT1sXsRII))+TERM2XGGFCT(X2sT2sXsR())
30 CONTINUE
GO TO 60
40 S3:2,5%(140+TAU(L})
S4=2e5%(140=TAU(L))
X1eX#({1e40+TAU(L) /2,0
X22X%#(1,0=TAU(L))/2460
X32X+53+53%#53%53
X4xsX+S4L+SL4RSLHS4
Tl=TTFCT{(KsX1)
T2=TTFCT(KeX2)
T3=TTFCT(KsX3)
T4=TTFCT(Ky X&)
GAM1=GMFCT (29K s X1)
GAM2=GMFCT (29K 9 X2)
GAM3=GMFCT(2+K9X3)
GAMG=GMFCT(2+K e X4)
ROOT=SQRT(1e0=TAU(L)*%2)
TERM1=ROOT*042%X*GAM]1
TERM2=ROOT#0 42 #X*GAM2
TERM32ROOTH#(1404340%S3%53) #GAM3
TERM4mROOT#(140+340%S4%54) #GAMSL
DO 50 1=1sNR ]
PSI(I)=PSI(1)+TERMI*GGFCTIX1oTloXsR{I))+TERM2*GGFCTI{X29T29XsR(I)}+
* TERM3*GGFCT (X339 T3 o XoR(III+TERMUXGGFCT(X4 s T&4oeX9R(1))
50 CONTINUE
60 CONTINUE
70 CONTINUE
CONST=245%3,41415926536/(2+0%LL)
DO 100 I=14NR
IF{ABS{R{1))=0s400001180+80+90
80 PS1({1)=0,0
GO TO 100
90 PSI{I)=LAMBA®R(I)*#2/240+CONST#*#PSII(I)
100 CONTINUE
RETURN
END

SUBROUTINE OUTPT(IRECsXsRsNRsPSI)
DIMENSION R(1)+PS1(1)
DATA KXEQL/'X='/4 KREQL/'R='/
Jl=1
DO 40 I=1sNRs10
1F(J1+9=NR)10+20420

10 J2=J1+9
GO TO 30

20 J2=NR

30 WRITE(343001)(KXEQLsXsJxd1l9eJ2)
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WRITE(393002) (KREQLIR(J) s JxJ1leJ2)
WRITE(343003)(PST(JYed=JlsJ2)
Jl=J2+1
40 CONTINUE
WRITE(3YIREC)(PSI(I)slx1sNR)
IREC=IREC+1
RETURN
3001 FORMAT(/10(2XsA2sFTe4s1X))
3002 FORMATI(10(2X9A29F7s491X))
3003 FORMAT(10E12.5)
END

SUBROUTINE REGNI1(IRECINX1sNR19X1sR1ePSI)
DIMENSION X1(20}sR1(20)sP(20+20)
DO 10 IX=1sNX1
IREC=IREC+1
READ(AVIREC)(P(IXsIR)9IR=14NR1)
10 CONTINUE '
IF(NX1=1)100+100915
15 WRITE{343001)
DO 40 IR=1,NR1
DO 30 IX=34NX1
CALL BETWNI(P(IXsIR)sP(IX=13IR)sPSIKGO)
GO TO (20+30)s KGO
20 CALL THRPT(X1(IX=2)sX1{IX=1) o XLIIX)oP(IX=29IR)sP(IX=19IR)sP{IXsIR)
* oPSTeX)
WRITE(343002)XeR1{IR)
30 CONTINUE
40 CONTINUE
WRITE(343003)
DO 90 IX=1sNX1
CALL BETWN(P(IXs2)sP(IXs1)sPSIsKGO)
GO TO (50+60)s KGO
50 CALL THRPT(=R1(1)sRI(1)IR1(2)sPLIIXs1)oP(IXe1)oP(IXs2)9PSIsR}
WRITE(3+3002)X1(IX)sR
60 DO 80 IR=34NR1
CALL BETWN(P(IXoIR)sP(IXsIR=1)9PSIsKGO)
GO TO (70+80)s KGO
70 CALL THRPT(R1(IR=2)sRL(IR=1)sRI(IR)sPIIXsIR=2)sP(IX9IR=1)sP(IXsIR)
»* *sPS14R)
WRITE(3+3002)X1{IX}sR
80 CONTINUE
90 CONTINUE
100 RETURN
3001 FORMAT(30X»'REGION 1+ AXIAL SCAN?)
3002 FORMAT(3X»2HX=9sFTe4s5Xe2HR=sF Te &)
3003 FORMAT(30Xes'REGION 19 RADIAL SCAN?')
END

SUBROUTINE REGN2(IRECINX2sNR29X29R2sPSTsKK»CC)
DIMENSION X2(27)sR2(20)sP(274+20)
DO 10 IX=1sNX2
IREC=IREC+1
READ(3 ' IREC) (P(IXsIR) s IR®1yNR2)
10 CONTINUE
IF(NX2=1160+60+15
15 NRSCN=NR2=1
WRITE(343001)
DO 50 IX=1sNX2
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20

30

10

20

10

20

TT=TTFCT(KK#X2(1X}}

DO 20 IR=1»sNR2
R2{IR}=TT+{CC=TT)*(IR=140)/({NR2=140)
CONTINUE

DO 40 IR=2sNRSCN

CALL BETWN(P(IXoIR}sP(IXsIR=1)}sPSIKGO)
GO TO (30+40)9s KGO

CALL THRPTU(R2{IR+1)sR2(IR)IsRZ(IR=1)sP(IXsIR+1)+PIIX9IR) sP{1X»IR=1)

sPSIR)
WRITE(343002)X2(1X) R
CONTINUE
CONTINUE
RETURN
FORMAT (30X 'REGION 29 RADIAL SCAN?')
FORMAT(3Xe2HX=sFT7e495X02HR=9F 74 4)
END

SUBROUTINE THRPT(T1sT2sT3sPlsP2sP34sPSIH»V)
CCOEF=(P3=Pl+(T1=T3)%(PleP2)/(T1=T2) )}/ (T1#T2=T1*T3=T2%#T34+T3%T3)
BCOEF=(P1=P2) /(T1=T2)=CCOEF*(T14T2)
ACOEF=P1=BCOEF*#T1=CCOEF*T1%T]

V=SQRT {BCOEF*BCOEF =4 e O*CCOEF* (ACOEF=PSI})
VPLUS==(RCOEF=V)/(240%#CCOEF)
VMINS==(BCOEF+V)/(2s0%#CCOEF)

CALL BETWNI(T2sT3,VvPLUS»KGO)

GO TO (10920)9 KGO

V=VPLUS

RETURN

V=VMINS

RETURN

END

SUBROUTINE BETWNI(P1sP2sPsKGO)
D12=ABS(P2=P1)

D1P=ABS(P1=P)

D2P=ABS(P2=P)
IF(ABS{D2P+D1P=D12)=0400000001110510+20
KGO=1

RETURN

KGO=2

RETURN

END
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VELOCITY B OX CODE
VFELD

ALL INPUT FOR THE VELOCITY BOX CODE IS DONE IN THE MAINLINE PROGRAM.
INPUT VARIABLES ARE AS FOLLOWS =

VARIABLE NAME DESCRIPTION
IM TWO DIGIT MONTH OF THE YEAR
10 TWO DIGIT DAY OF THE MONTH
1y TWO DIGIT YEAR .
KASE TEN CHARACTER CASE IDENTIFICATION
LAMBA ADVANCE RATIO
NN NUMBER OF TERMS IN VORTEX DENSITY FUNCTION FOR OUTER
VORTEX TUBE
NP NUMBER OF TERMS IN VORTEX DENSITY FUNCTION FOR INNER
VORTEX TUBES
MM NUMBER OF TERMS IN STREAM FUNCTION
KK NUMBER OF STEPS IN THE PIECEWISE CONSTANT CIRCULATION
DISTRIBUTION
RR RADIAL LOCATIONS OF STEPS IN CIRCULATION DISTRIBUTICN
CAPGM PIECEWISE CONSTANT CIRCULATION DISTRIBUTION
B COEFFICIENTS IN REPRESENTATION OF VORTEX TUBE SHAPE
A COEFFICIENTS IN REPRESENTATION OF VORTEX DENSITY
C EXPONENTS IN MATCHING FUNCTION FOR VORTEX DENSITY ON
OUTER VORTEX TUBE
X AXTAL POSITION FOR CALCULATING VELOCITIES
R RADIAL POSITION FOR CALCULATING VELOCITIES

NOT
1

10

ES ON INPUT =
IF KK=1ls NP NEED NOT BE SPECIFIED

REAL LAMBA

DIMENSION XI(130)sWT{130)sXLIM(14)sGU(5)sGRI(5)

COMMON IMeID»IYsKASE(S5) sLAMBASNNINP sMMoKK s IREC19IREC2
#RR{18)sCAPGM(19) sGMINF(2+18)9A{11148(10)sC(11)

DATA XLIM/0640005s040014060105041005065009161005241509242005162100

* 163004240C09106C00C4504000,2C0,000/

DATA GU/0407443716959042166976971906339704784190e4325316866

* 064869532643/

DATA GR/0e14776211244041346333597904109543181340407472567458

* 0603323567215/

DEFINE FILE 1(18932+UsIREC1)y 2(36933sUsIREC2)

READ(2+2001)IMsIDs 1Y
WRITE(3+3001)IMyIDslY

READ(2+2002) (KASE(I)sIx145) s LAMBAINNINP sMM KK

WRITE(3+3002) (KASE(I)sI=195) s LAMBASNNINP ¢MMXK

READ(2+2003) (RR(K) sK=1,yKK)
WRITE(3+3003) (RR(K) sK=1,KK)
READ(2+2003) (CAPGM(K) sX=1sKK)
WRITE(3+3004) (CAPGM(K)sK=13KK}
CAPGM(KK+1)=20460

WRITE(343005)

DO 10 K=1 KK

READ{252004) (B(J)sJ=1 s MM)
WRITE(3+3006)(B(J)sJ=]sMM)
WRITE(1*K)I(B(J) sl sMM)
CONTINUE

WRITE(34+3007)
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DO 50 K=1sKK
K2=18+K
20 IF(KK=K)30+30940
30 READ(232004) (A{J)sJd=19NN)
WRITE(343006)(A(J)sd=1sNN)
WRITE(2'K2) tA(JY s J=1oNN)
GO TO 50
40 READ(232004){A(J) sJd=m1sNP)
WRITE(393008)(A(J)eJu1yNP}
WRITE(2'K2) (AfJ) sJx1sNP)
50 CONTINUE
READ(2+2003)(C{J)sJm1leNN)
WRITE(33008)(CtJ)sd=1pNN)
DO 60 L=1,13
DaXLIM(L+1)=XLIM(L)
S=(XLIMIL+1)+XLIM(L)} /240
DO 58 1=1410
ISUB=L1O*(L=1)+!
IF(1I=5)54454456
84 XI{ISUB)IeS+D*GU(T)
WT(ISUB)=D*GR (1)
GO TO 58
56 IELV=1ll=t
XI{ISUB)=S=D*GU(IELV)
WT(I1SUB)=D*GR(IELV)
58 CONTINUE
60 CONTINUE
CALL GAMIN
WRITE(343009)
70 READ(24+20051XsR
IFIR)999,804+80
80 CALL UVINTI{XIsWTe130+LAMBAsXK s XsRoUIVIZETAITHETA)
IF(R)Y999,50,100
90 WRITE(393010)XsR2U
GO TO 70
100 WRITE(393011)XsRsUsVIZETASTHETA
GO TO 70
999 CALL EXIT
2001 FORMAT(315)
2002 FORMAT(5A2+sF10e09415)
2003 FORMAT(8F10.0)
2004 FORMAT(4E20,410)
2005 FORMAT(2F1040)
3001 FORMAT!1H1////' PRINTOUT OF INPUT FOR VELOCITY BOX CODE'///1Xs$315/
*/)
3002 FORMAT(1X95A2/10Xs 7HLAMBA =9F10e4/10X94HNN =413/10Xe4HNP =413/10Xs
*¥4HMM =9 13/10Xs/)
3003 FORMAT(//8H RR = 910F1045/8X9s8F1045)
3004 FORMAT(//8H CAPGM =410F10e5/8Xs8F1Ce5)
3005 FORMAT(////' SHAPE COEFFICIENTS'/)
3006 FORMAT(6E20410)
3007 FORMAT(////' GAMMA COEFFICIENTS!'/)
3008 FORMAT(//' C (EXPONENTS FOR G FUNCTION WITH K=KK) ='/11F1045)
3009 FORMAT(1H1918Xp1HX 914X slHR924Xs1HU 919X s 1HV 16X 94HZETA»15Xs5HTHETA)
3010 FORMATI(F20e¢5+F15451E25410)
3011 FORMAT(F20e5¢F15459E2541093E20410)
END
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SUBROUTINE UVINT(XIsWToLLsLAMBASKKIXsRIUIVIZETASTHETA)
REAL LAMBA
DIMENSION XI{1)eWT(1)
U060
V=0.0
DO 40 K=1 KK
DO 30 L=1sLL
GAM=GMFCT (2K e X1 (L))
DEL = (X=XI(L))#n2
T=TTFCT(KeXI(L))
1F(R)10+20910
10 TTT=R*T
2= ((R=T)®#24DEL) /{2+0%#TTT)
CALL QQPMH(Z»QPH»QMH)
UnU+WT (L) # (R¥* (DEL4R*¥R=T%#T ) #QPH+TH*(DEL+T#T=R*R)*QMH)

» /(254132741229 %#SQRT(TTTHTTTHTTT)#Z*(Z+240) ) *GAM
VaVeWT (L) #{X=XT (L) )% (160+2)%QPH=QMH) /(12¢5663706*SQRT(TTT)
L4 #Z% {24260} ) *GAM

GO TO 30

20 UsU+WTIL)*T*T/SQRT({DEL+T*T)%%3)*GAM
30 CONTINUE
40 CONTINUE
IF(R)509100950
50 U=_AMBA+U/R
V==V/R
ZETA=SQRT (URU+VHV)
THETA=57429578%ATAN(V/U)
IF(U)60+90590
60 IF(V)70+80+80
70 THETA=THETA=18040
RETURN
80 THETA=THETA+18040
90 RETURN
100 U=LAMBA+U/240
RETURN
END
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