289 research outputs found
A Mathematical Model of Liver Cell Aggregation In Vitro
The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work
A knee brace alters patella position in patellofemoral osteoarthritis: A study using weight bearing magnetic resonance imaging.
OBJECTIVE: To assess using weight bearing MRIs, whether a patellar brace altered patellar position and alignment in patellofemoral joint (PFJ) osteoarthritis (OA). DESIGN: Subjects age 40-70 years old with symptomatic and a radiographic K-L evidence of PFJOA. Weight bearing knee MRIs with and without a patellar brace were obtained using an upright open 0.25 Tesla scanner (G-Scan, Easote Biomedica, Italy). Five aspects of patellar position were measured: mediolateral alignment by the bisect offset index, angulation by patellar tilt, patellar height by patellar height ratio (patellar length/patellar tendon length), lateral patellofemoral contact area and finally a measurement of patellofemoral bony separation of the lateral patellar facet and the adjacent surface on the femoral trochlea (Figure 1). RESULTS: Thirty participants were recruited (mean age 57 SD 27.8; BMI 27.8 SD 4.2); 17 were females. Four patients had non-usable data. Main analysis used paired t tests comparing within subject patellar position with and without brace. For bisect offset index, patellar tilt and patellar height ratio there were no significant differences between the brace and no brace conditions. However, the brace increased lateral facet contact area (p =.04) and decreased lateral patellofemoral separation (p = .03). CONCLUSION: A patellar brace alters patellar position and increases contact area between the patella and femoral trochlea. These changes would lower contact stress at the PFJ. Such changes in patella position in weight bearing provide a possible biomechanical explanation for the success of the PFJ brace in clinical trials on PFJOA
Design of synthetic bacterial communities for predictable plant phenotypes
Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant–bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation–responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities
Engineered nonlinear lattices
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Range extensions along western Atlantic for Epialtidae crabs (Brachyura, Majoidea) genera Acanthonyx Latreille, 1828 and Epialtus H. Milne Edwards, 1834
The present study provided information extending the known geographical distribution of three species of majoid crabs, the epialtids Acanthonyx dissimulatus Coelho, 1993, Epialtus bituberculatus H. Milne Edwards, 1834, and E. brasiliensis Dana, 1852. Specimens of both genera from different carcinological collections were studied by comparing morphological characters. We provide new data that extends the geographical distributions of E. bituberculatus to the coast of the states of Paraná and Santa Catarina (Brazil), and offer new records from Belize and Costa Rica. Epialtus brasiliensis is recorded for the first time in the state of Rio Grande do Sul (Brazil), and A. dissimulatus is reported from Quintana Roo, Mexico. The distribution of A. dissimulatus, previously known as endemic to Brazil, has a gap between the states of Espírito Santo and Rio de Janeiro. However, this restricted southern distribution is herein amplified by the Mexican specimens
Reliability, Validity, and Responsiveness of InFLUenza Patient-Reported Outcome (FLU-PRO©) Scores in Influenza-Positive Patients
Objectives: To assess the reliability, validity, and responsiveness of InFLUenza Patient-Reported Outcome (FLU-PRO©) scores for quantifying the presence and severity of influenza symptoms. Methods: An observational prospective cohort study of adults (≥18 years) with influenza-like illness in the United States, the United Kingdom, Mexico, and South America was conducted. Participants completed the 37-item draft FLU-PRO daily for up to 14 days. Item-level and factor analyses were used to remove items and determine factor structure. Reliability of the final tool was estimated using Cronbach α and intraclass correlation coefficients (2-day reliability). Convergent and known-groups validity and responsiveness were assessed using global assessments of influenza severity and return to usual health. Results: Of the 536 patients enrolled, 221 influenza-positive subjects comprised the analytical sample. The mean age of the patients was 40.7 years, 60.2% were women, and 59.7% were white. The final 32-item measure has six factors/domains (nose, throat, eyes, chest/respiratory, gastrointestinal, and body/systemic), with a higher order factor representing symptom severity overall (comparative fit index = 0.92; root mean square error of approximation = 0.06). Cronbach α was high (total = 0.92; domain range = 0.71–0.87); test-retest reliability (intraclass correlation coefficient, day 1–day 2) was 0.83 for total scores and 0.57 to 0.79 for domains. Day 1 FLU-PRO domain and total scores were moderately to highly correlated (≥0.30) with Patient Global Rating of Flu Severity (except nose and throat). Consistent with known-groups validity, scores differentiated severity groups on the basis of global rating (total: F = 57.2, P < 0.001; domains: F = 8.9–67.5, P < 0.001). Subjects reporting return to usual health showed significantly greater (P < 0.05) FLU-PRO score improvement by day 7 than did those who did not, suggesting score responsiveness. Conclusions: Results suggest that FLU-PRO scores are reliable, valid, and responsive to change in influenza-positive adults
- …