139 research outputs found
Seasonal Occurrence of the Sod Webworm Moths (Lepidoptera: Crambidae) of Ohio
While nearly 100 species of sod webworms are known to occur in North America, the species complex and seasonal occurrence of these moths has been documented in relatively few states. For Ohio, there is little published record of the sod webworm species complex, and the seasonal occurrence of only a few economically important species has been documented. Using black light traps, sod web worm adult flight activity was monitored over the course of three to five years at four different locations throughout Ohio. In this paper we report the seasonal occurrence of sod web worms species captured at these locations. These data provide a historical benchmark of sod webworm species diversity, local abundance, and seasonal occurrence in Ohio
Seasonal Occurrence of the Sod Webworm Moths (Lepidoptera: Crambidae) of Ohio
While nearly 100 species of sod webworms are known to occur in North America, the species complex and seasonal occurrence of these moths has been documented in relatively few states. For Ohio, there is little published record of the sod webworm species complex, and the seasonal occurrence of only a few economically important species has been documented. Using black light traps, sod web worm adult flight activity was monitored over the course of three to five years at four different locations throughout Ohio. In this paper we report the seasonal occurrence of sod web worms species captured at these locations. These data provide a historical benchmark of sod webworm species diversity, local abundance, and seasonal occurrence in Ohio
Comparative study of calculated and actual dimensions in shaped weft-knitwear
This research explores and quantifies the relationship between traditional mathematical theories used for the calculation of fully-fashioned, weft-knitwear and the physical measurements of knitted garments in order to improve sizing accuracy within knitted garment production. Experiments were conducted to compare and contrast fashioning frequencies for 10-gauge knitted structures, which determined the resultant selvedge dimensions specifically within the armhole region. The trials used the geometrical principle of Pythagoras Theorem to calculate sleeve head and armhole shapes from the stitch densities. The findings identified that the greater distance between the fashionings, the less distortion occurred within the knitted structure and therefore a stronger relationship existed between the calculated seam dimensions and those measured from the physical knitted panels. The research developed new methods for calculating fit and alignment in commercial, fully-fashioned, weft-knitwear. This will result in a more sustainable, fully-fashioned, knitted product and reduce the number of returns to the retailer, due to size inaccuracies
A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand.
Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupō Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus
Temporal rarity is a better predictor of local extinction risk than spatial rarity
Spatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5–12 yr of data on 1,447 plant species from 49 grasslands on five continents, we show that local abundance and species persistence under ambient conditions are both effective predictors of local extinction risk following experimental exclusion of grazers or addition of nutrients; persistence was a more powerful predictor than local abundance. While perturbations increased the risk of exclusion for low persistence and abundance species, transient but abundant species were also highly likely to be excluded from a perturbed plot relative to ambient conditions. Moreover, low persistence and low abundance species that were not excluded from perturbed plots tended to have a modest increase in abundance following perturbance. Last, even core species with high abundances had large decreases in persistence and increased losses in perturbed plots, threatening the long-term stability of these grasslands. Our results demonstrate that expanding the concept of rarity to include temporal dynamics, in addition to local abundance, more effectively predicts extinction risk in response to environmental change than either rarity axis predicts alone.Fil: Wilfahrt, Peter A.. University of Minnesota; Estados UnidosFil: Asmus, Ashley L.. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Henning, Jeremiah A.. University of Minnesota; Estados UnidosFil: Adler, Peter. State University of Utah; Estados UnidosFil: Arnillas, Carlos A.. University of Toronto Scarborough; CanadáFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Biederman, Lori. University of Iowa; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Cadotte, Marc W.. University of Toronto Scarborough; CanadáFil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Eskelinen, Anu. German Centre for Integrative Biodiversity Research; AlemaniaFil: Firn, Jennifer. University of Queensland; AustraliaFil: Harpole, W. Stanley. German Centre for Integrative Biodiversity Research; Alemania. Helmholtz Centre for Environmental Research; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Hautier, Yann. Utrecht University; Países BajosFil: Kirkman, Kevin P.. University of KwaZulu-Natal; SudáfricaFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laungani, Ramesh. Doane University; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: McCulley, Rebecca L.. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Mortensen, Brent. Benedictine College; Estados UnidosFil: Ochoa Hueso, Raul. Universidad de Cádiz; EspañaFil: Ohlert, Timothy. University of New Mexico; Estados UnidosFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Schuetz, Martin. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Shoemaker, Lauren. University of Wyoming; Estados UnidosFil: Stevens, Carly. Lancaster University; Reino UnidoFil: Strauss, Alexander T.. University of Minnesota; Estados Unidos. University of Georgia; Estados UnidosFil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Borer, Elizabeth. University of Minnesota; Estados Unido
The Orphan Nuclear Receptor LRH-1 and ERα Activate GREB1 Expression to Induce Breast Cancer Cell Proliferation
BACKGROUND: Liver Receptor Homolog 1 (LRH-1, NR5A2) is an orphan nuclear receptor that is over-expressed in cancers in tissues such as the breast, colon and pancreas. LRH-1 plays important roles in embryonic development, steroidogenesis and cholesterol homeostasis. In tumor cells, LRH-1 induces proliferation and cell cycle progression. High LRH-1 expression is demonstrated in breast cancers, positively correlating with ERα status and aromatase activity. LRH-1 dependent cellular mechanisms in breast cancer epithelial cells are poorly defined. Hence in the present study we investigated the actions of LRH-1 in estrogen receptor α (ERα) positive breast cancer cells. RESULTS: The study aimed to investigate LRH-1 dependent mechanisms that promote breast cancer proliferation. We identified that LRH-1 regulated the expression of Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in MCF-7 and MDA-MB-231 cells. Over-expression of LRH-1 increased GREB1 mRNA levels while knockdown of LRH-1 reduced its expression. GREB1 is a well characterised ERα target gene, with three estrogen response elements (ERE) located on its promoter. Chromatin immunoprecipitation studies provided evidence of the co-localisation of LRH-1 and ERα at all three EREs. With electrophoretic mobility shift assays, we demonstrated direct binding of LRH-1 to EREs located on GREB1 and Trefoil Factor 1 (TFF1, pS2) promoters. LRH-1 and ERα co-operatively activated transcription of ERE luciferase reporter constructs suggesting an overlap in regulation of target genes in breast cancer cells. Over-expression of LRH-1 resulted in an increase in cell proliferation. This effect was more pronounced with estradiol treatment. In the presence of ICI 182,780, an ERα antagonist, LRH-1 still induced proliferation. CONCLUSIONS: We conclude that in ER-positive breast cancer cells, LRH-1 promotes cell proliferation by enhancing ERα mediated transcription of target genes such as GREB-1. Collectively these findings indicate the importance of LRH-1 in the progression of hormone-dependent breast cancer and implicate LRH-1 as a potential avenue for drug development
Genomic analysis of family data reveals additional genetic effects on intelligence and personality
BioRXiv version. Please see https://rubenarslan.github.io/generation_scotland_pedigree_gcta/ to access this website in a browsable form
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R01-DC00270U.S. Air Force - Office of Scientific Research Contract AFOSR-90-0200National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Training Systems Center Contract N61339-93-M-1213U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0055U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0083U.S. Navy - Office of Naval Research Grant N00014-92-J-4005U.S. Navy - Office of Naval Research Grant N00014-93-1-119
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
- …