59 research outputs found
Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis
The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-toinosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated
activation that affects downstream RNA editing patterns and patient prognosis.This work was supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 268626—EPINORC project, the Grant agreement number HEALTH-F2-2010-258677—CURELUNG project, the Spanish Ministry of Economy and Competitiveness (MINECO Projects no. SAF2011-22803, PI13-01339 and SAF2014-55000- R), the Institute of Health Carlos III (ISCIII)—PI10/02992, Ministerio de Educación, Ciencia e Innovación Grant SAF2010-14935, the Cellex Foundation, the National Cancer Center Research and Development Fund (NCC Biobank: 23 A-1) and the Health and Science Departments of the Catalan Government (Generalitat de Catalunya) AGAUR—project no. 2009SGR1315 and 2014SGR633.Peer Reviewe
Insertions and the emergence of novel protein structure: a structure-based phylogenetic study of insertions
<p>Abstract</p> <p>Background</p> <p>In protein evolution, the mechanism of the emergence of novel protein domain is still an open question. The incremental growth of protein variable regions, which was produced by stochastic insertions, has the potential to generate large and complex sub-structures. In this study, a deterministic methodology is proposed to reconstruct phylogenies from protein structures, and to infer insertion events in protein evolution. The analysis was performed on a broad range of SCOP domain families.</p> <p>Results</p> <p>Phylogenies were reconstructed from protein 3D structural data. The phylogenetic trees were used to infer ancestral structures with a consensus method. From these ancestral reconstructions, 42.7% of the observed insertions are nested insertions, which locate in previous insert regions. The average size of inserts tends to increase with the insert rank or total number of insertions in the variable regions. We found that the structures of some nested inserts show complex or even domain-like fold patterns with helices, strands and loops. Furthermore, a basal level of structural innovation was found in inserts which displayed a significant structural similarity exclusively to themselves. The β-Lactamase/D-ala carboxypeptidase domain family is provided as an example to illustrate the inference of insertion events, and how the incremental growth of a variable region is capable to generate novel structural patterns.</p> <p>Conclusion</p> <p>Using 3D data, we proposed a method to reconstruct phylogenies. We applied the method to reconstruct the sequences of insertion events leading to the emergence of potentially novel structural elements within existing protein domains. The results suggest that structural innovation is possible via the stochastic process of insertions and rapid evolution within variable regions where inserts tend to be nested. We also demonstrate that the structure-based phylogeny enables the study of new questions relating to the evolution of protein domain and biological function.</p
Ancient horizontal gene transfer and the last common ancestors
Background
The genomic history of prokaryotic organismal lineages is marked by extensive horizontal gene transfer (HGT) between groups of organisms at all taxonomic levels. These HGT events have played an essential role in the origin and distribution of biological innovations. Analyses of ancient gene families show that HGT existed in the distant past, even at the time of the organismal last universal common ancestor (LUCA). Most gene transfers originated in lineages that have since gone extinct. Therefore, one cannot assume that the last common ancestors of each gene were all present in the same cell representing the cellular ancestor of all extant life.
Results
Organisms existing as part of a diverse ecosystem at the time of LUCA likely shared genetic material between lineages. If these other lineages persisted for some time, HGT with the descendants of LUCA could have continued into the bacterial and archaeal lineages. Phylogenetic analyses of aminoacyl-tRNA synthetase protein families support the hypothesis that the molecular common ancestors of the most ancient gene families did not all coincide in space and time. This is most apparent in the evolutionary histories of seryl-tRNA synthetase and threonyl-tRNA synthetase protein families, each containing highly divergent “rare” forms, as well as the sparse phylogenetic distributions of pyrrolysyl-tRNA synthetase, and the bacterial heterodimeric form of glycyl-tRNA synthetase. These topologies and phyletic distributions are consistent with horizontal transfers from ancient, likely extinct branches of the tree of life.
Conclusions
Of all the organisms that may have existed at the time of LUCA, by definition only one lineage is survived by known progeny; however, this lineage retains a genomic record of heterogeneous genetic origins. The evolutionary histories of aminoacyl-tRNA synthetases (aaRS) are especially informative in detecting this signal, as they perform primordial biological functions, have undergone several ancient HGT events, and contain many sites with low substitution rates allowing deep phylogenetic reconstruction. We conclude that some aaRS families contain groups that diverge before LUCA. We propose that these ancient gene variants be described by the term “hypnologs”, reflecting their ancient, reticulate origin from a time in life history that has been all but erased”.National Science Foundation (U.S.) (Grant DEB 0830024)Exobiology Program (U.S.) (Grant NNX10AR85G)United States. National Aeronautics and Space Administration (Postdoctoral Program
Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells
Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity
The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria
BACKGROUND: The formation of protein inclusions is connected to the onset of many human diseases. Human RNA binding proteins containing intrinsically disordered regions with an amino acid composition resembling those of yeast prion domains, like TDP-43 or FUS, are being found to aggregate in different neurodegenerative disorders. The structure of the intracellular inclusions formed by these proteins is still unclear and whether these deposits have an amyloid nature or not is a matter of debate. Recently, the aggregation of TDP-43 has been modelled in bacteria, showing that TDP-43 inclusion bodies (IBs) are amorphous but intrinsically neurotoxic. This observation raises the question of whether it is indeed the lack of an ordered structure in these human prion-like protein aggregates the underlying cause of their toxicity in different pathological states. RESULTS: Here we characterize the IBs formed by the human prion-like RNA-processing protein HNRPDL. HNRPDL is linked to the development of limb-girdle muscular dystrophy 1G and shares domain architecture with TDP-43. We show that HNRPDL IBs display characteristic amyloid hallmarks, since these aggregates bind to amyloid dyes in vitro and inside the cell, they are enriched in intermolecular β-sheet conformation and contain inner amyloid-like fibrillar structure. In addition, despite their ordered structure, HNRPDL IBs are highly neurotoxic. CONCLUSIONS: Our results suggest that at least some of the disorders caused by the aggregation of human prion-like proteins would rely on the formation of classical amyloid assemblies rather than being caused by amorphous aggregates. They also illustrate the power of microbial cell factories to model amyloid aggregation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0284-7) contains supplementary material, which is available to authorized users
EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation
Mitochondria are subcellular organelles critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, as well as their coordinated translation, import and respiratory complex assembly. Here we describe the characterization of exonuclease domain like 2 (EXD2), a nuclear encoded gene that we show is targeted to the mitochondria and prevents the aberrant association of mRNAs with the mitochondrial ribosome. The loss of EXD2 resulted in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of EXD2/CG6744 in D.melanogaster caused developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that could be reversed with an anti-oxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and aging
On the Evolution of the Standard Genetic Code: Vestiges of Critical Scale Invariance from the RNA World in Current Prokaryote Genomes
Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC
The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed
Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell
Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains
Early forms of the genetic code likely generated “statistical” proteins, with similar side chains occupying the same sequence positions at different ratios. In this scenario, groups of related side chains were treated by aminoacyl-tRNA synthetases as a single molecular species until a discrimination mechanism developed that could separate them. The aromatic amino acids tryptophan, tyrosine, and phenylalanine likely constituted one of these groups. A crystal structure of human tryptophanyl-tRNA synthetase was solved at 2.1 Å with a tryptophanyl-adenylate bound at the active site. A cocrystal structure of an active fragment of human tyrosyl-tRNA synthetase with its cognate amino acid analog was also solved at 1.6 Å. The two structures enabled active site identifications and provided the information for structure-based sequence alignments of ≈45 orthologs of each enzyme. Two critical positions shared by all tyrosyl-tRNA synthetases and tryptophanyl-tRNA synthetases for amino acid discrimination were identified. The variations at these two positions and phylogenetic analyses based on the structural information suggest that, in contrast to many other amino acids, discrimination of tyrosine from tryptophan occurred late in the development of the genetic code
A mechanism for functional segregation of mitochondrial and cytosolic genetic codes
The coexistence of multiple gene translation machineries is a feature of eukaryotic cells and a result of the endosymbiotic events that gave rise to mitochondria, plastids, and other organelles. The conditions required for the integration of these apparatuses within a single cell are not understood, but current evidence indicates that complete ablation of the mitochondrial protein synthesis apparatus and its substitution by its cytosolic equivalent is not possible. Why certain mitochondrial components and not others can be substituted by cytosolic equivalents is not known. In trypanosomatids this situation reaches a limit, because certain aminoacyl-tRNA synthetases are mitochondrial specific despite the fact that all tRNAs in these organisms are shared between cytosol and mitochondria. Here we report that a mitochondria-specific lysyl-tRNA synthetase in Trypanosoma has evolved a mechanism to block the activity of the enzyme during its synthesis and translocation. Only when the enzyme reaches the mitochondria is it activated through the cleavage of a C-terminal structural extension, preventing the possibility of the enzyme being active in the cytosol
- …