654 research outputs found

    Confidence Level and Sensitivity Limits in High Contrast Imaging

    Full text link
    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5sigma for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3*10^-7 confidence level detection threshold when averaging a partially correlated non-Gaussian noise.Comment: 29 pages, 13 figures, accepted to Ap

    Leaf-litter leachate is distinct in optical properties and bioavailability to stream heterotrophs

    Get PDF
    Dissolved organic C (DOC) leached from leaf litter contributes to the C pool of stream ecosystems and affects C cycling in streams. We studied how differences in leaf-litter chemistry affect the optical properties and decomposition of DOC. We used 2 species of cottonwoods (Populus) and their naturally occurring hybrids that differ in leaf-litter phytochemistry and decomposition rate. We measured DOC and nutrient concentration in leaf leachates and determined the effect of DOC quality on heterotrophic respiration in 24-h incubations with stream sediments. Differences in DOC composition and quality were characterized with fluorescence spectroscopy. Rapidly decomposing leaves with lower tannin and lignin concentrations leached ~40 to 50% more DOC and total dissolved N than did slowly decomposing leaves. Rates of heterotrophic respiration were 25 to 50% higher on leachate from rapidly decomposing leaf types. Rates of heterotrophic respiration were related to metrics of aromaticity. Specifically, rates of respiration were correlated negatively with the Fluorescence Index and positively with Specific Ultraviolet Absorbance (SUVA254) and T280 tryptophan-like fluorescence peak. These results reveal that leaf-litter DOC is distinctly different from ambient streamwater DOC. The relationships between optical characteristics of leaf leachate and bioavailability are opposite those found in streamwater DOC. Differences in phytochemistry among leaf types can influence stream ecosystems with respect to DOC quantity, composition, and rates of stream respiration. These patterns suggest that the relationship between the chemical structure of DOC and its biogeochemistry is more complex than previously recognized. These unique properties of leaf-litter DOC will be important when assessing the effects of terrestrial C on aquatic ecosystems, especially during leaf fall

    Karshomyia caulicola (Diptera: Cecidomyiidae) Associated with Sclerotinia-Infected Soybean in the United States and Canada

    Get PDF
    The white-mold gall midge, Karshomyia caulicola Coquillett, was documented in association with soybean, Glycine max (L.) Merr., infected with the fungus Sclerotinia sclerotiorum (Lib.) de Bary. This mycetophagous cecidomyiid appears widespread in the northern soybean producing region, with confirmed detections from Minnesota, North Dakota and Québec. Though likely not a pest of soybean plants, the presence of K. caulicola in soybean fields may complicate identification, population assessment and decision making for soybean gall midge, Resseliella maxima Gagné, which is a recently described pest of soybean. Here, we provide an overview of the known biology and distribution of K. caulicola and descriptions to aid in distinguishing these two cecidomyiids

    Rehabilitation Exercise and psycholoGical support After covid-19 InfectioN' (REGAIN):a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    OBJECTIVES The primary objective is to determine which of two interventions: 1) an eight week, online, home-based, supervised, group rehabilitation programme (REGAIN); or 2) a single online session of advice (best-practice usual care); is the most clinically and cost-effective treatment for people with ongoing COVID-19 sequelae more than three months after hospital discharge. TRIAL DESIGN Multi-centre, 2-arm (1:1 ratio) parallel group, randomised controlled trial with embedded process evaluation and health economic evaluation. PARTICIPANTS Adults with ongoing COVID-19 sequelae more than three months after hospital discharge Inclusion criteria: 1) Adults ≥18 years; 2) ≥ 3 months after any hospital discharge related to COVID-19 infection, regardless of need for critical care or ventilatory support; 3) substantial (as defined by the participant) COVID-19 related physical and/or mental health problems; 4) access to, and able/supported to use email and internet audio/video; 4) able to provide informed consent; 5) able to understand spoken and written English, Bengali, Gujarati, Urdu, Punjabi or Mandarin, themselves or supported by family/friends. EXCLUSION CRITERIA 1) exercise contraindicated; 2) severe mental health problems preventing engagement; 3) previous randomisation in the present study; 4) already engaged in, or planning to engage in an alternative NHS rehabilitation programme in the next 12 weeks; 5) a member of the same household previously randomised in the present study. INTERVENTION AND COMPARATOR Intervention 1: The Rehabilitation Exercise and psycholoGical support After covid-19 InfectioN (REGAIN) programme: an eight week, online, home-based, supervised, group rehabilitation programme. Intervention 2: A thirty-minute, on-line, one-to-one consultation with a REGAIN practitioner (best-practice usual care). MAIN OUTCOMES The primary outcome is health-related quality of life (HRQoL) - PROMIS® 29+2 Profile v2.1 (PROPr) - measured at three months post-randomisation. Secondary outcomes include dyspnoea, cognitive function, health utility, physical activity participation, post-traumatic stress disorder (PTSD) symptom severity, depressive and anxiety symptoms, work status, health and social care resource use, death - measured at three, six and 12 months post-randomisation. RANDOMISATION Participants will be randomised to best practice usual care or the REGAIN programme on a 1:1.03 basis using a computer-generated randomisation sequence, performed by minimisation and stratified by age, level of hospital care, and case level mental health symptomatology. Once consent and baseline questionnaires have been completed by the participant online at home, randomisation will be performed automatically by a bespoke web-based system. BLINDING (MASKING) To ensure allocation concealment from both participant and REGAIN practitioner at baseline, randomisation will be performed only after the baseline questionnaires have been completed online at home by the participant. After randomisation has been performed, participants and REGAIN practitioners cannot be blind to group allocation. Follow-up outcome assessments will be completed by participants online at home. NUMBERS TO BE RANDOMISED (SAMPLE SIZE) A total of 535 participants will be randomised: 263 to the best-practice usual care arm, and 272 participants to the REGAIN programme arm. TRIAL STATUS Current protocol: Version 3.0 (27th October 2020) Recruitment will begin in December 2020 and is anticipated to complete by September 2021. TRIAL REGISTRATION ISRCTN:11466448 , 23rd November 2020 FULL PROTOCOL: The full protocol Version 3.0 (27th October 2020) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interests of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines

    Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations

    No full text
    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.The High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics is funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant G0900747 91070. This study was supported by Wellcome Trust Strategic Award 082030 (CCG), Wellcome Trust Studentship 094446/Z/10/Z (KRB), the Oxford NIHR Biomedical Research Centre, and the MRC Human Immunology Unit (RJC). AJR and GL were supported by Wellcome Trust grant 090532/Z/ 09/Z, CCG and AE by a Major initiative Award from the Clive and Vera Ramaciotti Foundation, and AE by an NHMRC Career Development Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Trapping \u3ci\u3ePhyllophaga \u3c/i\u3espp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    Get PDF
    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester
    • …
    corecore