In long adaptive optics corrected exposures, exoplanet detections are
currently limited by speckle noise originating from the telescope and
instrument optics, and it is expected that such noise will also limit future
high-contrast imaging instruments for both ground and space-based telescopes.
Previous theoretical analysis have shown that the time intensity variations of
a single speckle follows a modified Rician. It is first demonstrated here that
for a circular pupil this temporal intensity distribution also represents the
speckle spatial intensity distribution at a fix separation from the point
spread function center; this fact is demonstrated using numerical simulations
for coronagraphic and non-coronagraphic data. The real statistical distribution
of the noise needs to be taken into account explicitly when selecting a
detection threshold appropriate for some desired confidence level. In this
paper, a technique is described to obtain the pixel intensity distribution of
an image and its corresponding confidence level as a function of the detection
threshold. Using numerical simulations, it is shown that in the presence of
speckles noise, a detection threshold up to three times higher is required to
obtain a confidence level equivalent to that at 5sigma for Gaussian noise. The
technique is then tested using TRIDENT CFHT and angular differential imaging
NIRI Gemini adaptive optics data. It is found that the angular differential
imaging technique produces quasi-Gaussian residuals, a remarkable result
compared to classical adaptive optic imaging. A power-law is finally derived to
predict the 1-3*10^-7 confidence level detection threshold when averaging a
partially correlated non-Gaussian noise.Comment: 29 pages, 13 figures, accepted to Ap