416 research outputs found
Structure-based finite strain modelling of the human left ventricle in diastole
Finite strain analyses of the left ventricle provide important information on heart function and have the potential to provide insights into the biomechanics of myocardial contractility in health and disease. Systolic dysfunction is the most common cause of heart failure; however, abnormalities of diastolic function also contribute to heart failure, and are associated with conditions including left ventricular hypertrophy and diabetes. The clinical significance of diastolic abnormalities is less well understood than systolic dysfunction, and specific treatments are presently lacking. To obtain qualitative and quantitative information on heart function in diastole, we develop a three-dimensional computational model of the human left ventricle that is derived from noninvasive imaging data. This anatomically realistic model has a rule-based fibre structure and a structure-based constitutive model. We investigate the sensitivity of this comprehensive model to small changes in the constitutive parameters and to changes in the fibre distribution. We make extensive comparisons between this model and similar models that employ different constitutive models, and we demonstrate qualitative and quantitative differences in stress and strain distributions for the different constitutive models. We also provide an initial validation of our model through comparisons to experimental data on stress and strain distributions in the left ventricle
Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions
This work is dedicated to the simulation of full cycles of the electrical
activity of the heart and the corresponding body surface potential. The model
is based on a realistic torso and heart anatomy, including ventricles and
atria. One of the specificities of our approach is to model the atria as a
surface, which is the kind of data typically provided by medical imaging for
thin volumes. The bidomain equations are considered in their usual formulation
in the ventricles, and in a surface formulation on the atria. Two ionic models
are used: the Courtemanche-Ramirez-Nattel model on the atria, and the "Minimal
model for human Ventricular action potentials" (MV) by Bueno-Orovio, Cherry and
Fenton in the ventricles. The heart is weakly coupled to the torso by a Robin
boundary condition based on a resistor- capacitor transmission condition.
Various ECGs are simulated in healthy and pathological conditions (left and
right bundle branch blocks, Bachmann's bundle block, Wolff-Parkinson-White
syndrome). To assess the numerical ECGs, we use several qualitative and
quantitative criteria found in the medical literature. Our simulator can also
be used to generate the signals measured by a vest of electrodes. This
capability is illustrated at the end of the article
Evaluation of different statistical shape models for segmentation of the left ventricular endocardium from magnetic resonance images
International audienceStatistical shape models (SSMs) represent a powerful tool used in patient-specific modeling to segment medical images because they incorporate a-priori knowledge that guide the model during deformation. Our aim was to evaluate segmentation accuracy in terms of left ventricular (LV) volumes obtained using four different SSMs versus manual gold standard tracing on cardiac magnetic resonance (CMR) images. A database of 3D echocardiographic (3DE) LV surfaces obtained in 435 patients was used to generate four different SSMs, based on cardiac phase selection. Each model was scaled and deformed to detect LV endocardial contours in the enddiastolic (ED) and end-systolic (ES) frames of a CMR short-axis (SAX) stack for 15 patients with normal LV function. Linear correlation and Bland–Altman analyses versus gold-standard showed in all cases high correlation (r²>0.95), non-significant biases and narrow limits of agreement
The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance
Dynamics of reentry are studied in a one dimensional loop of model cardiac
cells with discrete intercellular gap junction resistance (). Each cell is
represented by a continuous cable with ionic current given by a modified
Beeler-Reuter formulation. For below a limiting value, propagation is found
to change from period-1 to quasi-periodic () at a critical loop length
() that decreases with . Quasi-periodic reentry exists from
to a minimum length () that is also shortening with .
The decrease of is not a simple scaling, but the bifurcation can
still be predicted from the slope of the restitution curve giving the duration
of the action potential as a function of the diastolic interval. However, the
shape of the restitution curve changes with .Comment: 6 pages, 7 figure
Quasi-static imaged-based immersed boundary-finite element model of human left ventricle in diastole
SUMMARY:
Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart
Scalable and Accurate ECG Simulation for Reaction-Diffusion Models of the Human Heart
International audienceRealistic electrocardiogram (ECG) simulation with numerical models is important for research linking cellular and molecular physiology to clinically observable signals, and crucial for patient tailoring of numerical heart models. However, ECG simulation with a realistic torso model is computationally much harder than simulation of cardiac activity itself, so that many studies with sophisticated heart models have resorted to crude approximations of the ECG. This paper shows how the classical concept of electrocardiographic lead fields can be used for an ECG simulation method that matches the realism of modern heart models. The accuracy and resource requirements were compared to those of a full-torso solution for the potential and scaling was tested up to 14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were computed on a 3.3 billion-node heart-torso mesh at 0.2 mm resolution. The results show that the lead-field method is more efficient than a full-torso solution when the number of simulated samples is larger than the number of computed ECG leads. While the initial computation of the lead fields remains a hard and poorly scalable problem, the ECG computation itself scales almost perfectly and, even for several hundreds of ECG leads, takes much less time than the underlying simulation of cardiac activity
Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia
Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities
- …
