331 research outputs found

    Abhandlungen der Königlich-Preussischen Geologischen Landesanstalt ; Neue Folge, Heft 36

    Get PDF

    Early evolution of Coriariaceae (Cucurbitales) in light of a new early Campanian (ca. 82 Mya) pollen record from Antarctica

    Get PDF
    Coriariaceae comprise only Coriaria , a genus of shrubs with nine species in Australasia (but excluding Australia), five in the Himalayas, Taiwan, the Philippines, and Japan, one in the Mediterranean, and one ranging from Patagonia to Mexico. The sister family, Corynocarpaceae, comprises five species of evergreen trees from New Guinea to New Zealand and Australia. This distribution has long fascinated biogeographers as potential support for Wegener's theory of continental drift, with alternative scenarios invoking either Antarctic or Beringian range expansions. Here, we present the discovery of pollen grains from Early Campanian (ca. 82 Mya) deposits in Antarctica, which we describe as Coriaripites goodii sp. nov., and newly generated nuclear and plastid molecular data for most of the family's species and its outgroup. This greatly expands the family's fossil record and is the so far oldest fossil of the order Cucurbitales. We used the phylogeny, new fossil, and an Oligocene flowering branch assigned to a small subclade of Coriaria to generate a chronogram and to study changes in chromosome number, deciduousness, and andromonoecy. Coriaria comprises a Northern (NH) and a Southern Hemisphere (SH) clade that diverged from each other in the Paleocene (ca. 57 Mya), with the SH clade reaching the New World once, through Antarctica, as supported by the fossil pollen. While the SH clade retained perfect flowers and evergreen leaves, the NH clade evolved andromonoecy and deciduousness. Polyploidy occurs in both clades and points to hybridization, matching weak species boundaries throughout the genus

    An endemic flora of dispersed spores from the Middle Devonian of Iberia

    Get PDF
    Diverse assemblages of dispersed spores have been recovered from Middle Devonian rocks in northern Spain, revealing a significant endemism in the flora. Middle Devonian Iberia was part of a relatively isolated island complex (Armorican Terrane Assemblage), separated by considerable tracts of ocean from Laurussia to the north‐west and Gondwana to the south‐east. The Middle Devonian deposits of the Cantabrian Zone of northern Spain are entirely marine and comprise a thick clastic unit sandwiched between extensive carbonate units. The clastic unit, the laterally equivalent Naranco, Huergas and Gustalapiedra formations of Asturias, León and Palencia provinces, represents a nearshore‐offshore transect across a marine shelf. This unit is also believed to encompass the Kačák Event, an important global extinction event. The recovered palynomorphs include marine (phytoplankton, chitinozoans, scolecodonts) and terrestrial (spores) assemblages. These are abundant and well preserved, although of variable thermal maturity. Here, we describe the dispersed spores and consider their significance as regards biostratigraphy, palaeophytogeography and Kačák Event interpretation. The dispersed spores represent a single assemblage assignable to the lemurata–langii Assemblage Zone (lemurata Subzone) indicating a probable early (but not earliest) Givetian age. Signs of endemism include various taxa known only from this region, some taxa appearing to have discordant ranges compared with elsewhere, and the absence from Iberia of certain prominent taxa characteristic of coeval assemblages elsewhere, such as those with grapnel‐tipped processes. The abrupt interruption of carbonate deposition, with a change to rapid deposition of thick clastic deposits, provides support for a monsoonal cause of the Kačák Event

    Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae): erect habit and elephant’s foot tubers

    Get PDF
    Background: Dioscorea is a widely distributed and highly diversified genus in tropical regions where it is represented by ten main clades, one of which diversified exclusively in Africa. In southern Africa it is characterised by a distinct group of species with a pachycaul or “elephant’s foot” structure that is partially to fully exposed above the substrate. In contrast to African representatives of the genus from other clades, occurring mainly in forest or woodland, the pachycaul taxa and their southern African relatives occur in diverse habitats ranging from woodland to open vegetation. Here we investigate patterns of diversification in the African clade, time of transition from forest to more open habitat, and morphological traits associated with each habitat and evaluate if such transitions have led to modification of reproductive organs and mode of dispersal. Results: The Africa clade originated in the Oligocene and comprises four subclades. The Dioscorea buchananii subclade (southeastern tropical Africa and South Africa) is sister to the East African subclade, which is respectively sister to the recently evolved sister South African (e. g., Cape and Pachycaul) subclades. The Cape and Pachycaul subclades diversified in the east of the Cape Peninsula in the mid Miocene, in an area with complex geomorphology and climate, where the fynbos, thicket, succulent karoo and forest biomes meet. Conclusions: Diversification out of forest is associated with major shifts in morphology of the perennial tuber (specifically an increase in size and orientation which presumably led them to become pachycaul) and rotation of stem (from twining to non-twining). The iconic elephant's foot morphology, observed in grasslands and thicket biomes, where its corky bark may offer protection against fire and herbivory, evolved since mid Miocene. A shift in pollination trait is observed within the forest, but entry into open habitat does not show association with reproductive morphology, except in the seed wing, which has switched from winged all round the seed margin to just at the base or at the apex of it, or has been even replaced by an elaiosome

    A palaeoenvironmental reconstruction of the Middle Jurassic of Sardinia (Italy) based on integrated palaeobotanical, palynological and lithofacies data assessment

    Get PDF
    During the Jurassic, Sardinia was close to continental Europe. Emerged lands started from a single island forming in time a progressively sinking archipelago. This complex palaeogeographic situation gave origin to a diverse landscape with a variety of habitats. Collection- and literature-based palaeobotanical, palynological and lithofacies studies were carried out on the Genna Selole Formation for palaeoenvironmental interpretations. They evidence a generally warm and humid climate, affected occasionally by drier periods. Several distinct ecosystems can be discerned in this climate, including alluvial fans with braided streams (Laconi-Gadoni lithofacies), paralic swamps and coasts (Nurri-Escalaplano lithofacies), and lagoons and shallow marine environments (Ussassai-Perdasdefogu lithofacies). The non-marine environments were covered by extensive lowland and a reduced coastal and tidally influenced environment. Both the river and the upland/hinterland environments are of limited impact for the reconstruction. The difference between the composition of the palynological and palaeobotanical associations evidence the discrepancies obtained using only one of those proxies. The macroremains reflect the local palaeoenvironments better, although subjected to a transport bias (e.g. missing upland elements and delicate organs), whereas the palynomorphs permit to reconstruct the regional palaeoclimate. Considering that the flora of Sardinia is the southernmost of all Middle Jurassic European floras, this multidisciplinary study increases our understanding of the terrestrial environments during that period of time

    The life and scientific work of William R. Evitt (1923-2009)

    Get PDF
    Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (‘Bill’) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. ‘Bill’ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium

    Views on Spore Nomenclature

    No full text
    corecore