125 research outputs found
Spin-polarized Tunneling in Hybrid Metal-Semiconductor Magnetic Tunnel Junctions
We demonstrate efficient spin-polarized tunneling between a ferromagnetic
metal and a ferromagnetic semiconductor with highly mismatched conductivities.
This is indicated by a large tunneling magnetoresistance (up to 30%) at low
temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic
metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a
nonmagnetic semiconductor (AlAs). Analysis of the current-voltage
characteristics yields detailed information about the asymmetric tunnel
barrier. The low temperature conductance-voltage characteristics show a zero
bias anomaly and a V^1/2 dependence of the conductance, indicating a
correlation gap in the density of states of GaMnAs. These experiments suggest
that MnAs/AlAs heterostructures offer well characterized tunnel junctions for
high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.
Non-Drude Optical Conductivity of (III,Mn)V Ferromagnetic Semiconductors
We present a numerical model study of the zero-temperature infrared optical
properties of (III,Mn)V diluted magnetic semiconductors. Our calculations
demonstrate the importance of treating disorder and interaction effects
simultaneously in modelling these materials. We find that the conductivity has
no clear Drude peak, that it has a broadened inter-band peak near 220 meV, and
that oscillator weight is shifted to higher frequencies by stronger disorder.
These results are in good qualitative agreement with recent thin film
absorption measurements. We use our numerical findings to discuss the use of
f-sum rules evaluated by integrating optical absorption data for accurate
carrier-density estimates.Comment: 7 pages, 3 figure
Clustered States as a New Paradigm of Condensed Matter Physics
We argue that several materials of much current interest in condensed matter
physics share common phenomenological aspects that only very recent
investigations are unveiling. The list includes colossal magnetoresistance
manganites, high temperature superconducting cuprates, diluted magnetic
semiconductors, and others. The common aspect is the relevance of intrinsic
inhomogeneities in the form of "clustered states", as explained in the text.Comment: elsart3, 6 pages, 5 figures. Invited paper for the Conference
Proceedings of the International Conference on Magnetism, Rome, July 200
Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As
We have studied the depth-dependent magnetic and structural properties of
as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron
reflectometry. In addition to increasing total magnetization, the annealing
process was observed to produce a significantly more homogeneous distribution
of the magnetization. This difference in the films is attributed to the
redistribution of Mn at interstitial sites during the annealing process. Also,
we have seen evidence of significant magnetization depletion at the surface of
both as-grown and annealed films.Comment: 5 pages, 3 figure
Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers
We examine the Mn concentration dependence of the electronic and magnetic
properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The
Curie temperature (Tc), conductivity, and exchange energy increase with Mn
concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~
110 K. The ferromagnetic moment per Mn ion decreases monotonically with
increasing x, implying that an increasing fraction of the Mn spins do not
participate in the ferromagnetism. By contrast, the derived domain wall
thickness, an important parameter for device design, remains surprisingly
constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev
Spectroscopic determination of hole density in the ferromagnetic semiconductor GaMnAs
The measurement of the hole density in the ferromagnetic semiconductor
GaMnAs is notoriously difficult using standard transport
techniques due to the dominance of the anomalous Hall effect. Here, we report
the first spectroscopic measurement of the hole density in four
GaMnAs samples () at room temperature
using Raman scattering intensity analysis of the coupled plasmon-LO-phonon mode
and the unscreened LO phonon. The unscreened LO phonon frequency linearly
decreases as the Mn concentration increases up to 8.3%. The hole density
determined from the Raman scattering shows a monotonic increase with increasing
for , exhibiting a direct correlation to the observed .
The optical technique reported here provides an unambiguous means of
determining the hole density in this important new class of ``spintronic''
semiconductor materials.Comment: two-column format 5 pages, 4 figures, to appear in Physical Review
Noncollinear Ferromagnetism in (III,Mn)V Semiconductors
We investigate the stability of the collinear ferromagnetic state in kinetic
exchange models for (III,Mn)V semiconductors with randomly distributed Mn ions
>. Our results suggest that {\em noncollinear ferromagnetism} is commom to
these semiconductor systems. The instability of the collinear state is due to
long-ranged fluctuations invloving a large fraction of the localized magnetic
moments. We address conditions that favor the occurrence of noncollinear
groundstates and discuss unusual behavior that we predict for the temperature
and field dependence of its saturation magnetization.Comment: 5 pages, one figure included, presentation of technical aspects
simplified, version to appear in Phys. Rev. Let
Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States
Dynamical and transport properties of a simple single-band spin-fermion
lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here
discussed using Monte Carlo simulations. This effort is a continuation of
previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static
properties of the model were studied. The present results support the view that
the relevant regime of J/t (standard notation) is that of intermediate
coupling, where carriers are only partially trapped near Mn spins, and locally
ordered regions (clusters) are present above the Curie temperature T_C. This
conclusion is based on the calculation of the resistivity vs. temperature, that
shows a soft metal to insulator transition near T_C, as well on the analysis of
the density-of-states and optical conductivity. In addition, in the clustered
regime a large magnetoresistance is observed in simulations. Formal analogies
between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and
tex
Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems
Motivated by the recent suggestion of anisotropic effective exchange
interactions between Mn spins in GaMnAs (arising as a result of
spin-orbit coupling), we study their effects in diluted Heisenberg spin
systems. We perform Monte Carlo simulations on several phenomenological model
spin Hamiltonians, and investigate the extent to which frustration induced by
anisotropic exchanges can reduce the low temperature magnetization in these
models and the interplay of this effect with disorder in the exchange. In a
model with low coordination number and purely ferromagnetic (FM) exchanges, we
find that the low temperature magnetization is gradually reduced as exchange
anisotropy is turned on. However, as the connectivity of the model is
increased, the effect of small-to-moderate anisotropy is suppressed, and the
magnetization regains its maximum saturation value at low temperatures unless
the distribution of exchanges is very wide. To obtain significant suppression
of the low temperature magnetization in a model with high connectivity, as is
found for long-range interactions, we find it necessary to have both
ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY
interaction). This implies that disorder in the sign of the exchange
interaction is much more effective in suppressing magnetization at low
temperatures than exchange anisotropy.Comment: 9 pages, 8 figure
Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise
The carrier spin and impurity spin densities in diluted magnetic
semiconductors are considered using a semiclassical approach. Equations of
motions for the spin densities and the carrier spin current density in the
paramagnetic phase are derived, exhibiting their coupled diffusive dynamics.
The dynamical spin susceptibilities are obtained from these equations. The
theory holds for p-type and n-type semiconductors doped with magnetic ions of
arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown
to lead to anisotropic spin diffusion and to a suppression of the Curie
temperature in p-type materials. As an application we derive the Hall-voltage
noise in the paramagnetic phase. This quantity is critically enhanced close to
the Curie temperature due to the contribution from the anomalous Hall effect.Comment: 18 pages, 1 figure include
- …