125 research outputs found

    Spin-polarized Tunneling in Hybrid Metal-Semiconductor Magnetic Tunnel Junctions

    Full text link
    We demonstrate efficient spin-polarized tunneling between a ferromagnetic metal and a ferromagnetic semiconductor with highly mismatched conductivities. This is indicated by a large tunneling magnetoresistance (up to 30%) at low temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a nonmagnetic semiconductor (AlAs). Analysis of the current-voltage characteristics yields detailed information about the asymmetric tunnel barrier. The low temperature conductance-voltage characteristics show a zero bias anomaly and a V^1/2 dependence of the conductance, indicating a correlation gap in the density of states of GaMnAs. These experiments suggest that MnAs/AlAs heterostructures offer well characterized tunnel junctions for high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.

    Non-Drude Optical Conductivity of (III,Mn)V Ferromagnetic Semiconductors

    Full text link
    We present a numerical model study of the zero-temperature infrared optical properties of (III,Mn)V diluted magnetic semiconductors. Our calculations demonstrate the importance of treating disorder and interaction effects simultaneously in modelling these materials. We find that the conductivity has no clear Drude peak, that it has a broadened inter-band peak near 220 meV, and that oscillator weight is shifted to higher frequencies by stronger disorder. These results are in good qualitative agreement with recent thin film absorption measurements. We use our numerical findings to discuss the use of f-sum rules evaluated by integrating optical absorption data for accurate carrier-density estimates.Comment: 7 pages, 3 figure

    Clustered States as a New Paradigm of Condensed Matter Physics

    Full text link
    We argue that several materials of much current interest in condensed matter physics share common phenomenological aspects that only very recent investigations are unveiling. The list includes colossal magnetoresistance manganites, high temperature superconducting cuprates, diluted magnetic semiconductors, and others. The common aspect is the relevance of intrinsic inhomogeneities in the form of "clustered states", as explained in the text.Comment: elsart3, 6 pages, 5 figures. Invited paper for the Conference Proceedings of the International Conference on Magnetism, Rome, July 200

    Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As

    Get PDF
    We have studied the depth-dependent magnetic and structural properties of as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron reflectometry. In addition to increasing total magnetization, the annealing process was observed to produce a significantly more homogeneous distribution of the magnetization. This difference in the films is attributed to the redistribution of Mn at interstitial sites during the annealing process. Also, we have seen evidence of significant magnetization depletion at the surface of both as-grown and annealed films.Comment: 5 pages, 3 figure

    Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers

    Full text link
    We examine the Mn concentration dependence of the electronic and magnetic properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The Curie temperature (Tc), conductivity, and exchange energy increase with Mn concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~ 110 K. The ferromagnetic moment per Mn ion decreases monotonically with increasing x, implying that an increasing fraction of the Mn spins do not participate in the ferromagnetism. By contrast, the derived domain wall thickness, an important parameter for device design, remains surprisingly constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev

    Spectroscopic determination of hole density in the ferromagnetic semiconductor Ga1x_{1-x}Mnx_{x}As

    Full text link
    The measurement of the hole density in the ferromagnetic semiconductor Ga1x_{1-x}Mnx_{x}As is notoriously difficult using standard transport techniques due to the dominance of the anomalous Hall effect. Here, we report the first spectroscopic measurement of the hole density in four Ga1x_{1-x}Mnx_{x}As samples (x=0,0.038,0.061,0.083x=0, 0.038, 0.061, 0.083) at room temperature using Raman scattering intensity analysis of the coupled plasmon-LO-phonon mode and the unscreened LO phonon. The unscreened LO phonon frequency linearly decreases as the Mn concentration increases up to 8.3%. The hole density determined from the Raman scattering shows a monotonic increase with increasing xx for x0.083x\leq0.083, exhibiting a direct correlation to the observed TcT_c. The optical technique reported here provides an unambiguous means of determining the hole density in this important new class of ``spintronic'' semiconductor materials.Comment: two-column format 5 pages, 4 figures, to appear in Physical Review

    Noncollinear Ferromagnetism in (III,Mn)V Semiconductors

    Full text link
    We investigate the stability of the collinear ferromagnetic state in kinetic exchange models for (III,Mn)V semiconductors with randomly distributed Mn ions >. Our results suggest that {\em noncollinear ferromagnetism} is commom to these semiconductor systems. The instability of the collinear state is due to long-ranged fluctuations invloving a large fraction of the localized magnetic moments. We address conditions that favor the occurrence of noncollinear groundstates and discuss unusual behavior that we predict for the temperature and field dependence of its saturation magnetization.Comment: 5 pages, one figure included, presentation of technical aspects simplified, version to appear in Phys. Rev. Let

    Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States

    Full text link
    Dynamical and transport properties of a simple single-band spin-fermion lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here discussed using Monte Carlo simulations. This effort is a continuation of previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static properties of the model were studied. The present results support the view that the relevant regime of J/t (standard notation) is that of intermediate coupling, where carriers are only partially trapped near Mn spins, and locally ordered regions (clusters) are present above the Curie temperature T_C. This conclusion is based on the calculation of the resistivity vs. temperature, that shows a soft metal to insulator transition near T_C, as well on the analysis of the density-of-states and optical conductivity. In addition, in the clustered regime a large magnetoresistance is observed in simulations. Formal analogies between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and tex

    Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems

    Full text link
    Motivated by the recent suggestion of anisotropic effective exchange interactions between Mn spins in Ga1x_{1-x}Mnx_xAs (arising as a result of spin-orbit coupling), we study their effects in diluted Heisenberg spin systems. We perform Monte Carlo simulations on several phenomenological model spin Hamiltonians, and investigate the extent to which frustration induced by anisotropic exchanges can reduce the low temperature magnetization in these models and the interplay of this effect with disorder in the exchange. In a model with low coordination number and purely ferromagnetic (FM) exchanges, we find that the low temperature magnetization is gradually reduced as exchange anisotropy is turned on. However, as the connectivity of the model is increased, the effect of small-to-moderate anisotropy is suppressed, and the magnetization regains its maximum saturation value at low temperatures unless the distribution of exchanges is very wide. To obtain significant suppression of the low temperature magnetization in a model with high connectivity, as is found for long-range interactions, we find it necessary to have both ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY interaction). This implies that disorder in the sign of the exchange interaction is much more effective in suppressing magnetization at low temperatures than exchange anisotropy.Comment: 9 pages, 8 figure

    Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise

    Full text link
    The carrier spin and impurity spin densities in diluted magnetic semiconductors are considered using a semiclassical approach. Equations of motions for the spin densities and the carrier spin current density in the paramagnetic phase are derived, exhibiting their coupled diffusive dynamics. The dynamical spin susceptibilities are obtained from these equations. The theory holds for p-type and n-type semiconductors doped with magnetic ions of arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown to lead to anisotropic spin diffusion and to a suppression of the Curie temperature in p-type materials. As an application we derive the Hall-voltage noise in the paramagnetic phase. This quantity is critically enhanced close to the Curie temperature due to the contribution from the anomalous Hall effect.Comment: 18 pages, 1 figure include
    corecore