We demonstrate efficient spin-polarized tunneling between a ferromagnetic
metal and a ferromagnetic semiconductor with highly mismatched conductivities.
This is indicated by a large tunneling magnetoresistance (up to 30%) at low
temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic
metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a
nonmagnetic semiconductor (AlAs). Analysis of the current-voltage
characteristics yields detailed information about the asymmetric tunnel
barrier. The low temperature conductance-voltage characteristics show a zero
bias anomaly and a V^1/2 dependence of the conductance, indicating a
correlation gap in the density of states of GaMnAs. These experiments suggest
that MnAs/AlAs heterostructures offer well characterized tunnel junctions for
high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.