136 research outputs found

    The Distribution and Abundance of Resources Encountered by a Forager

    Get PDF

    Determination of Chlorinated organic compounds in aqueous matrices

    Get PDF
    Thirteen pure volatile, semi-volatile and non-volatile chlorinated organic compounds of molecular weights ranging from trichloroethylene (MW = 131.39 g mole -¹) to hexachlorobenzene (MW = 284.78 g mole-¹) were determined in aqueous matrices by GC-ECD. After 10% salt addition, different extraction tests were performed using fibres whose adsorbing phase was based on microsphere carbon particles characterized by a constant size. Five experimental parameters were optimized: extraction temperature and time, position of the fibre in the GC injector port, desorption temperature and time. The optimized analytical protocol was employed to determine the efficiency of a real activated carbon adsorption plant to remove organic chlorinated pollutants from an industrial wastewater at ng l-¹ levels

    Population Cycling in Space-Limited Organisms Subject to Density-Dependent Predation

    Get PDF
    We present a population model with density-dependent disturbance. The model is motivated by, and is illustrated with, data on the percentage of space covered by barnacles on quadrats of rock in the intertidal zone. The autocorrelation function observed indicates population cycling. This autocorrelation function is predicted qualitatively and quantitatively by the detailed model we present. The general version of the model suggests the following rules regarding cycling in space-limited communities subject to density-dependent disturbances. These rules may apply to any space-limited community where a density-dependent disturbance reduces population densities to very low levels, like fire or wind for plant communities. We propose that the period of the cycle will be approximately equal to the time it takes the community to reach a critical density plus the average time between disturbance events when the density is above that critical density. The cycling will only be clear from autocorrelation data if the growth process is relatively consistent, there is a critical density (which the sessile organism reaches and passes) above which the probability of disturbance increases rapidly, and the time to reach the critical density is at least twice the average time between disturbance events

    The value of migration information for conservation prioritization of sea turtles in the Mediterranean

    Get PDF
    Aim: Conservation plans often struggle to account for connectivity in spatial prioritization approaches for the protection of migratory species. Protection of such species is challenging because their movements may be uncertain and variable, span vast distances, cross international borders and traverse land and sea habitats. Often we are faced with small samples of information from various sources and the collection of additional data can be costly and time-consuming. Therefore it is important to evaluate what degree of spatial information provides sufficient results for directing management actions. Here we develop and evaluate an approach that incorporates habitat and movement information to advance the conservation of migratory species. We test our approach using information on threatened loggerhead sea turtles (Caretta caretta) in the Mediterranean. Location: The Mediterranean Sea. Methods: We use Marxan, a spatially explicit decision support tool, to select priority conservation areas. Four approaches with increasing amounts of information about the loggerhead sea turtle are compared, ranging from (1) the broad distribution, (2) multiple habitat types that represent foraging, nesting and inter-nesting habitats, (3) mark-recapture movement information to (4) telemetry-derived migration tracks. Results: We find that spatial priorities for sea turtle conservation are sensitive to the information used in the prioritization process. Setting conservation targets for migration tracks altered the location of conservation priorities, indicating that conservation plans designed without such data would miss important sea turtle habitat. We discover that even a small number of tracks make a significant contribution to a spatial conservation plan if those tracks are substantially different. Main conclusions: This study presents a novel approach to improving spatial prioritization for conserving migratory species. We propose that future telemetry studies tailor their efforts towards conservation prioritization needs, meaning that spatially dispersed samples rather than just large numbers should be obtained. This work highlights the valuable information that telemetry research contributes to the conservation of migratory species

    Ocean zoning within a sparing versus sharing framework

    Get PDF
    The land-sparing versus land-sharing debate centers around how different intensities of habitat use can be coordinated to satisfy competing demands for biodiversity persistence and food production in agricultural landscapes. We apply the broad concepts from this debate to the sea and propose it as a framework to inform marine zoning based on three possible management strategies, establishing: no-take marine reserves, regulated fishing zones, and unregulated open-access areas. We develop a general model that maximizes standing fish biomass, given a fixed management budget while maintaining a minimum harvest level. We find that when management budgets are small, sea-sparing is the optimal management strategy because for all parameters tested, reserves are more cost-effective at increasing standing biomass than traditional fisheries management. For larger budgets, the optimal strategy switches to sea-sharing because, at a certain point, further investing to grow the no-take marine reserves reduces catch below the minimum harvest constraint. Our intention is to illustrate how general rules of thumb derived from plausible, single-purpose models can help guide marine protected area policy under our novel sparing and sharing framework. This work is the beginning of a basic theory for optimal zoning allocations and should be considered complementary to the more specific spatial planning literature for marine reserve as nations expand their marine protected area estates

    Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect

    Get PDF
    1. Globally, protected areas are being established to protect biodiversity and to promote ecosystem resilience. The typical spatial conservation planning process leading to the creation of these protected areas focuses on representation and replication of ecological features, often using decision support tools such as Marxan. Yet, despite the important role ecological connectivity has in metapopulation persistence and resilience, Marxan currently requires manual input or specialized scripts to explicitly consider connectivity. 2. ‘Marxan Connect’ is a new open source, open access Graphical User Interface (GUI) tool designed to assist conservation planners with the appropriate use of data on ecological connectivity in protected area network planning. 3. Marxan Connect can facilitate the use of estimates of demographic connectivity (e.g. derived from animal tracking data, dispersal models, or genetic tools) or structural landscape connectivity (e.g. isolation by resistance). This is accomplished by calculating metapopulation‐relevant connectivity metrics (e.g. eigenvector centrality) and treating those as conservation features or by including the connectivity data as a spatial dependency amongst sites in the prioritization process. 4. Marxan Connect allows a wide group of users to incorporate directional ecological connectivity into conservation planning with Marxan. The solutions provided by Marxan Connect, combined with ecologically relevant post‐hoc testing, are more likely to support persistent and resilient metapopulations (e.g. fish stocks) and provide better protection for biodiversity

    Let's Train More Theoretical Ecologists - Here Is Why

    Get PDF
    A tangled web of vicious circles, driven by cultural issues, has prevented ecology from growing strong theoretical roots. Now this hinders development of effective conservation policies. To overcome these barriers in view of urgent societal needs, we propose a global network of postgraduate theoretical training programs

    Spatially explicit approach to estimation of total population abundance in field surveys.

    Get PDF
    Population abundance is fundamental in ecology and conservation biology, and provides essential information for predicting population dynamics and implementing conservation actions. While a range of approaches have been proposed to estimate population abundance based on existing data, data deficiency is ubiquitous. When information is deficient, a population estimation will rely on labor intensive field surveys. Typically, time is one of the critical constraints in conservation, and management decisions must often be made quickly under a data deficient situation. Hence, it is important to acquire a theoretical justification for survey methods to meet a required estimation precision. There is no such theory available in a spatially explicit context, while spatial considerations are critical to any field survey. Here, we develop a spatially explicit theory for population estimation that allows us to examine the estimation precision under different survey designs and individual distribution patterns (e.g. random/clustered sampling and individual distribution). We demonstrate that clustered sampling decreases the estimation precision when individuals form clusters, while sampling designs do not affect the estimation accuracy when individuals are distributed randomly. Regardless of individual distribution, the estimation precision becomes higher with increasing total population abundance and the sampled fraction. These insights provide theoretical bases for efficient field survey designs in information deficiency situations

    Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting

    Get PDF
    Background: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities
    corecore