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Vol. 143, No. 4 The American Naturalist April 1994 
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TO DENSITY-DEPENDENT PREDATION 

HUGH P. POSSINGHAM,*t SHRIPAD TULJAPURKAR,t JONATHAN ROUGHGARDEN,t AND 
MATTHEW WILKSt 

*Department of Applied Mathematics, University of Adelaide, Adelaide SA 5005, Australia; 
tDepartment of Biological Sciences, Stanford University, Stanford, California 94305 

Submitted December 6, 1991; Revised April 1, 1993; Accepted April 26, 1993 

Abstract.-We present a population model with density-dependent disturbance. The model is 
motivated by, and is illustrated with, data on the percentage of space covered by barnacles on 
quadrats of rock in the intertidal zone. The autocorrelation function observed indicates popula- 
tion cycling. This autocorrelation function is predicted qualitatively and quantitatively by the 
detailed model we present. The general version of the model suggests the following rules regard- 
ing cycling in space-limited communities subject to density-dependent disturbances. These rules 
may apply to any space-limited community where a density-dependent disturbance reduces 
population densities to very low levels, like fire or wind for plant communities. We propose 
that the period of the cycle will be approximately equal to the time it takes the community to 
reach a critical density plus the average time between disturbance events when the density is 
above that critical density. The cycling will only be clear from autocorrelation data if the growth 
process is relatively consistent, there is a critical density (which the sessile organism reaches 
and passes) above which the probability of disturbance increases rapidly, and the time to reach 
the critical density is at least twice the average time between disturbance events. 

Disturbance events are believed to be a critical feature of the population dy- 
namics of sessile organisms (Sousa 1984). Many empirical studies have consid- 
ered the influence of disturbance frequency and intensity on the community struc- 
ture of space-limited organisms (Connell 1979; Denslow 1980; Sousa 1980; Paine 
and Levin 1981; Miller 1982; Keough 1984; Pickett and White 1985). The majority 
of these studies have focused on abiotic disturbances that act independently of 
the state of the community. Explaining species diversity has been the primary 
aim of many articles concerned with the impact of disturbances (Lubchenco 1978; 
Petraitis et al. 1989; Martinsen et al. 1990). In this article we present a simple 
model that focuses on the effect of density-dependent predation on the population 
dynamics of a single space-limited prey species. We show that this type of distur- 
bance can cause local phase-forgetting (transfer of information decays with time) 
cycles in the population dynamics of the prey species. The theory presented here 
was motivated by data collected in an earlier study on the population dynamics 
of barnacles (Gaines and Roughgarden 1985). 

t E-mail: hpossing@maths.adelaide.edu.au. 
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564 THE AMERICAN NATURALIST 

Consider a space-limited sessile organism that is censused at regular intervals 
by determining the amount of occupied space in a quadrat of fixed size. For 
example, in the earlier study (Gaines and Roughgarden 1985) a 34.6-cm2 quadrat 
of rock was photographed every week and the percentage of the surface covered 
by one or more species of barnacle was measured. These data were collected 
(Gaines and Roughgarden 1985) for eight quadrats at Hopkins Marine Station, 
Monterey, California. From the time series of percent cover an autocorrelation 
function was calculated, which indicated statistically significant oscillations in the 
percentage of free space in four of the quadrats. The period of these oscillations 
ranged from 25 to 32 wk. Previous theoretical work suggested that this cyclical 
behavior is a consequence of the time lag induced by the age-structured sizes of 
the adult barnacles (Roughgarden et al. 1985; Bence and Nisbet 1989). However, 
attempts to quantitatively fit the observed data with this model have failed (J. 
Roughgarden, personal observation). The earlier study (Gaines and Roughgarden 
1985) suggested that the cycles may be influenced by density-dependent predation 
by sea stars. Taking up this suggestion, we present a model in this article that 
attempts to explain the data collected in the earlier study (Gaines and Roughgar- 
den 1985) in which the driving mechanisms for the fluctuations is density- 
dependent sea star predation on barnacles. The model addresses two topical 
issues in population biology. First, we believe that mathematical models that are 
tailored to address specific sorts of data and data collection may prove more 
useful to empiricists than more general models in which the variables (like total 
population size) and parameters (like carrying capacity) are not easily measured 
(Schoener 1986). 

Second, our approach addresses the issue of scale in population processes. 
The unit of interest in population dynamics has traditionally been the individual, 
with birth and death acting on each individual independently of its neighbors. 
When a process of interest acts on a larger scale, groups of individuals in the 
case of sea star predation, the classical approach may not explain the dynamic 
behavior of the system at that scale. Hence, because sea star predation operates 
on groups of individuals and the barnacle cover in the immediate vicinity appears 
to be the cue for predation events, we use the dependent variable-occupied 
space in a small quadrat in the intertidal zone. This choice of dependent variable 
appears to be most relevant to the scale of the predation phenomenon. This scale 
cannot, however, hope to accurately address processes occurring at the level 
of the individual. Phenomena that influence larger spatial scales, for example, 
settlement events along a length of coastline, are likewise ignored. Because of 
the way in which the data were collected, we believe that the model presented 
below currently provides the most plausible explanation for the local population 
cycles observed during the earlier study (Gaines and Roughgarden 1985). If the 
data had been collected at a much larger, or much smaller spatial scale, then 
population cycles might not have been observed. It is worth noting that it was 
fortuitous that the scale of the quadrats and the scale of the sea star predation 
are similar. 

In the first section we argue for a simple expression for the period of the 
population cycles. We then formulate a model of the probability density function 
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SPACE-LIMITED POPULATION CYCLING 565 

of percent occupied space as a continuous random variable that increases linearly 
with time in the absence of sea star predation. This model is used to approximate 
an expression for the period of the autocorrelation function and the rate at which 
the autocorrelation function period should decay. The general theory presented 
in this section is applicable to any situation in which a density-dependent distur- 
bance affects space-limited prey (see, e.g., Andrew and Jones 1990). The second 
section introduces the discrete state space analogue of the model and uses a 
Markov chain approach to numerically evaluate the autocorrelation function. This 
provides numerical support for the arguments in the first section and a framework 
for modeling more specific situations. 

The most important result of the first two sections is that the period of the 
cycle in percent covered space is equal to the time it takes bare rock to attain a 
density at which there is heavy predation, plus the mean time between predation 
events. In the final section we modify the discrete state space model to incorpo- 
rate two details of the earlier study data (Gaines and Roughgarden 1985), a nonlin- 
ear rate of increase in the amount of space covered by barnacles in the absence 
of predation and a more complex relationship between predation frequency and 
barnacle density. This last section is intended to mimic the processes driving the 
population cycles observed during the earlier study (Gaines and Roughgarden 
1985) more accurately. With realistic parameters the theory provides a surpris- 
ingly good quantitative fit to the autocorrelation data. 

THE PERIOD OF THE POPULATION CYCLE AND A CONTINUOUS STATE SPACE MODEL OF 

THE PROBABILITY DENSITY FUNCTION 

In the absence of predation assume that the amount of occupied space rises 
linearly at rate g. Sea stars arrive at the patch and consume all individuals in the 
quadrat if, and only if, the amount of occupied space is at or above a critical 
value, c. 

This kind of predation follows logically from an optimal diet model of foraging 
behavior in which the prey item is the quadrat and its quality is the density of 
prey in the quadrat (Charnov 1976). If the density of prey is below a threshold 
value it is more profitable for the predator to feed elsewhere. If the density is 
above a threshold value then the predator remains and consumes all the prey in 
the quadrat, and the amount of occupied space returns to zero. 

For simplicity we will assume that the arrival of predators is a Poisson process 
that occurs at rate d, therefore the mean (and standard deviation) of the interar- 
rival time (time between predator arrivals) is lid. 

The period of the population cycle, T, described by this process is defined by 
the following equation: 

T= clg + lId, (1) 

because for each patch the period of the cycle in percent cover is the time it 
takes the process to move from 100% free space to the critical percent cover, 
plus the mean time between predation events. (Alternatively, this is the average 
time it takes occupied space to change from a given percent cover back to that 
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PREDATION EVENTS 

0 
u 

TIME 

FIG. 1.-Example of fluctuations in the amount of space occupied by a sessile organism 
subject to density-dependent predation. The critical threshold above which predation occurs 
is marked c. The maximum amount of space that can be occupied is denoted m. 

same percent cover.) Increasing the critical percent cover, decreasing the rate at 
which covered space increases, and decreasing the predation rate will all cause 
the period of the cycle to increase. Because of the stochastic nature of the arrival 
of sea star, the population cycles are phase forgetting. The crucial result is that 
density-dependent predation on groups of sessile space-limited organism may 
cause phase-forgetting cycles in local population density in the absence of age 
structure and/or time delays (see Roughgarden et al. 1985; Bence and Nisbet 
1989). 

Although this heuristic argument yields a period for the population cycle, it 
does not tell us the likelihood of seeing that period in autocorrelation data, and 
it ignores the fact there is a limit to the amount of percent cover that can be 
occupied, namely, 100%. To address these problems consider the following model 
of the probability density function of the amount of occupied space. 

Let X(t) (where t denotes time) be a random variable that represents the per- 
centage of the quadrat covered by the sessile organism. Let the percent cover 
increase linearly at rate g in the absence of predation to some maximum percent 
cover m. An example of the way in which the random variable X(t) behaves is 
sketched in figure 1. The probability density function p(x, t) can be written as 
the sum of a function p(x, t) that describes the distribution for 0 ? x(t) < m and 
a probability mass pm(t) that is concentrated at the maximum value m, p(x, t) = 
pi(x, t) + pm(t)B(x - m), where 8(x) is the Dirac delta function. 

In Appendix A we show that our assumptions lead to the following equations 
for the probability density of x(t), 

ap(x, t)lat + gap(x, t)lax = 0 for0 ?x< c (2a) 

ap(x, t)lat + gap(x, t)lax = -dp(x, t) for c x < m (2b) 

dpm(t)Idt = gp((m, t) - dpm(t), (2c) 
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SPACE-LIMITED POPULATION CYCLING 567 

with boundary condition 

tn 
p(O, t) = (dlg) P1n(t) + p(x, t) dx . (2d) 

Note that the transient behavior of p(x, t) determines the transient behavior of 
the autocorrelation function of x(t). Therefore, the temporal pattern of change in 
percent cover is reflected in the transient properties of p(x, t), which we now 
explore. 

Period and Decay Rate of the Autocorrelation Function 
If the probability of reaching the maximum state is small, p,?,(t) is small, and 

equation (2) reduces to 

ap(x, t)Iat + gap(x, t)Iax = 0 forO-x<c (3a) 

ap(x, t)lat + gap(x, t)ldx = -dp(x, t) forx?- c, (3b) 

with boundary condition 

p(O, t) = (dlg) p(x, t)dx. (3c) 

Given that the density of barnacles will cycle periodically, it is of interest to 
get an impression of the likelihood the cycles will be observed in autocorrelation 
functions derived from field data. In Appendix B we use equation (3) to find the 
rate at which the autocorrelation function decays. Before considering this result 
it is instructive to consider four special cases. 

1. d is very large. If d is very large then the percent cover increases to the 
critical value, then falls almost instantaneously to zero. This results in cycles of 
period clg and the cycles will be phase remembering; the autocorrelation function 
will not decay to zero. 

2. c = 0. In this case the percent cover is subject to random density- 
independent mortality. The autocorrelation function decays rapidly to zero and 
no cycling occurs. 

3. d is very small. Under these circumstances the predation rate is too low, 
the cycles are phase forgetting, and the autocorrelation function rapidly decays. 

4. clg is very large. In this case it takes a long time to reach the critical percent 
cover. Although with a high predation rate long-period cycles should in theory 
be observed, in real situations other stochastic processes would mask these long- 
period cycles. 

In Appendix B we carry out a more thorough analysis of equation (4) to find 
an approximation for the decay rate of the autocorrelation function. The autocor- 
relation function decays faster when the predation rate is lower (fig. 2A). This 
agrees with our simple cases: If the predation rate is high then cycling in the 
autocorrelation function will be pronounced, with a period close to the time taken 
to reach the critical density, clg. If the predation rate is very low the amplitude 
of the autocorrelation function cycles decays rapidly. The decay rate of the auto- 
correlation function decreases as the critical density increases (fig. 2B). For high 
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PREDATION RATE 
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FIG. 2.-The rate at which the autocorrelation function approaches equilibrium. This 
sketch indicates the rate at which the amplitude of the population cycles is expected to 
decay. Large negative values indicate a rapid decay; small values indicate that cycling will 
persist for longer. A, The response of the decay rate to the predation rate; the number on 
each curve is the critical percent curve. B, The response of the decay rate to the critical 
percent cover; the number on each curve is the predation rate. 

predation rates the decay rate is relatively independent of c. For low predation 
rates the critical density does have a significant effect on the decay rate of the 
autocorrelation function, implying that we are more likely to see cycling when 
the critical density is large. 

So far we have assumed that the probability of entering the maximum state is 
negligible. If there is a maximum density that the population often reaches, a 
better approximation to the period is 

T clg + lId - (mlg + lId)exp[-d(m - c)Ig] (4) 
1 - exp[-d(m - c)/g] 

(see App. C). The difference between equations (1) and (4) is illustrated in figure 3. 
As the value of d(m - c)Ig increases the difference between the approximations 
decreases. Equation (1) is a better approximation when the probability that a 
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150- equation (1) 
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E 100-- 
R 
I equa 
0 50 
D 

0 I I I I I I i I I I I I I I I I I u 

A 0 0.05 0.1 0.15 0.2 
PREDATION RATE 

110 
eqUatiOn (1)/ 

p 100/ 

E equation (4) 

1 80- 80 

D 70.- 00 

50 60 70 80 90 100 

B CRITICAL PERCENT COVER 

FIG. 3.-Comparison of the approXimations of the period of the cycle calculated with 
equation (1), which ignores the possibility the percent cover reaches a maximum, and equa- 
tion (4): A, the effect of varying the predation rate, d, for c = 70, m = 100, and g = 1; B, 
the effect of varying the critical density c, for d = 0. 1, m = 100, and g = 1. 

predation event occurs before the percent cover reaches m is low; however, even 
when c = m the approximation can still be adequate. 

DISCRETE STATE SPACE MODEL 

The problem can be formulated and solved numerically for more general growth 
and predation processes if we assume that the state space for the process is finite. 
In this section we describe the problem in matrix notation and use this formulation 
to numerically generate autocorrelation functions for the process. Examination 
of the results yields insight into the nature of the cycling process and confirms 
the analytic approximations in the previous section. 

Suppose the amount of cover in the quadrat increases from state 0 to state 100 
in the absence of sea star predation. Time is scaled so that the process moves up 
one state each time step. When the random variable is at or above state c there 

This content downloaded from 130.102.158.24 on Thu, 18 Sep 2014 19:27:55 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


570 THE AMERICAN NATURALIST 

is a constant probability p that the patch is visited by a sea star and the percentage 
of space occupied by barnacles falls to zero. If pj, is the probability the process 
is in state j at time t, then the probability of being in state j at time t + 1 is 

m 
P o, t + IlzP,t 

1=c 

Pj,t+? =Pj-,t forj= 1,... c 

Pj,. t= (1 - IL)pj- I,' forj = c + 1, ... ,m - 1, 
and (5) 

Pm,t+l (1 - )Pm-lit + (1 -OPm,t 

These transitions can be written in matrix form 

Pt+1 = Apt, (6) 
where Pt is the column vector [pO t P 1,, .. ., Pm, t] and A is the one-step transition 
matrix 

Initial 
State 0 1 2 c - I c c + nm - m 

A= 0 0 *** 0 I * * IL 
100 0 0 0 0 0 
0 1 0 0 0 0 0 0 

0 00* 0 0 0 0 0 

0 0 1 0 0 0 0 
0 0 0 0 1- 0 0 0 

0 00 0 0 0 0 0 
o 0 0 0 0 0 i- I i [L 

This transition matrix can be used to calculate the probability distribution at time 
t given initial condition po because 

Pt = Atpo. (7) 

Let 1i be the probability the percent cover in the quadrat rises to i% without a 
sea star visit-we will call this the survival probability to state i. In our model 

li= I for i= I,..c, 

and (8) 
i= (i - p)l-C fori = c + i, ... , m. 
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The equilibrium probabilities, Tr, are described by the following: 
n m-1 

= ljc + 3 ii + (l,JZ4) 
i= C+ 1 

ITi ITO for c 
~~~~~~~~~~(9) 

7iT=lijTO fori=c+ 1,... ,m-1 

=m 'rnmO'P 

In the earlier study (Gaines and Roughgarden 1985) the cyclical behavior of the 
percent cover is represented by an autocorrelation function. The autocovariance 
function, p(Q), of a time series X(t) is (Grimmett and Stirzaker 1983) described 
by the following equation: 

p(T) = E[(X(t) - E(X))(X(t + T) - E(X))], 

and the autocorrelation function is p(T)/p(O). For a sufficiently long time series 
we can obtain an expression for the autocovariance function in terms of the 
matrix elements 

in _ m 

p(T) = (i - E(X)) aJTi(j - E(X)) (10) 
i=O j=O 

where aJT is the element of AT in the jth row and ith column, and 
m 

p (O) =E [,ai(i - E(X)I2, 
i=O 

which is merely the variance of the equilibrium distribution. The autocorrelation 
function for any [L, c, and m can be calculated by calculating the matrix AT and 
evaluating equation (10) for all 7. 

Results and Discussion 

In figure 4 the autocorrelation function for the process is graphed for m = 100, 
c = 70, and pL = 0.1. The autocorrelation function suggests a cycle in the process, 
and the period of this cycle approximates the period predicted by the analytical 
continuous state space model, c + 1/I. We will use this discrete state space 
model to consider the influence of the parameters. 

As we showed in the previous section, a high rate of sea star predation produces 
a more pronounced cycle and also shortens the period of the oscillation. Figure 
5 displays the influence of [ on the autocorrelation function. In figure 6 we vary 
the percent cover at which sea star predation begins. Increasing c increases the 
amplitude of the oscillation at a decreasing rate and lengthens the period of the 
oscillation in an approximately linear fashion. The way in which the decay rate 
of the cycling decreases as c increases is seen most clearly when the rate of sea 
star predation is high. As expected, when c = 0, the memoryless nature of 

This content downloaded from 130.102.158.24 on Thu, 18 Sep 2014 19:27:55 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


572 THE AMERICAN NATURALIST 

1.00- 

A 0.75 - U 
T 
o 0.50 
C 
o 0.25 
R 

A -0.25 
T 

1 -0.50 - 
0 
N -0.75 

-1.00 
0 20 40 60 80 100 120 140 160 180 200 

TIME 

FIG. 4.-The autocorrelation function of the discrete state space process described by 
equation (6) and calculated with equation (11) for = 0.11, c 70, and m = 100. 
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FIG. 5.-The effect of changes in the rate at which sea stars visit the patch, p., on the 
autocorrelation function of the discrete state space process described by equation (5) and 
calculated with equation (10), m = 100, c = 70. 

the predator arrival process means the autocorrelation function approaches zero 
monotonically at a rate that depends on the sea star visitation rate (fig. 6). The 
percent cover at which the growth process stops, m, has very little influence on 
the period and amplitude of the population cycles; however, if c > m then the 
patch is never subjected to predation and there will be no cycles. These conclu- 
sions are consistent with the analytic analysis of the previous section. 

In all these examples (figs. 4, 5, and 6) equation (1) overestimates the period 
of the cycle. This is because equation (1) assumes that the process never reaches 
the maximum state. Using the approximation in equation (4) corrects for this 
assumption and the match between the numerical and analytic results becomes 
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FIG. 6.-The effect of changes in the critical density below which sea stars do not consume 
barnacles in the patch, c, when covered space increases linearly, m = 100, and (A) p. 
0.1, (B) p. = 0.2. The autocorrelations are calculated with equation (10). 

closer. The relationship between equation (1) and equation (4) is sketched in figure 
3 for parameter values that correspond to figures 4, 5, and 6. As the predation rate 
falls, equation (1) becomes a worse estimate of the period. Similarly, as the 
distance between the critical density and the maximum density decreases, equa- 
tion (1) becomes a worse approximation to the true period. 

In summary, the likelihood of observing cycles in percent cover in field data 
is primarily determined by the rate of predation. If the sea star predation rate is 
too low the amplitude of the cycles will be too small to notice in real data. For 
high predation rates the time it takes the population to reach the critical percent 
cover dominates the period of the oscillations. If the critical density is too small, 
for example, if c = 0, there will be no cycle. As a rule of thumb, cycling may 
be observed in the autocorrelation function if clg > 2!d, that is, the time it takes 
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to reach the critical density is at least twice the mean time between predation 
events. When the chance of reaching a maximum state becomes large enough 
equation (4) will become a significantly more accurate estimate of the period than 
equation (1). 

A key observation presented in the earlier study (Gaines and Roughgarden 
1985) is that statistically significant oscillations were only observed on the sites 
that received persistently high settlement rates. In low-settlement sites no oscilla- 
tions were observed, and the oscillations in the high-settlement sites ceased when 
the settlement rate decreased. Our models suggest that there are two elements 
necessary for statistically significant cycles: (i) a critical density of barnacle cover 
below which there is very little sea star predation, but above which the rate of 
sea star predation increases rapidly; (ii) a consistent rise in percent cover, in the 
absence of sea stars. If the rate at which the percent cover increases varies a lot, 
any peak in the autocorrelation data will be blurred. In the simple linear model 
described above, an increase in the rate at which barnacles cover the quadrat 
can be interpreted as an increase in settlement rates. The increase in settlement 
rate decreases the period of the cycle. According to our simple model this results 
in cycles that decay more rapidly. At this point it would appear that the low- 
settlement sites should show clearer cycles than the high-settlement sites from 
autocorrelation data. Although the model provides a qualitative fit to the data 
(Gaines and Roughgarden 1985), two observations remain to be explained. Why 
do we only see statistically significant oscillations in the high-settlement sites, 
and why is the period of the cycle between 25 and 32 wk? To answer these 
questions we extended our discrete state space model to include more details of 
the particular biological processes involved. 

DISCRETE STATE SPACE MODEL WITH NONLINEAR GROWTH AND PREDATION THAT 

VARIES AS A CONTINUOUS FUNCTION OF PERCENT COVER 

In this section we use further information to try to fit the data collected in the 
earlier study (Gaines and Roughgarden 1985) more precisely. The assumption that 
the percentage of occupied space in a quadrat increases linearly in the absence of 
sea star predation is not accurate. Instead, let us use information about the settle- 
ment process, density-independent death, and the rate at which individual barna- 
cles grow to construct a better deterministic model of increase in occupied space. 
Suppose that s larvae settle per cm2 per week. Assume that an individual barna- 
cle, i wk after settling, occupies a,i2 cm2 of space, where ao is chosen so that a 
barnacle 103 wk old occupies an area of 7.07 cm2 (Roughgarden et al. 1985). 
Assume there is density-independent mortality such that the proportion of barna- 
cles that move into the next age class is q. Hence the total area occupied by the 
barnacles i wk after a quadrat is cleared to free space is, in the absence of sea 
star predation, 

wj = min sQao j2qj, Q1 (11) 

J=0 
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where Q is the total area of the quadrat. Each element of the discrete state space 
is now weighted by a value wi, which is the space occupied by barnacles in a 
quadrat that was depleted to zero occupied space i wk ago. The new autocovari- 
ance function is 

Ini 

P(T)= , i(wi - E(X)) > aJ;i(wj - E(X)) 
, 

(12) 
i=O j=O 

where now the equilibrium probabilities are 
/ in-i 

=o l/Kc + X li + (ltn/14) 

i=c+ I 

Tr. = wo for i such that wi < c 1 
~~~~~~~~~~~~~~(13) 

-i = li7o for i such that wi - c 

WM =w ltn X0/L . 

To date we have assumed that the probability a sea star visits a quadrat is pL 
above a critical density. In reality the probability of sea star visitation each week 
varies as a continuous function of occupied space. Data on the survival rate of 
barnacles (Gaines and Roughgarden 1985) indicate that (i) there is a density- 
independent probability of surviving a week of about 0.98 and (ii) the probability 
of attracting sea star predation begins to increase rapidly at around 60% occupied 
space. Assume that the probability a sea star visits a quadrat with x% occupied 
space in a particular week is given by the single parameter expression 

>(x) = exp[j-(100 - x)/100a], (14) 

that is, a quadrat with no free space will always be visited, and the probability 
of being visited declines exponentially as occupied space decreases. We chose a 
so that at 40% free space the probability of being visited each week is 0.1 (see 
Gaines and Roughgarden 1985, fig. 2). 

Results and Discussion 

In figure 7 we present autocorrelation curves for seven different choices of the 
settlement rate, s. The density-dependent predation rate is plotted in figure 8A, 
and the way in which percent free space decreases with time, in the absence of 
sea star predation, is plotted in figure 8B. When the settlement rate is four cyprids 
per cm2 per week the period of the oscillation is almost precisely 30 wk. This is 
quantitatively consistent with the data collected at the high-settlement sites in 
the earlier study (Gaines and Roughgarden 1985). When the settlement rate falls 
below s = 0.2 there are no clear cycles, which is again consistent with the data 
collected previously (Gaines and Roughgarden 1985). For the low-settlement sites 
our model suggests two reasons for the lack of statistically significant oscillations. 
(i) For very low-settlement sites, the barnacles never reach a density that is high 
enough to attract sea star predation (see figs. 7, 8B). (ii) We have assumed that 
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FIG. 7.- The autocorrelation functions calculated with equations (12) and (13) using param- 
eters that fit the data collected in an earlier study (Gaines and Roughgarden 1985): A, high 
settlement rates; B, low settlement rates. When the settlement rate is less than one the long 
period cycles have low amplitude and are unlikely to be observed given background noise. 

the only stochastic element is sea star predation. Other stochastic elements, such 
as demographic stochasticity and larval settlement, will tend to obscure cycles 
as time passes. Consequently, the greater the period of the oscillation, the less 
likely we are to discern it in real data. With low-settlement sites we are unlikely 
to find a peak in the autocorrelation function because of a background of aperiodic 
noise. 

O)f these explanations, (i) is most plausible for sites with very low settlement. 
However, explanation (ii) may indicate why the high-settlement sites failed to 
show a significant period when the settlement rate dropped below two larvae per 
cm2 per week (Gaines and Roughgarden 1985). 
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FIG. 8.-Submodels used to fit data collected in an earlier study (Gaines and Roughgarden 
1985). Part A, the rate at which sea stars visit a patch as a function of the percent free space 
in a quadrat, equation (14), with a chosen so that at 60% cover the probability of sea star 
predation is 0.1 per week. Part B, the rate at which covered space increases with time in 
the absence of sea star predation for seven different settlement rates (see eq. [14]). 

DISCUSSION 

We have considered the influence of density-dependent predation on a space- 
limited prey. We found that, if predation intensity is low at low prey density and 
increases rapidly at some critical prey density, then the abundance of prey will 
cycle when observed at the same spatial scale as the predation mechanism. The 
period of the cycle will be approximately equal to the time it takes the space- 
limited prey to increase from zero percent cover to the density at which predation 
becomes attractive, plus the mean time between predation events. The cycles 
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will be most pronounced when the predation rate is high. If there is a maximum 
prey density, and the prey often reach that density under natural circumstances, 
then equation (4) provides a more accurate approximation to the period of the 
cycling. Our conclusions are supported by a detailed model that was tested on 
data on barnacles collected previously (Gaines and Roughgarden 1985). 

Despite the specific nature of the test, the simple models presented here are 
believed to be relevant to a much wider class of space-limited organism. Indeed, 
cycles analogous to the ones presented here have been observed in plant commu- 
nities in which the community-dependent agent of disturbance is fire (White 1979; 
Horn 1981; Minnich 1983) or wind (Sprugel 1976; Reiners and Lang 1979). 

Many authors have noted that space-limited communities can be regarded as 
a mosaic of patches, with different patches in the mosaic reflecting different types 
and times of past disturbances (Sousa 1984). As a whole, the composition of the 
community remains fairly constant, but on smaller spatial scales the composition 
of the community appears to be constantly changing. The modeling framework 
we have introduced here fits into this mosaic concept. At the level of an individ- 
ual, sea star predation appears to be independent of age. At the level of the 
quadrats in the earlier study (Gaines and Roughgarden 1985), sea star predation 
depends on the density of individuals in the quadrat. At a larger spatial scale, for 
example, 100 m of coastline, sea star predation could be simply combined with 
other density-independent mortality factors. The cycles we have modeled are 
scale-dependent. The scale at which the cycles are observed depends on the scale 
of the predation event. By focusing on a dependent variable that reflects the scale 
of the disturbance we have unraveled the cause of the cycles. 

Recently, there has been an increase in interest in stochastic models of popula- 
tion dynamics, especially for sessile organisms (Chesson and Warner 1981). The 
stochastic approach is particularly relevant where time series data, and other 
sorts of statistical data, exist about sessile populations and communities. In es- 
sence, these stochastic models have the great advantage of predicting not only 
the average behavior of a system, but also the variability about that average 
behavior. The model presented in this article is stochastic. The model illustrates 
the ability of stochastic models to be solved analytically for simple cases, and 
numerically for more complicated assumptions without recourse to Monte Carlo 
type simulation. We hope that our efforts here will help to stimulate further 
modeling in this vein, particularly with regard to building a more comprehensive 
stochastic picture of the community structure of sessile organisms that incorpo- 
rates ideas of scale in both space and time. 
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APPENDIX A 

DERIVATION OF THE DYNAMICS OF THE PROBABILITY DENSITY FUNCTION OF THE PROCESS 

From our assumptions about the random process, the transitions in X(t) between t and 
t + A may be summarized by considering a small time interval t to t + A and a small 
interval of width h in the percent cover, to get the equation 

Prob[X(t + A) E(x + gA, x + gA + h)] = Prob[X(t) E (x, x + h)](1 - dAIJ[X(t)]]. 
Here we use the indicator function defined as I,(x) = 0 if x < c and I,(x) = 1 if x 2 c to 
account for the critical value below which predation does not occur. The infinitesimal 
probability that a predator visits the patch in the time small time interval is dA. 

Using this equation and considering the ranges 0 c x < c and c ? x < m, we take the 
limits A, h -> 0 to find equations (2a) and (2b). The net probability flux at x is (8lax)(gp(x,t)). 
Taking the limit of this at x = m and adding in the predation rate yields equation (2c). 
The part of the probability density function between 0 and gA comes from predation in 
any patch over the period A. Following a similar process this yields equation (2d). 

APPENDIX B 
ESTIMATING THE DECAY RATE AND THE PERIOD OF THE AUTOCORRELATION FUNCTION 

Rescaling with respect to time by dividing equations (3) through by g and defining tg = 
gt and dg = dig yields 

ap(x, tg)latg + ap(x, tg)lax = 0 for O c x < c 

ap(x, tg)latg + ap(x, tg)lax = -dgp forx 2 c (B1) 

p(O, tg) = dg p(x, tg)dx. 

Now define 

1(x) = exp[- dg(x -c)] forx 2 c 
=0 forx<O, (B2) 

which is the probability of a patch being visited before it reaches state x. Putting p(O, tg) 
= exp[rtg] in equation (Bi) and using (B2) yields 

r0 
dg exp[-rx]l(x)dx = 1, (B3) 

which is the equation we need to solve, for r, to determine the behavior of the autocorrela- 
tion function. In general r is a complex number, let r = u + iy, with a real part, u, that 
determines the rate at which the autocorrelation function approaches equilibrium and an 
imaginary part, y, that determines cycling behavior. Equation (B3) can be rewritten as 

r0 
dg exp[-ux]cos(yx)l(x)dx = 1 

(B4) 
r0 

dg exp[-ux]sin(yx)l(x)dx = 0. 

Coale (1972) does a geometrical analysis of the second equation in (B4), showing that the 
longest period sine wave that works must have y -rr/(average of 1(x)). Thus we estimate 
that y --rl(c + lldg) and the period of the process is T = c + Ildg, which is the same 
as equation (1). 
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As the purpose of this section is to find the decay rate of the cycles, u, and the correction 
to the period approximated by equation (1), w, let 

r= u + iw + irr/T= s + irr/T. (B5) 

Equation (B3) can be rewritten 

1 = dg exp [dgc] f:exp[-sx] exp -x(iTrr(T + dg))]dx 
(B6) 

1 = dg exp[dgc] exp[-Cox]dx - sdg exp[dgc] x exp[-Cox]dx + 0(s2) 

with the expansion 
exp[-sx] = 1 - sx + O(s2), 

where 
oL = (i7wT + dg). 

Solving the integrals in equation (B6) to find s yields 
s = (c + 1/cx)- log(K0), (B7) 

where 
Ko = dgexp[dgc]exp[-otc] /O (B8) 

and 
(c + 1/oL) = c + (dg - (iTr/T))/((d2 + (i]r/T)2). (B9) 

It still remains to reduce s into its real and imaginary parts. Rewriting equation (B8) 
Ko = dg exp[- irclcT]I(iPrlT + dg), (B10) 

so 

IKOI = dgl(d2 + (Tr/T)2)112. (BlI) 
Also 

(ilr/T + dg) = (d 2 + (rr/T)2)1/2 exp[i)], (B 12) 

where 
= - tan- (rr/dg T). (B13) 

Using equations (BiO), (Bll), and (B12) we find that 

Ko = IKoIexp[-i(4) + (rrc/T))]. (B14) 

Using equations (B9) and (B14) in equation (B7) 
s = [c + dgl(d2 + (Ir/T)2) - iirT/(d2 + (Tr/T)2)] x [loglK0l - i(,) + lTc/T)]. (B15) 

Multiplying out equation (B15) yields expressions for the real and imaginary parts of s: 
u = cloglK0l + dgloglKol/(d2 + (,r/T)2) -(r/T)(4) + Trc/T)/(d2 + (7T/T)2), (B16) 

w = -(TrrT)logjKOj/(d2 + (Tr/T)2) - (4 + Trc/T)[c + dgl(d2 + (Tr/T)2)]. (B17) 

By calculating equations (B16) and (B17) numerically it is possible to find the decay rate 
of the cycling, u, and the correction to the period. It can be shown that unless dg is very 
small or c is very small w is a very large negative number and T accurately approximates 
the period of the cycling. Equation (B16) was calculated for a range of values of c and dg 
and the following rules emerged: the amplitude of the period decays at a rate roughly 
proportional to ldg, and the amplitude of the period decays fastest for small values of c 
(see fig. 2). 
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APPENDIX C 

ESTIMATING THE PERIOD OF THE CONTINUOUS STATE SPACE PROCESS WITH A FINITE MAXIMUM 
PERCENT COVER 

If there exists a maximum state, m, and the probability of reaching that maximum state 
is not negligible, then a better approximation to the period is found by referring back 
to Coale's (1972) original equation and equation (1) (see App. B). The more accurate 
approximation to the period is 

T clg + lId - (mlg + 1/d)exp[-d(m - c)lg] 
1 - exp[-d(m - c)lg] 

The presence of a maximum state reduces the period of the population fluctuations. The 
magnitude of the error depends on the values of the critical percent cover and the predation 
rate (see fig. 3). 
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