118 research outputs found

    Analyzing Cholera Dynamics in Homogeneous and Heterogeneous Environments

    Get PDF
    Cholera continues to be a serious public health concern in developing countries and the global increase in the number of reported outbreaks suggests that activities to control the diseases and surveillance programs to identify or predict the occurrence of the next outbreaks are not adequate. Mathematical models play a critical role in predicting and understanding disease mechanisms, and have long provided basic insights in the possible ways to control infectious diseases. This dissertation is concerned with mathematical modeling and analysis of cholera dynamics. First, we study an autonomous model in a homogeneous environment with added controls that involves both direct and indirect transmission pathways. We conduct a careful equilibrium analysis and, in particular, investigate the threshold dynamics of this model. Next, we propose a general multi-group model for cholera dynamics that incorporates spatial heterogeneity and dispersal. Under biologically feasible conditions, we show that the basic reproduction number [special characters omitted]0 remains a sharp threshold for cholera dynamics in multi-group settings. We verify the analysis by numerical simulation results. Then, we propose a deterministic compartmental model for cholera dynamics in time-periodic environments. The model incorporates seasonal variation into a general formulation for the incidence (or, force of infection) and the pathogen concentration. The basic reproduction number of the periodic model is derived, based on which a careful analysis is conducted on the epidemic and endemic dynamics of cholera. Several specific examples are presented to demonstrate this general model, and numerical simulation results are used to validate the analytical prediction. Finally, we extend the general multi-group cholera model to a periodic environment

    Modelling Cholera in Periodic Environments

    Get PDF
    We propose a deterministic compartmental model for cholera dynamics in periodic environments. The model incorporates seasonal variation into a general formulation for the incidence (or, force of infection) and the pathogen concentration. The basic reproduction number of the periodic model is derived, based on which a careful analysis is conducted on the epidemic and endemic dynamics of cholera. Several specific examples are presented to demonstrate this general model, and numerical simulation results are used to validate the analytical prediction

    Maïdo observatory: a new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements

    Get PDF
    Since the nineties, atmospheric measurement systems have been deployed at Reunion Island, mainly for monitoring the atmospheric composition in the framework of NDSC/NDACC (Network for the Detection of <i>Stratospheric</i> Change/Network for the Detection of Atmospheric Composition Change). The location of Reunion Island presents a great interest because there are very few multi-instrumented stations in the tropics and particularly in the southern hemisphere. In 2012, a new observatory was commissioned in Maïdo at 2200 m above sea level: it hosts various instruments for atmospheric measurements, including lidar systems, spectro-radiometers and in situ gas and aerosol measurements. <br><br> This new high-altitude Maïdo station provides an opportunity:<br> 1. to improve the performance of the optical instruments above the marine boundary layer, and to open new perspectives on upper troposphere and lower stratosphere studies;<br> 2. to develop in situ measurements of the atmospheric composition for climate change surveys, in a reference site in the tropical/subtropical region of the southern hemisphere;<br> 3. to offer trans-national access to host experiments or measurement campaigns for focused process studies

    VALIDATION OF GOMOS OZONE PROFILES USING NDSC LIDAR : STATISTICAL COMPARISONS

    Get PDF
    ABSTRACT The lidars deployed in the NDSC framework have been used for the validation of GOMOS onboard ENVISAT. During the commissioning phase around ten coincidences per site have been investigated. No significant bias, larger than ±5 %, has been reported except around 50 km and 20 km where both techniques are known to present some limitations. The estimated errors of both GOMOS and lidar are in good agreement with the standard deviation of the differences between coincidences. At higher latitude, comparisons are not so good because of the measurement conditions of bright limb during this period

    Comprehensive socio-hygienic study of occupational traumatism amongst manganese miners and system of measures aimed at reducing rate of occurence thereof

    No full text
    Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    First Ozonesonde Measurements at Kerguelen Island (49.2°S 70.1°E) Radiosondages Ozone Complementaires aux Kerguelen ROCK campaign 2008-2009 (Polar International Year - IPEV)

    No full text
    International audienceCommunication about First Ozonesonde Measurements at Kerguelen Island (49.2°S 70.1°E) Radiosondages Ozone Complementaires aux Kerguelen ROCK campaign 2008-2009 (Polar International Year - IPEV
    • …
    corecore