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We propose a deterministic compartmental model for cholera dynamics in periodic environments. The
model incorporates seasonal variation into a general formulation for the incidence (or, force of infection)
and the pathogen concentration. The basic reproduction number of the periodic model is derived, based on
which a careful analysis is conducted on the epidemic and endemic dynamics of cholera. Several specific
examples are presented to demonstrate this general model, and numerical simulation results are used to
validate the analytical prediction.

1. Introduction

Limited access to safe water and sanitation resources is common in developing countries, leaving
them vulnerable to cholera outbreaks. Cholera is an intestinal infection caused by ingesting food
or water contaminated with the bacterium Vibrio cholerae. If left untreated, an infected individual
may become severely dehydrated and die within several days. In addition to prompt rehydration
and medical treatment, proper sanitation facilities are needed to prevent infected individuals
from shedding the bacteria back into the environment further fuelling the pathogen concentration
and the persistence of the disease. Besides the transmission route based on environment–human
interaction, the human-to-human direct transmission is also found important in shaping a cholera
epidemic. A recent cholera outbreak in Zimbabwe, a land-locked country in Africa, during 2008–
2009 underscores such a direct transmission pathway [12].

Numerous mathematical models have been published to analyse cholera outbreaks in an effort
to better understand the complex disease transmission and determine adequate prevention and
effective control strategies (see, for example, [6,7,9,11,12,16,17,19]). In particular, Wang and
Liao [19] recently proposed a deterministic cholera model that incorporates general incidence
and pathogen functions and that can unify many of the existing cholera models. These studies
have certainly produced many useful results and have improved our understanding of cholera
dynamics. One limitation of these models, however, is that most of them assumed that the model
parameters are constant in time, meaning that the disease contact rate, recovery rate, pathogen
growth rate, etc., all take fixed values independent of time. An exception, we note, is the work
in [7] where, in addition to the main discussion on the autonomous cholera model, the author
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also conducted simple numerical tests to three scenarios with periodic coefficients. From the
mathematical point of view, the constant parameter assumption has the advantage of simplifying
the models and analysis, and facilitating the use of some well-known theory in autonomous
dynamical systems.

On the other hand, environmental concerns, such as floods, droughts, temperatures and other
climatic factors, are seasonal and could significantly affect cholera dynamics. For example, it
has been observed that cholera is a seasonal disease in many endemic places and infection peaks
often occur annually in the rainy or monsoon season [10,18]. Such filed observations underline the
limitation of most (if not all) current mathematical cholera models and imply that mathematical
insights into cholera seasonality has largely lagged behind. It is thus important for mathematical
cholera studies to incorporate these seasonal factors to gain deeper quantitative understanding of
the short- and long-term evolution of cholera dynamics, and to better predict and prevent future
cholera outbreaks.

The objective of this paper is to propose a general cholera model in a periodic environment by
extending the model proposed in [19] to include seasonal variations in the environment and the
disease transmission pathways. In particular, the incidence (or, force of infection) and the rate of
change for the pathogen concentration are subject to periodicity. Using the framework introduced
in [20], we will analyse the basic reproduction number, R0, for this cholera model and establish
that R0 is a sharp threshold for cholera dynamics in periodic environments: when R0 < 1, the
disease-free equilibrium (DFE) is globally asymptotically stable, and the disease completely dies
out; when R0 > 1, the system admits a positive periodic solution, and the disease is uniformly
persistent. We mention that extinction and persistence results for some periodic epidemic systems
are also discussed in [4,5,15,22].

The remainder of the paper is organized as follows. In Section 2, we introduce the periodic
cholera model and state the necessary assumptions. In Section 3, the basic reproduction number
is derived, followed by a global stability analysis of the disease-free equilibrium in Section 4. The
existence and uniform persistence of an endemic periodic solution are analysed in Section 5. We
then briefly study several specific cholera models in Section 6. Finally, conclusions are drawn in
Section 7.

2. Mathematical model

Building on the cholera model in [19], we construct the following non-autonomous dynamical
system to describe cholera dynamics in a periodic environment:

dS

dt
= bN − Sf (t, I , B) − bS, (1)

dI

dt
= Sf (t, I , B) − (γ + b)I , (2)

dR

dt
= γ I − bR, (3)

dB

dt
= h(t, I , B), (4)

where S, I , R and B denote the susceptible population, infected population, recovered population
and the concentration of vibrios in the contaminated water, respectively. The total population N =
S + I + R is assumed to be a constant for all t ≥ 0. The parameter b represents the natural human
birth/death rate, and γ represents the rate of recovery from cholera. In this general model, the
incidence function f (t, I , B) which determines the rate of new infection and the function h(t, I , B)
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which describes the rate of change for the pathogen in the environment are both differentiable
and periodic in time with a common period ω. That is,

f (t + ω, I , B) = f (t, I , B) and h(t + ω, I , B) = h(t, I , B).

To make biological sense, we assume that the functions f and h satisfy the following conditions
for all t ≥ 0:

(A1) f (t, 0, 0) = h(t, 0, 0) = 0.
(A2) f (t, I , B) ≥ 0.
(A3) (∂f /∂I)(t, I , B) ≥ 0, (∂f /∂B)(t, I , B) ≥ 0, (∂h/∂I)(t, I , B) ≥ 0, (∂h/∂B)(t, I , B) ≤ 0.
(A4) f (t, I , B) and h(t, I , B) are both concave for any t ≥ 0; i.e. the matrices

D2f =

⎡
⎢⎢⎣

∂2f

∂I2

∂2f

∂I∂B
∂2f

∂I∂B

∂2f

∂B2

⎤
⎥⎥⎦ and D2h =

⎡
⎢⎢⎣

∂2h

∂I2

∂2h

∂I∂B
∂2h

∂I∂B

∂2h

∂B2

⎤
⎥⎥⎦

are negative semidefinite everywhere.

The assumption (A1) ensures that the model has a unique, constant disease-free equilibrium (DFE)

x̄ = (S0, I0, R0, B0)
T = (N , 0, 0, 0)T. (5)

The assumption (A2) ensures a non-negative force of infection. The first two inequalities in (A3)
state that the rate of new infection increases with both the infected population size and the pathogen
concentration, and the third inequality states that increased human infection and, consequently,
higher level of human contribution to the environmental vibrios, lead to higher growth rate for the
pathogen. The last inequality in (A3) is based on experimental observation that the vibrios cannot
sustain themselves in the environment in the absence of human contribution [13]; in other words,
without the contribution from infected human population, the rate of change of the pathogen
concentration would be negatively related to itself. The condition (A4) is based on saturation
effect, a common assumption in epidemic models [19].

In addition, we assume that

(A5) f (t, 0, B) > 0 if B > 0; h(t, I , 0) > 0 if I > 0.

The first condition in (A5) implies that infection can start by the indirect transmission route alone;
in other words, a positive bacterial concentration can lead to a positive incidence even if I = 0
initially. The second condition in (A5) states that infected people will contribute to the growth of
the vibrios in the environment (e.g. by shedding) even if B = 0 initially.

Furthermore, we introduce an additional regulation on the profiles of the incidence and pathogen
functions for small I and B. We assume that

(A6) There exists ε∗ > 0 such that when 0 < I < ε∗, 0 < B < ε∗,

f (t, I , B) ≥ f (t, 0, 0) + I · ∂f

∂I
(t, 0, 0) + B · ∂f

∂B
(t, 0, 0) + 1

2
I2 · ∂2f

∂I2
(t, 0, 0)

+ I · B · ∂2f

∂I∂B
(t, 0, 0) + 1

2
B2 · ∂2f

∂B2
(t, 0, 0)
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and

h(t, I , B) ≥ h(t, 0, 0) + I · ∂h

∂I
(t, 0, 0) + B · ∂h

∂B
(t, 0, 0) + 1

2
I2 · ∂2h

∂I2
(t, 0, 0)

+ I · B · ∂2h

∂I∂B
(t, 0, 0) + 1

2
B2 · ∂2h

∂B2
(t, 0, 0).

Here we make some comments on the assumption (A6). Based on the concavity of f (assumption
A4), the surface of f is below its tangent plane everywhere. Meanwhile, since the matrix D2f is
negative semidefinite, we have

f (t, 0, 0) + I · ∂f

∂I
(t, 0, 0) + B · ∂f

∂B
(t, 0, 0) ≥ f (t, 0, 0) + I · ∂f

∂I
(t, 0, 0) + B · ∂f

∂B
(t, 0, 0)

+ 1

2
I2 · ∂2f

∂I2
(t, 0, 0) + I · B · ∂2f

∂I∂B
(t, 0, 0)

+ 1

2
B2 · ∂2f

∂B2
(t, 0, 0).

Thus, assumption (A6) essentially states that at least in a small neighbourhood of I = B = 0,
the surface of f lies below its tangent plane and above a concave tangent paraboloid. Similar
reasoning holds for h.

Finally, we mention that many well-known cholera models, such as those in [7,9,12,17],
all satisfy the above assumptions (A1)–(A6), though these models are based on autonomous
dynamical systems. For example, the model in [12] has f (I , B) = βhI + βe(B/(κ + B)) and
h(I , B) = ξ I − δB. It is straightforward to verify that (A1)–(A6) hold; in particular, expanding
f (I , B) at (0, 0) to second order yields βhI + βe(B/κ) − βe(B2/κ2), and it can be readily seen
that f (I , B) satisfies (A6) as B/(κ + B) ≥ B/κ − B2/κ2 for all B > 0. Similar verification can be
done for the model in [7], where f (I , B) = a(B/(K + B)), h(I , B) = eI − βB, and the model in
[17], where f (I , B) = bI + cB, h(I , B) = αI − ξB. We will discuss in detail these models with
periodic parameters in Section 6.

3. Basic reproduction number

A fundamental concept in epidemiology is the basic reproduction number, which measures the
average number of secondary infections that occur when one infective is introduced into a com-
pletely susceptible host population. Following the standard next-generation matrix theory [8], we
consider the subsystem of model (1)–(4) that is directly related to the infection:

⎡
⎢⎣

dI

dt
dB

t

⎤
⎥⎦ =

[
Sf (t, I , B)

0

]
−

[
(γ + b)I

−h(t, I , B)

]
= F − V ,

where F denotes the input rate of new infections and V denotes the rate of transfer of individuals
into or out of each population set. The next-generation matrix is defined as F(t)V−1(t), where
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F(t) and V(t) are the Jacobian matrices given by

F(t) = DF(x̄) =
[

N
∂f

∂I
(t, 0, 0) N

∂f

∂B
(t, 0, 0)

0 0

]
and

V(t) = DV(x̄) =
[

γ + b 0

−∂h

∂I
(t, 0, 0) − ∂h

∂B
(t, 0, 0)

]
,

and where x̄ is the disease-free equilibrium of the model defined in Equation (5).
For a compartmental epidemiological model based on an autonomous system, the basic repro-

duction number is determined by the spectral radius of the next-generation matrix (which is
independent of time) [8]. The definition of the basic reproduction number of a general non-
autonomous model system, however, is still an open question. Bacaër and Guernaoui introduced
R0 for periodic epidemic models (including ODE and PDE systems) as the spectral radius of an
integral operator [2]; related work for some periodic ODE systems was also discussed in [1]. In
addition, Wang and Zhao [20] extended the framework in [8] to include epidemiological models
in periodic environments. They introduced the next infection operator L by

(Lφ)(t) =
∫ ∞

0
Y(t, t − s)F(t − s)φ(t − s) ds, (6)

where Y(t, s), t ≥ s, is the evolution operator of the linear ω-periodic system dy/dt = −V(t)y and
φ(t), the initial distribution of infectious individuals, is ω-periodic and nonnegative. The basic
reproduction number is then defined as the spectral radius of the next infection operator,

R0 = ρ(L). (7)

For our cholera model (1)–(4), the evolution operator can be easily determined by solving the
system of differential equations dy/dt = −V(t)y with the initial condition y(s) = I2×2; thus,

Y(t, s) =
[

e−(γ+b)(t−s) 0
Ỹ(t, s) e

∫ t
s (∂h/∂B)(τ ,0,0) dτ

]
, (8)

where

Ỹ(t, s) =
{∫ t

s
e− ∫ τ

s (∂h/∂B)(u,0,0) du ∂h

∂I
(τ , 0, 0) e−(γ+b)(τ−s) dτ

}/
e− ∫ t

s (∂h/∂B)(τ ,0,0) dτ . (9)

The basic reproduction number defined in Equation (7) can be numerically evaluated by using the
methods presented in [1,14,20]. From [20], we immediately obtain the following result regarding
the local stability of the DFE:

Theorem 1 Let R0 be defined as (7). Then the disease-free equilibrium of system (1)–(4) is
locally asymptotically stable if R0 < 1, and unstable if R0 > 1.
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4. Disease extinction

We proceed to investigate the global stability of the DFE for our cholera model, which will also
provide a condition for the extinction of the disease. Consider the matrix function F(t) − V(t):

F(t) − V(t) =
⎡
⎢⎣N

∂f

∂I
(t, 0, 0) − (γ + b) N

∂f

∂B
(t, 0, 0)

∂h

∂I
(t, 0, 0)

∂h

∂B
(t, 0, 0)

⎤
⎥⎦ . (10)

It can be easily verified that the above matrix function is continuous, cooperative, irreducible and
ω-periodic. Let �(F−V)(·)(t) be the fundamental solution matrix of the linear ordinary differential
system:

x′ = [F(t) − V(t)]x, (11)

and ρ(�(F−V)(·)(ω)) be the spectral radius of �(F−V)(·)(ω).
From Lemma 2.1 in [22], we immediately obtain the following result:

Lemma 2 Let μ = (1/ω) ln ρ(�(F−V)(·)(ω)). Then there exists a positive ω-periodic function
v(t) such that eμtv(t) is a solution to Equation (11).

Now let us consider Equations (2) and (4) from our cholera model. It can be easily obtained,
using assumption (A4), that

dI

dt
= Sf (t, I , B) − (γ + b)I ≤ N

[
I
∂f

∂I
(t, 0, 0) + B

∂f

∂B
(t, 0, 0)

]
− (γ + b)I ,

and
dB

dt
= h(t, I , B) ≤ I

∂h

∂I
(t, 0, 0) + B

∂h

∂B
(t, 0, 0).

That is,
d

dt

[
I
B

]
≤ [F(t) − V(t)]

[
I
B

]
. (12)

Meanwhile, based on Lemma 2, there exists v(t) such that

x(t) = (Ĩ(t), B̃(t)) = eμtv(t) (13)

is a solution to Equation (11), with μ = (1/ω) ln ρ(�(F−V)(·)(ω)). It follows from Equations (11)
and (12) that

(I(t), B(t)) ≤ (Ĩ(t), B̃(t)) (14)

when t is large. From [20, Theorem 2.2], it is known that R0 < 1 if and only if ρ(�(F−V)(·)(ω)) < 1.
Therefore, μ < 0. Then, given (13) and (14), it is clear that

lim
t→∞ I(t) = 0, lim

t→∞ B(t) = 0. (15)

Next, we consider Equation (3) from our model. For any ε > 0, there exists T > 0 such that
whenever t > T , we have

I <
ε

γ
and

dR

dt
< ε − bR.
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Thus, R(t) < ε/b for t > T . Since ε > 0 is arbitrary, it is clear that

lim
t→∞ R(t) = 0. (16)

Finally, since the total population N = S + I + R is a constant, we have that

lim
t→∞ S(t) = N . (17)

Hence, we have established the following result:

Theorem 3 If R0 < 1, then the disease-free equilibrium of model (1)–(4) is globally asymptoti-
cally stable, and limt→∞ x(t) = x̄ = (N , 0, 0, 0)T for any solution x(t) of system (1)–(4).

Theorem 3 shows that the disease will completely die out as long as R0 < 1. This further implies
that reducing and keeping R0 below the unity would be sufficient to eradicate cholera infection
even in a periodic environment. Similar result was established for the autonomous system in [19];
i.e. the cholera model with time-independent f and h.

5. Disease persistence

Now we consider the dynamics of the periodic model (1)–(4) when R0 > 1. For ease of discussion,
let us omit Equation (3) from the system, since the total population N is fixed such that R =
N − S − I . Define

X = R
3
+; X0 = R+ × Int(R+) × Int(R+); ∂X0 = X\X0.

Let P : X → X be the Poincaré map associated with models (1)–(4) such that P(x0) = u(ω, x0)

for all x0 ∈ X, where u(t, x0) denotes the unique solution of the system with u(0, x0) = x0.

Definition 4 The solutions of system (1)–(4) are said to be uniformly persistent if there exists
some η > 0 such that

lim inf
t→∞ S(t) ≥ η, lim inf

t→∞ I(t) ≥ η, lim inf
t→∞ B(t) ≥ η

whenever S(0) > 0, I(0) > 0, and B(0) > 0.

A more general definition of uniform persistence can be found in [24]. We now state the
following theorem, the proof of which is inspired by the work of Zhang and Zhao [22].

Theorem 5 Let R0 > 1 and let (A1)–(A6) hold. Then the solutions of system (1)–(4) are
uniformly persistent, and the system admits at least one positive ω-periodic solution.

Proof Set

M∂ = {(S(0), I(0), B(0)) ∈ ∂X0 : Pm(S(0), I(0), B(0)) ∈ ∂X0, ∀m ≥ 0}.
We first show that

M∂ = {(S, 0, 0) : S ≥ 0}. (18)

Clearly, M∂ ⊇ {(S, 0, 0) : S ≥ 0}. Consider any initial values (S(0), I(0), B(0)) ∈ ∂X0\{(S, 0, 0) :
S ≥ 0}. If I(0) = 0 and B(0) > 0, then I ′(0) > 0 by assumption (A5). Similarly, if B(0) = 0 and
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I(0) > 0, then B′(0) > 0. Thus, it follows that (S(t), I(t), B(t)) /∈ ∂X0 for 0 < t � 1. This implies
that M∂ ⊆ {(S, 0, 0) : S ≥ 0}, and hence, we have (18).

Now, let us consider the fixed point M0 = (N , 0, 0) and define WS(M0) = {x0 : Pm(x0) →
M0, m → ∞}. We show that

WS(M0) ∩ X0 = ∅. (19)

Based on the continuity of solutions with respect to the initial conditions, for any ε > 0 and ε < ε∗,
there exists δ > 0 small enough such that for all (S(0), I(0), B(0)) ∈ X0 with ‖(S(0), I(0), B(0)) −
M0‖ ≤ δ, we have

‖u(t, (S(0), I(0), B(0))) − u(t, M0)‖ < ε ∀t ∈ [0, ω]. (20)

We claim that

lim sup
m→∞

‖Pm(S(0), I(0), B(0)) − M0‖ ≥ δ ∀(S(0), I(0), B(0)) ∈ X0. (21)

Suppose by contradiction; that is, we suppose lim supm→∞ ‖Pm(S(0), I(0), B(0)) − M0‖ < δ for
some (S(0), I(0), B(0)) ∈ X0. Without loss of generality, we assume that ‖Pm(S(0), I(0), B(0)) −
M0‖ < δ, ∀m ≥ 0. Thus,

‖u(t, Pm(S(0), I(0), B(0))) − u(t, M0)‖ < ε ∀t ∈ [0, ω] and m ≥ 0. (22)

Moreover, for any t ≥ 0, we can write t = t′ + nω with t′ ∈ [0, ω) and n being the greatest integer
less than or equal to t/ω. Then we obtain

‖u(t, (S(0), I(0), B(0))) − u(t, M0)‖ = ‖u(t′, Pm(S(0), I(0), B(0))) − u(t′, M0)‖ < ε (23)

for any t ≥ 0. Let (S(t), I(t), B(t)) = u(t, (S(0), I(0), B(0))). It follows that N − ε < S(t) < N +
ε, 0 < I(t) < ε and 0 < B(t) < ε. Note again that ε < ε∗. Then, based on assumptions (A1) and
(A6), we have

dI

dt
≥ N · I · ∂f

∂I
(t, 0, 0) + N · B · ∂f

∂B
(t, 0, 0) − (γ + b)I

+ N · ε · 1

2
I · ∂2f

∂I2
(t, 0, 0) + N · ε · 1

2
B · ∂2f

∂B2
(t, 0, 0) − N · ε · I ·

∣∣∣∣ ∂2f

∂I∂B
(t, 0, 0)

∣∣∣∣
− ε · I · ∂f

∂I
(t, 0, 0) − ε · B · ∂f

∂I
(t, 0, 0) − ε · ε · I

∣∣∣∣ ∂2f

∂I∂B
(t, 0, 0)

∣∣∣∣
and

dB

dt
≥ I · ∂h

∂I
(t, 0, 0) + B · ∂h

∂B
(t, 0, 0)

+ ε · 1

2
I · ∂2h

∂I2
(t, 0, 0) + ε · 1

2
B · ∂2h

∂B2
(t, 0, 0) − εI ·

∣∣∣∣ ∂2h

∂I∂B
(t, 0, 0)

∣∣∣∣ .

Hence, we obtain

d

dt

[
I
B

]
≥ [

F − V − ε · K
] ·

[
I
B

]
, (24)
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where F − V is given by (10) and

ε · K = −ε ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
N

∂2f

∂I2
(t, 0, 0) − ∂f

∂I
(t, 0, 0)

−(N + ε)

∣∣∣∣ ∂2f

∂I∂B
(t, 0, 0)

∣∣∣∣ 1

2
N

∂2f

∂B2
(t, 0, 0) − ∂f

∂B
(t, 0, 0)

1

2

∂2h

∂I2
(t, 0, 0) −

∣∣∣∣ ∂2h

∂I∂B
(t, 0, 0)

∣∣∣∣ 1

2

∂2h

∂B2
(t, 0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Again based on [20, Theorem 2.2], R0 > 1 if and only if ρ(�F−V (ω)) > 1. Thus, for ε > 0
small enough, we have ρ(�F−V−ε·K(ω)) > 1. Using Lemma 2 and the comparison principle, we
immediately obtain:

lim
t→∞ I(t) = ∞ and lim

t→∞ B(t) = ∞, (26)

which is a contradiction.
Hence, M0 is acyclic in M∂ , and P is uniformly persistent with respect to (X0, ∂X0),

which implies the uniform persistence of the solutions to the original system [23]. Conse-
quently, the Poincaré map P has a fixed point (S̃(0), Ĩ(0), B̃(0)) ∈ X0, and it can be easily seen
that S̃(0) �= 0. Thus, (S̃(0), Ĩ(0), B̃(0)) ∈ Int(R+) × Int(R+) × Int(R+) and (S̃(t), Ĩ(t), B̃(t)) =
u(t, (S̃(0), Ĩ(0), B̃(0))) is a positive ω-periodic solution of the system. �

6. Examples

In this section, we briefly discuss three different, and specific, cholera models in periodic environ-
ments. The models presented below are extended from recent work of Codeço [7], Mukandavire
et al. [12], and Tien and Earn [17], respectively. We focus on simulating seasonal variations by
incorporating periodic environment-to-human transmission rates and periodic rates of human con-
tribution to the population of V. cholerae in the aquatic environment. We study the epidemic and
endemic cholera dynamics of a hypothetical community with N = 10, 000 as the (normalized)
total population, and compute the basic reproduction number R0 for each model.

For comparison, we will also calculate the time-averaged reproduction number, denoted by
[R0], for these cholera models. For any continuous periodic function g(t) with period ω, we may
define its average as

[g] = 1

ω

∫ ω

0
g(t) dt.

Keeping with this notation, we define the time-averaged matrices of F(t) and V(t) for the general
cholera model (1)–(4) as the following, respectively,

[F] =
⎡
⎣N

[
∂f

∂I

]
N

[
∂f

∂B

]
0 0

⎤
⎦ , [V ] =

⎡
⎣ γ + b 0

−
[
∂h

∂I

]
−

[
∂h

∂B

]⎤
⎦ .

The time-averaged reproduction number of systems (1)–(4) is defined as the spectral radius of the
time-averaged next-generation matrix [F][V ]−1, and is given by

[R0] = ρ([F][V ]−1) = N

γ + b

{[
∂f

∂I

]
−

[
∂f

∂B

] [
∂h

∂B

]−1 [
∂h

∂I

]}
. (27)

Based on Equation (27), the time-averaged reproduction number [R0] can be easily calculated for
each of the three specific cholera models. It has been noted, however, that [R0] may overestimate or
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underestimate the infection risk for a non-autonomous epidemiological system [3,20]. Analytical
estimates of the difference between R0 and [R0] for some periodic systems are also presented in
[3]. Thus, it is of interest to compare the values of R0 and [R0] for the three cholera models under
consideration.

Meanwhile, we conduct numerical simulation for each model with initial conditions B(0) =
R(0) = 0, S(0) = N − I(0), I(0) = 1; that is, one infected individual enters an entirely susceptible
community. For easy comparison, we use the same parameter setting for all the three models, and
these parameter values are based on the cholera data published on the recent Zimbabwe cholera
outbreak [12,21]. We present typical infection curves for both scenarios, R0 < 1 and R0 > 1,
demonstrating disease extinction and disease persistence. Finally, in presenting each of these
models, we keep the same notation for variables and parameters from the original autonomous
model. We will clarify the different notation among the three extended models when necessary.

6.1. The model of Codeço with periodic parameters

The original model in [7] is now modified as

dS

dt
= n(H − S) − a(t)λ(B)S, (28)

dI

dt
= a(t)λ(B)S − rI , (29)

dB

dt
= e(t)I − βB, (30)

which includes seasonal oscillations of the rate of exposure to contaminated water, a(t), and the
rate of human contribution to the population of the pathogen, e(t), that are both periodic functions
of time with a common period, ω = 365 days, or 1 year:

a(t) = ā

[
1 + ã sin

(
2π t

365

)]
, e(t) = ē

[
1 + ẽ sin

(
2π t

365

)]
. (31)

Here ā (or ē) is the baseline value, or the time average, of a(t) (or e(t)), and ã (or ẽ) denotes the
(relative) amplitude of the seasonal oscillation in a(t) (or e(t)). To ensure both rates to be positive,
we require that 0 < ã < 1, 0 < ẽ < 1. In this model, H is the total population, λ(B) = B/(K + B)

is the probability a susceptible person becomes infected with cholera, β = mb − nb represents the
net death rate of vibrios, and only the environment-to-human transmission pathway is considered.
The incidence is f (t, I , B) = a(t)λ(B) and the pathogen function is h(t, I , B) = e(t)I − βB. It is
easily verified that the assumptions (A1)–(A6) hold for systems (28)–(30).

The disease-free equilibrium is given by x̄ = (S0, I0, B0)
T = (H, 0, 0)T. From the next-

generation matrices

F(t) =
[

0
a(t)H

K
0 0

]
, V(t) =

[
r 0

−e(t) β

]
,

it follows that basic reproduction number of the time-averaged autonomous system, based on
(27), is given by

[R0] = H

r

(
ā

K

ē

β

)
= Hāē

Krβ
. (32)

The evolution operator Y(t, s), defined in Equation (8), for this model is given by

Y(t, s) =
[

e−r(t−s) 0
Ỹ(t, s) e−β(t−s)

]
,
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where

Ỹ(t, s)=e−r(t−s)ē

(
1

β − r
+ ẽ

(2π/365)2 + (β − r)2

[
(β − r) sin

(
2π t

365

)
− 2π

365
cos

(
2π t

365

)])

− e−β(t−s)ē

(
1

β − r
+ ẽ

(2π/365)2 + (β − r)2

×
[
(β − r) sin

(
2πs

365

)
− 2π

365
cos

(
2πs

365

)])
.

We then numerically evaluate the next infection operator (see Equation (6)) by

(Lφ)(t) =
∫ ∞

0
Y(t, t − s)F(t − s)φ(t − s) ds =

∫ ω

0
G(t, s)φ(t − s) ds, (33)

where

G(t, s) ≈
M∑

k=0

Y(t, t − s − kω)F(t − s − kω)

≈ N
M∑

k=0

⎡
⎢⎢⎣

∂f

∂I
(t − s − kω, 0, 0)e−(γ+b)(s+kω)

∂f

∂B
(t − s − kω, 0, 0)e−(γ+b)(s+kω)

∂f

∂I
(t − s − kω, 0, 0)Ỹ(t, t − s − kω)

∂f

∂B
(t − s − kω, 0, 0)Ỹ(t, t − s − kω)

⎤
⎥⎥⎦

(34)

for some positive integer M. Thus, for models (28)–(30),

G(t, s) ≈ Hā

K

(
1 + ã sin

(
2π(t − s)

365

)) M∑
k=0

[
0 e−r(s+kω)

0 Ỹ(t, t − s − kω)

]
.

To compute the basic reproduction number R0, we reduce the operator eigenvalue problem to a
matrix eigenvalue problem in the form of Ax = λx, where matrix A can be constructed by arranging
the entries of the function G. The basic reproduction number R0 can then be approximated by
numerically calculating the spectral radius of the matrix A [14]. Other methods for computing
R0 also exist; for example, R0 can be numerically calculated by solving the equation f (R) = 1,
where f (R) is the dominant Floquet multiplier of dz/dt = (F(t)/R − V(t))z [1].

We have conducted numerical simulation to this model, and computed the reproductive numbers
R0 and [R0], for various values of a(t) and e(t). For illustration, we focus on the variation of a(t)
here. In Figure 1(a) and 1(b), we vary ā and ã, respectively, while keeping the values of other
parameters fixed (see [12]): H = 10, 000, K = 106, β = 1

30 , n = 1
(43.5)·(365)

, r = 1
5 + n, ē = 10,

and ẽ = 0.5. In Figure 1(a), we see that R0 = 1 when ā ≈ 0.0625, and [R0] = 1 when ā ≈ 0.0667.
The value of ã is set as 0.5. It is clear that the time-averaged reproduction number underestimates
the infection risk. Meanwhile, in Figure 1(b), we see that R0 = 1 when ã ≈ 0.8407, whereas
[R0] = 0.90 for all ã, again showing the inaccuracy of using [R0] for infection prediction. The
value of ā is set as 0.06 in this case. In addition, Figure 4(a) shows a typical infection curve of
this model when R0 < 1, where we observe that the disease quickly dies out and the disease-free
equilibrium is asymptotically stable. In contrast, Figure 5(a) is a typical infection curve of this
model for R0 > 1, where the disease persists and there is a positive ω-periodic solution.
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Figure 1. Plots of the periodic threshold of R0 for various ā and ã, respectively, in model 6.1. (a) R0 = 1 when
ā ≈ 0.0625, and [R0] = 1 when ā ≈ 0.0667; (b) R0 = 1 when ã ≈ 0.8407, and [R0] = 0.90 for all ã.

6.2. The model of Mukandavire et al. with periodic parameters

We extend the original model in [12] to a periodic environment based on the following differential
equations:

dS

dt
= μN − βe(t)S

B

κ + B
− βhSI − μS, (35)

dI

dt
= βe(t)S

B

κ + B
+ βhSI − (γ + μ)I , (36)

dB

dt
= ξ(t)I − δB, (37)

dR

dt
= γ I − μR. (38)

The two periodic parameters are defined as

βe(t) = β̄e

[
1 + β̃e sin

(
2π t

365

)]
, ξ(t) = ξ̄

[
1 + ξ̃ sin

(
2π t

365

)]
, (39)

where βe(t) is the environment-to-human transmission rate and ξ(t) is the rate of contribution to
V. cholerae in the aquatic environment. Though in different notation, βe(t) and ξ(t) have the same
meaning as a(t) and e(t) in Equation (31). The incidence is f (t, I , B) = βe(t)(B/(κ + B)) + βhI
and the rate of change for the bacterial concentration is h(t, I , B) = ξ(t)I − δB. Both environment-
to-human and human-to-human transmission pathways are included in this model; in particular,
the environment-to-human transmission factor is based on a saturating form, which is the same
as that in model (28)–(30), and the human-to-human transmission mode takes a bilinear form.
It is clear that assumptions (A1)–(A6) hold for systems (35)–(38) as long as 0 < β̃e < 1 and
0 < ξ̃ < 1.

The disease-free equilibrium is given by x̄ = (S0, I0, B0, R0)
T = (N , 0, 0, 0)T. From the next

generation matrices

F(t) =
[
βhN

βe(t)N

κ
0 0

]
and V(t) =

[
γ + μ 0
−ξ(t) δ

]
,

EJ EJ 
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it follows that the time-averaged basic reproduction is

[R0] = N

γ + μ

(
βh + β̄e

κ

ξ̄

δ

)
= N

δκ(γ + μ)

(
κδβh + ξ̄ β̄e

)
. (40)

The evolution operator Y(t, s) is given by

Y(t, s) =
[

e−(γ+μ)(t−s) 0
Ỹ(t, s) e−δ(t−s)

]
,

where

Ỹ(t, s) = e−(γ+μ)(t−s)ξ̄

[
1

δ − (γ + μ)
+ ξ̃

(2π/365)2 + (δ − (γ + μ))2

×
(

(δ − (γ + μ)) sin

(
2π t

365

)
− 2π

365
cos

(
2π t

365

))]

− e−δ(t−s)ξ̄

[
1

δ − (γ + μ)
+ ξ̃

(2π/365)2 + (δ − (γ + μ))2

×
(

(δ − (γ + μ)) sin

(
2πs

365

)
− 2π

365
cos

(
2πs

365

))]
.

Thus, for this model,

G(t, s) =
∞∑

k=0

Y(t, t − s − kω)F(t − s − kω)

≈ N
M∑

k=0

⎡
⎢⎢⎣

βhe−(γ+μ)(s+kω)
β̄e

κ

(
1 + β̃e sin

(
2π(t − s)

365

))
e−(γ+μ)(s+kω)

βhỸ(t, t − s − kω)
β̄e

κ

(
1 + β̃e sin

(
2π(t − s)

365

))
Ỹ(t, t − s − kω)

⎤
⎥⎥⎦

for some positive integer M. Using the function G(t, s), the basic reproduction number R0 can be
numerically approximated by calculating the spectral radius of the corresponding matrix A.

In Figure 2(a) and 2(b), we vary β̄e and β̃e, respectively, while keeping other parameters fixed:
N = 10, 000, κ = 106, δ = 1

30 , γ = 1
5 , μ = 1

(43.5)·(365)
, βh = 0.00001, ξ̄ = 10, and ξ̃ = 0.5. In

Figure 2(a), we again observe that the curve of [R0] is below that of R0, and we note that R0 = 1
when β̄e ≈ 0.0321. In Figure 2(b), we see that R0 = 1 when β̃e ≈ 0.5688 and [R0] = 0.9797 for
all β̃e. Note that β̄e and β̃e correspond to ā and ã, respectively, in Equation (31). Comparing the
result in Figure 2(a) to that in Figure 1(a), we see that a lower value of the magnitude of the
indirect transmission rate (β̄e ≈ 0.0321 versus ā ≈ 0.0625) is needed to reach the threshold value
R0 = 1 for the current model, due to the incorporation of the direct transmission mode. Similarly,
we observe that the values of [R0] in Figure 2(a) and 2(b) are lower than those in Figure 1(a)
and 1(b) for the same value of the parameter. In addition, Figure 4(b) is an infection curve when
R0 < 1, and Figure 5(b) is an infection curve when R0 > 1, for the current model. We observe
similar patterns as in Figures 4(a) and 5(a).
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Figure 2. Plots of the periodic threshold of R0 for various β̄e and β̃e, respectively, in model 6.2. (a) R0 = 1 when
β̄e ≈ 0.0321 and [R0] = 1 when β̄e ≈ 0.0334; (b) R0 = 1 when β̃e ≈ 0.5688 and [R0] = 0.9797 for all β̃e.

6.3. The model of Tien and Earn with periodic parameters

The original model in [17], where the pathogen concentration is denoted by W instead of B, is
extended to a periodic environment in the form of

dS

dt
= μN − bW (t)WS − bISI − μS, (41)

dI

dt
= bW (t)WS + bISI − (γ + μ)I , (42)

dW

dt
= α(t)I − ξW , (43)

dR

dt
= γ I − μR, (44)

where

bW (t) = ¯bW

[
1 + ˜bW sin

(
2π t

365

)]
, α(t) = ᾱ

[
1 + α̃ sin

(
2π t

365

)]
(45)

denote the water-to-person transmission rate and the shedding rate from infected individuals into
the water, respectively. Here the time-periodic parameters bW (t) and α(t) play the same role as
a(t) and e(t) in model (28)–(30), or βe(t) and ξ(t) in model (35)–(38). The incidence in the current
model is f (t, I , W) = bW (t)W + bI I and the pathogen function is h(t, I , W) = α(t)I − ξW . The
dual-transmission pathways are included in this model by using bi-linear forms, however, no
saturation effect was considered. It is straightforward to verify that assumptions (A1)–(A6) hold
for systems (41)–(44) given that 0 < ˜bW < 1, 0 < α̃ < 1.

Clearly, the DFE is given by x̄ = (S0, I0, W0, R0)
T = (N , 0, 0, 0)T. From the next-generation

matrices

F(t) =
[
NbI NbW (t)
0 0

]
and V(t) =

[
γ + μ 0
−α(t) ξ

]
,

EJ EJ 
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Figure 3. Plot of the periodic threshold of R0 for various ˜bW in model 6.3. R0 = 1 when ˜bW ≈ 0.3706 and [R0] = 0.9872
for all ˜bW .

it follows that

[R0] = N

γ + μ

(
bI + ¯bW

ᾱ

ξ

)
= N

ξ(γ + μ)
(ξbI + ᾱ ¯bW ). (46)

The evolution operator Y(t, s) is given by

Y(t, s) =
[

e−(γ+μ)(t−s) 0
Ỹ(t, s) e−ξ(t−s)

]
,

where

Ỹ(t, s) = e−(γ+μ)(t−s)ᾱ

[
1

ξ − (γ + μ)
+ α̃

(2π/365)2 + (ξ − (γ + μ))2

×
(

(ξ − (γ + μ)) sin

(
2π t

365

)
− 2π

365
cos

(
2π t

365

))]

− e−ξ(t−s)ᾱ

[
1

ξ − (γ + μ)
+ α̃

(2π/365)2 + (ξ − (γ + μ))2

×
(

(ξ − (γ + μ)) sin

(
2πs

365

)
− 2π

365
cos

(
2πs

365

))]
.

EJ 
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Figure 4. A typical infection curve for each model when R0 < 1, with initial condition I(0) = 1. The solution quickly
converges to the disease-free equilibrium with I0 = 0. (a) Model 6.1, (b) Model 6.2, (c) Model 6.3, (d) Model 6.3 in long
term.

Thus, for models (41)–(44),

G(t, s) =
∞∑

k=0

Y(t, t − s − kω)F(t − s − kω)

≈ N
M∑

k=0

⎡
⎢⎢⎣

bIe−(γ+μ)(s+kω) ¯bW

(
1 + ˜bW sin

(
2π(t − s)

365

))
e−(γ+μ)(s+kω)

bI Ỹ(t, t − s − kω) ¯bW

(
1 + ˜bW sin

(
2π(t − s)

365

))
Ỹ(t, t − s − kω)

⎤
⎥⎥⎦ .

We have conducted similar numerical simulations as before and calculated the two reproduction
numbers. In presenting the results of R0, we could, in principle, vary ¯bW while keeping other
parameters fixed. However, due to the bilinear form of the indirect transmission mode employed
in the current model (and due to the very high value of W ), the meaningful values of ¯bW are
several magnitudes smaller than those of ā in Equation (31), or β̄e in Equation (39), making it
impossible to compare the result with the other two models. Thus, we have chosen to present only
the result of R0 (and [R0]) versus ˜bW in Figure 3. Values of the other parameters are: N = 10, 000,
ξ = 1

30 , γ = 1
5 , μ = 1

(43.5)·(365)
, bI = 0.00001, ¯bW = 3.25 × 10−8, ᾱ = 10, and α̃ = 0.5. We see

that R0 = 1 when ˜bW ≈ 0.3706 and [R0] = 0.9872 for all ˜bW . The result shows similar pattern
to that in Figure 2(b) as both models include dual transmission pathways. Figure 4(c) displays
an infection curve when R0 < 1 for the current model, and Figure 5(c) shows an infection curve
when R0 > 1.
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Figure 5. A typical infection curve for each model when R0 > 1, with initial condition I(0) = 1. A periodic solution
with ω = 365 days forms after a long transient in each case. (a) Model 6.1, (b) Model 6.2, (c) Model 6.3, (d) Model 6.2
zoom-in.

Finally, from Figure 4(a)– 4(c), as expected, we see that when R0 < 1, the infected population
I quickly decreases to zero and stays there forever (for example, see Figure 4(d) for the long-
term behaviour of the model 6.3), showing that the disease dies out in each model. Indeed,
similar patterns were observed for various initial conditions (not shown here), an evidence that
the disease-free equilibrium is globally asymptotically stable for each model. Figure 5(a)–5(c)
illustrates typical infection curves for the three models when R0 > 1. In this case, for each model,
the disease persists and after a long, transient period, the infection approaches a positive ω-periodic
solution. Figure 5(d) shows a zoomed-in picture for the model 6.2 where the periodic solution is
highlighted and a period of ω = 365 days (or 1 year) can be observed.

7. Conclusions

We have presented a general non-autonomous cholera model in a periodic environment. Seasonally
variational factors have been incorporated into the incidence function f and the pathogen function
h. Using the next infection operator introduced in [20], we have derived and computed the basic
reproduction number R0 of our periodic cholera model, and have conducted a careful analysis
on the epidemic and endemic dynamics. Our results have established R0 as a sharp threshold
for cholera dynamics in periodic environments; i.e. disease completely dies out if R0 < 1 and
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uniformly persists if R0 > 1. The general analysis is demonstrated through three specific cholera
models, and numerical simulation results are consistent with analytical predictions.

The complication of cholera modelling lies in that, on top of the multiple transmission pathways
that involve both environment-to-human (or, indirect) and human-to-human (or, direct) routes,
disease dynamics are also subject to strong seasonal variation. Thus, many different factors, rang-
ing from ecological, environmental, societal, and climatic, need to be considered in constructing
a more accurate mathematical model. We have incorporated periodicity into the general incidence
and pathogen functions in our model, in order to represent these various seasonal oscillations in a
generic manner. Although in the three specific examples presented in Section 6 we have focused
on two periodic parameters (i.e. the rates of human–environment contact and human contribution
to environmental vibrios) for the purposes of demonstration and easy comparison, one can easily
incorporate periodicity into other model parameters, depending on the context of the modelling. In
addition, similar analysis can be conducted to other cholera models (e.g. [9]), and the framework
can be extended to model other water-borne infectious diseases, such as dysentery, typhoid fever,
and campylobacteriosis.
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