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Abstract—Employing high order constellations is inevitable in
order to achieve higher spectral efficiency in satellite communi-
cation systems. In DVB-S2X standard, constellations with up to
256 points have been included. However, optimizing such high
order constellations is a difficult task. In this paper we propose
a very simple constellation design based on the radial map
from QAM constellations to non-uniform APSK constellations.
Our method provides a systematic way to generate a family
of optimized high order constellations. We show that gains
larger than 0.5 dB can be obtained with respect to the DVB-
S2X constellations with 256 points. Even though the proposed
constellations are essentially sub-optimal (in terms of maximizing
the mutual information), they provide a very competitive test
benchmark for the performance of high order constellations.
Moreover, the proposed construction potentially allows for an
efficient one-dimensional soft detection by an inverse mapping to
the QAM. Finally, further optimization techniques are discussed.

Index Terms—Non-uniform APSK constellations, High order
modulation, soft demapping, DVB-S2X standard

I. INTRODUCTION

In view of the growing demand for spectral efficiency in

satellite communications, high order modulation design has

received a considerable attention in the past few years. To cater

to this demand, modulation and coding (MODCOD) config-

urations employing constellations of orders 64, 128 and 256

were adopted in the new digital video broadcasting standard

(DVB-S2X) [1]. Such high order constellations are also under

considerations by Consultative Committee for Space Data

Systems (CCSDS) for future standards. Given the fact that

the traffic demand for satellite broadband is expected to grow

six-fold by 2020 [2], and the continuous need for higher data

rates in satellite communications, even larger constellations

may be needed in near future.

A distinctive property of satellite communication systems,

is the non-linear characteristics of high power amplifier (HPA)

on-board of the satellite. Hence, the conventional additive

white Gaussian noise (AWGN) channel with average power

limitation is no longer an accurate model and nonlinear

characteristics have to be taken into account. This usually leads

to assume a peak power limited signaling due to the HPA

operating near the saturation limits. Under the peak power

constraint, the capacity achieving distribution is proved to be

discrete in amplitude (having finite number of mass points)

with a uniformly distributed phase [3]. Even though the opti-

mal distribution for a finite set is not known in general case,

several previous studies indicate that amplitude and phase-shift

keying (APSK) modulations perform very close to the capacity

[4]-[6]. Recently, it has been shown that asymptotically, APSK

constellations can also achieve the Gaussian capacity [7].

Optimizing the APSK modulation has been studied by

several authors in the literature. The number of points on each

circle, the radii and phases of each concentric circle of APSK

constellations need to be optimized in order to achieve near

capacity performances [6]. Even though for constellations with

up to 64 points, the number of possibilities is rather limited

and therefore the optimization problem can be still handled,

for larger constellations the problem becomes complex and the

proposed algorithms in the literature usually fail to provide a

good solution.

Another problem which arises regarding the optimization of

APSK constellation is the bit to symbol mapping. This prob-

lem becomes particularly important in the pragmatic systems,

where no iteration between the detector and the decoder is

allowed [8]. On top of that, when the pragmatic approach

is considered, the APSK constellations are usually not the

best choices [9]. Following this observation, several algorithms

have been proposed in the literature for constellation design

without imposing any particular structure (see for example

[10]). Recently, a simulated annealing algorithm [11] has

been implemented to maximize the average mutual informa-

tion (AMI) [9] or the pragmatic average mutual information

(PAMI) (also known as the BICM capacity). AMI and PAMI,

if they can be computed with a good approximation, provide a

reliable metric to assess the performance of a given constella-

tion. When the objective function is PAMI, one needs to jointly

optimize the constellation and the corresponding labelling in

order to assecure a good performance over a pragmatic system.

Simulated annealing becomes inefficient for constellations

larger than 64. However, by limiting the optimization to only

a quadrant (by assuming symmetry) and initializing the opti-

mization algorithm by a good constellation (such as QAM) one

can optimize constellations up to 256 points for a variety of

channel models and constraints [12]. For larger constellations,

however, the simulated annealing becomes extremely slow and

may converge to a local maximum which is only slightly better

than the initializing constellation.

In this paper we propose a simple construction for non-

uniform APSK constellations, based on the radial map between

squares and circles. The obtained constellations are then the

image of M -QAM. We refer to these constellations as QAM

to circular isomorphic (QCI) constellations. Our main goal

is to introduce a family of constellations which can serve as

a competitive benchmark for future high order constellation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/42924298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


design under the peak power constraint. As we will show, the

proposed constellations (without any further optimization) may

provide even more than 1.5 dB gain with respect to the con-

stellations employed in DVB-S2X. These results should also

highlight the importance of having such a testing benchmark

in future standardization.

Beside serving as a benchmark, the QCI constellations

actually provide the state-of-art performance for peak power

limited channels to the best knowledge of the author. We

also discuss briefly several ways to improve and built upon

the results presented in this paper. An optimization strategy

is discussed which allows to optimize constellations with up

to 224 points. Moreover, being the image of the QAM, the

QCI constellations potentially allow for a very efficient one-

dimensional (1D) soft-detection by inverse mapping to the

QAM constellation.

The rest of this paper is organized as follows. In Section

II we describe the notations and the objective functions upon

which the constellations are compared. We also describe the

QCI construction in details. In Section III we compare the

AMI and PAMI of QCI constellation with those of DVB-S2X.

We discuss some of the ongoing and future research directions

in Section IV. Finally, we conclude the paper in Section V.

II. QAM TO CIRCULAR ISOMORPHIC CONSTELLATIONS

A constellation χ is simply a finite subset of the k-

dimensional Euclidean space, i.e., χ ⊂ R
k. In this paper, we

are mainly interested in constellations with M = 2m elements

and k = 2, even though the results can be easily general-

ized to the higher dimensions and non-binary constellations.

The elements of χ are referred to as constellation points or

transmitted symbols. The symbols are associated to the bits

at the input of the modulator through a one-to-one labelling

µ : χ → {0, 1}m. For any given symbol x, we denote by

µi(x) the value of the ith bit of the label associated to it.

It is well-known that squares and circles are isomorphic,

i.e., there exists a map between them which is continuous,

one-to-one and onto with continuous inverse. We are interested

in one of the simplest existing maps, i.e. the radial mapping

or concentric mapping (see Fig. 1). This isomorphism maps

(x,y)

f (x,y)

Fig. 1. Square to circle isomorphic radial map.

the concentric squares into the concentric circles. The same

map can be used to project the unit square onto a Disc. In

more details, let S = {(x, y)||x| ≤ 1, |y| ≤ 1} and C =
{(x, y)|x2 + y2 ≤ 2} denote the unit square and the disc with

radios
√
2, respectively. Then the radial map f : S → C can

be written analytically as below:

f(x, y) =







√
2max(|x|,|y|)√

x2+y2
(x, y) if (x, y) 6= (0, 0)

(0, 0) if (x, y) = (0, 0)

In Fig. 2 we plot the 256-QAM and the image of it under

the radial isomorphism. We denote the inverse mapping by

f−1 = 1/f for (x, y) 6= (0, 0). It is important to notice
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Fig. 2. The 256-QCI constellation generated by mapping 256-QAM to the
non-uniform 256-APSK.

that the binary Gray labelling of QAM constellation will be

preserved under f , and the resulting QCI constellation has also

a Gray labelling. For each M -QAM constellation, a unique M -

QCI constellation can be constructed. For even values of m,

the M -QCI constellation has 2m/2−1 equidistant concentric

rings. The number of points on each ring form an arithmetic

progression starting from 4 and with common difference 8. For

odd values of m, the resulting QCI constellation has essentially

the same structure, except for the last few circles (outer rings).

A. Performance metric

For the AWGN channel, the received signal can be written

as y = x+ n, where n has a Gaussian distribution. AMI and

PAMI have been shown to be reliable metrics for measuring

the constellation performance for a given channel [5]. We

denote, respectively, by I(χ) and Ip(χ, µ) the AMI and PAMI

of a given constellation χ and mapping µ:

I(χ) =
1

M

∑

x∈χ
En

{

log
P (y|x)
P (y)

}

(1)



Ip(χ, µ) =
m
∑

i=1

I(µi(x);y),

=
1

M

m
∑

i=1

∑

x∈χ
En

{

log
P (y|µi(x))

P (y)

}

(2)

where I(., .) is the mutual information function and En is the

average with respect to the Gaussian noise.

III. COMPARISON WITH DVB-S2X

The DVB-S2X standard implements various constellations

with 256 points (3 of which are APSK), but to the best of

the author’s knowledge, no justification about the constellation

design has been provided [1]. In this section we compare

the AMI and PAMI of the 256-QCI with the DVB-S2X

constellations.

As mentioned, we are interested in the peak-power limited

design and therefore in what follows we always fix the

maximum power of a constellation to be 1, i.e., |x|2 ≤ 1 for

all x ∈ χ. In such cases, instead of the signal to noise ratio,

the peak power to noise ratio (PSNR) should be considered as

a measure for comparing two constellations. Notice that PSNR

is the ratio between the peak power of the constellation and

the noise power spectral density

PSNR ,
1

N0
≥ SNR ,

1

M

∑

x∈χ

|x|2
N0

.

Assuming a memoryless ideal non-linearity model (soft lim-

iter) for the HPA and ignoring the effect of filters, the PSNR

coincides with Psat/N0:

SNR =
Es

N0
=

Psat

N0
· Es

Psat
= PSNR−OBO [dB].

Six MODCODs in DVB-S2X use constellations with 256

points. However, two of the MODCODs use the same con-

stellation, and therefore, only five different constellations

with 256 points exist in DVB-S2X standard [1]. These five

constellations can be distinguished by the rate of the codes

that they are coupled with. For example, we denote the

constellation used with the LDPC code of rate 135/180 by

”DVBS2X 135/180”. Three of the constellations are APSK

with 8 concentric circles each having 32 points. The ”DVBS2X

20/30” and ”DVBS2X 22/30” have somehow irregular shapes

and are probably obtained by initializing an optimization

algorithm with an APSK structure mentioned above.

In Fig. 3 we compare the AMI of the 256-QCI and all five

constellations of DVB-S2X. At 1 bit lower than the saturation

point, QCI shows a gain of 0.7 dB with respect to the best

constellation in DVB-S2X. Targeting lower spectral efficiency,

the gain reduces to 0.5 dB. We also plot the peak-power-

limited capacity [3] in the same figure. Notice the loss of

QCI constellation with respect to the capacity is around 0.1

dB for a rather wide range of PSNRs.

As for the PAMI values, we plot the curves in Fig. 4.

The gains are a little bit smaller with respect to the best

DVB-S2X constellation. In Fig. 5 we replot both AMI and

PAMI results for the 256-QCI, the best and the worst DVB-

S2X constellations for the most relevant range of spectral

efficiencies.
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Fig. 3. AMI comparison between 256-QCI and all DVB-S2X constellations.
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Fig. 4. PAMI comparison between 256-QCI and all DVB-S2X constellations.
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Fig. 5. AMI and PAMI comparison with DVB-S2X constellations.

IV. DISCUSSION AND FUTURE STUDIES

A. 1D optimization of QCI constellations

As mentioned before, the AMI of the QCI constellations

achieve within 0.1 dB from the peak-power limited capacity.

However, the PAMI loss is larger (around 0.4 dB). It is rather



easy to find constellations with higher PAMI. In particular,

initializing the simulated annealing algorithm by QCI and

carefully choosing the cooling parameters, normally results

in a constellation with slightly higher PAMI, in compromise,

the inverse mapping to the QAM constellation will not be

anymore valid, a characteristic which can be important in

order to reduce the detection complexity. On the other hand,

over the AWGN channel with average-power constraint, the

QCI constellations suffer the same asymptotic loss as QAM

constellations (around 1.5 dB).

Given the QAM structure and the characteristics of the

function f , the nearby rings of a QCI constellation have the

same distance from each other. One can however optimize

the radii of the rings. This allows to further optimize the

QCI constellations for a wide range of channel models and

parameters, while preserving the 1D-detection property.

The radii optimization for M-QCI can be interpreted as

a 1D constellation design with 2(m/2)−1 points (when m is

even). For example, as for 256-QCI, one needs to find the

placement of only 8 points over the positive x-axis which

maximizes the AMI (PAMI) of resulting 256-QCI constellation

with non-uniform distribution of the radii (see Fig. 6). Notice

that the points over the outer circles tend to be more uniformly

distributed in Fig. 6 for the optimized constellations. Simulated

annealing can be used for this 1D optimization problem. This

algorithm provides very competitive solutions for 1D constel-

lation designs with up to 64 points ([12], [11]). Therefore,

constellations as big as 224-QCI may be optimized using this

strategy.

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

Fig. 6. The 256-QCI constellation generated using a non uniform 256-QAM
constellation.

Optimizing the radii of the QCI constellations may also

provide us with a good family of constellations for AWGN

under the average-power constraint. Some research in this

direction is ongoing.

B. Low complexity 1D soft detection

One of the main drawbacks of employing large constella-

tions is the receiver’s (detector and decoder) high computa-

tional complexity. The log-likelihood ratios (LLR) need to be

calculated at the detector and sent to the soft-decoder. As for

the complexity of the decoder, some recent studies indicate

that hard decoding of all bits except two or three bits in each

dimension will not cause significant losses in the performance

[13].

On the other hand, the complexity of the detector grows

exponentially as a function of m (number of bits associated

to each symbol). Therefore, having a low complexity soft

detector is crucial when high order modulations are employed.

Being the Cartesian product of two 1D constellations, the

complexity of the detector grows only polynomially with

respect to m for QAM constellations. For QCI constellations,

a straightforward strategy for low complexity detection is first

to compute f−1(y), and then calculating LLRs assuming a

QAM constellation. A block diagram for such a system is

shown in Fig. 7.

AWGN

Encoder
Modulator

(QCI)

SRRC

Filter
TWTA

Matched

Filter
f -1

Detector

(QAM)
Decoder

Fig. 7. Block diagram for low complexity detection of QCI constellations.

More elaborated techniques may be proposed for 1D soft

detection of the QCI constellations. For example, techniques

similar to those in [14] for computing the 1D soft demapping

for rotated QAM constellations may be used with appropriate

modifications. Finally, notice that the radial map is not the

only (up to scaling) isomorphism between squares and circles.

Other isomorphisms may be considered that may map the

QAM into a uniform APSK constellation or any other desired

shapes. For all such constructions an inverse mapping will

provide a 1D detection, however the loss with respect to the

optimal maximum likelihood detector may be large depending

on the isomorphism. Moreover, it may be difficult to express

such isomorphims in closed from analytically. Anyway, it is an

interesting problem to find a non-trivial isomporphism family

which causes a small loss in 1D detection.

C. End-to-end simulation results for DVB-S2X chain using

QCI Constellations

Previous studies show that the AMI and PAMI values,

calculated under the peak power constrain, predict with a very

good accuracy the simulation results over DVB-S2X channel

model [9]. However, the end-to-end chain simulations are still

needed to ensure that the mapping chosen for the constellation

matches the optimized LDPC code through the bit interleaved



pattern (see in [1]) and no error floor exists. Research in this

direction is ongoing.

V. CONCLUSIONS

In this paper we propose a simple construction for a family

of non-uniform APSK constellations by the radial isomor-

phism between squares and circles. The average mutual infor-

mation values indicate gains larger than 0.5 dB with respect

to the DVB-S2X constellations with 256 points. This family

also provides a competitive test benchmark for future high

order modulation design over the satellite channel. We also

propose a strategy to further optimize QCI constellations. The

construction inherently allows for a simple and fast 1D soft

detection by an inverse mapping to QAM constellations. As for

the ongoing research, we are simulating the DVB-S2X chain

employing our proposed constellation to confirm the gains

which are observed in terms of mutual information. Another

interesting direction is to provide analytical expressions for

the symbol error rate of QCI constellations.
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