43 research outputs found

    Frailty modeling of bimodal age-incidence curves of nasopharyngeal carcinoma in low-risk populations

    Get PDF
    The incidence of nasopharyngeal carcinoma (NPC) varies widely according to age at diagnosis, geographic location, and ethnic background. On a global scale, NPC incidence is common among specific populations primarily living in southern and eastern Asia and northern Africa, but in most areas, including almost all western countries, it remains a relatively uncommon malignancy. Specific to these low-risk populations is a general observation of possible bimodality in the observed age-incidence curves. We have developed a multiplicative frailty model that allows for the demonstrated points of inflection at ages 15–24 and 65–74. The bimodal frailty model has 2 independent compound Poisson-distributed frailties and gives a significant improvement in fit over a unimodal frailty model. Applying the model to population-based cancer registry data worldwide, 2 biologically relevant estimates are derived, namely the proportion of susceptible individuals and the number of genetic and epigenetic events required for the tumor to develop. The results are critically compared and discussed in the context of existing knowledge of the epidemiology and pathogenesis of NPC

    Bim Nuclear Translocation and Inactivation by Viral Interferon Regulatory Factor

    Get PDF
    Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8) uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1–4), which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFβ receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control replication-induced apoptosis and suggest that inhibitory targeting of vIRF-1:Bim interaction may provide an effective antiviral strategy

    Acute effects of parainfluenza virus on epithelial electrolyte transport

    Get PDF
    Parainfluenza viruses are important causes of respiratory disease in both children and adults. In particular, they are the major cause of the serious childhood illness croup (laryngotracheobronchitis). The infections produced by parainfluenza viruses are associated with the accumulation of ions and fluid in the respiratory tract. It is not known, however, whether this accumulation is because of a direct effect of the viruses on ion and fluid transport by the respiratory epithelium. Here we show that a model parainfluenza virus (the Sendai virus), in concentrations observed during respiratory infections, activates Cl- secretion and inhibits Na+ absorption across the tracheal epithelium. It does so by binding to a neuraminidase-insensitive glycolipid, possibly asialo-GM1, triggering the release of ATP, which then acts in an autocrine fashion on apical P2Y receptors to produce the observed changes in ion transport. These findings indicate that fluid accumulation in the respiratory tract associated with parainfluenza virus infection is attributable, at least in part, to direct effects of the virus on ion transport by the respiratory epithelium

    Theoretical modeling for the stereo mission

    Full text link

    Multilocus Sequence-Based Analysis Delineates a Clonal Population of Agrobacterium (Rhizobium) radiobacter (Agrobacterium tumefaciens) of Human Origin ▿

    No full text
    The genus Agrobacterium includes plant-associated bacteria and opportunistic human pathogens. Taxonomy and nomenclature within the genus remain controversial. In particular, isolates of human origin were all affiliated with the species Agrobacterium (Rhizobium) radiobacter, while phytopathogenic strains were designated under the synonym denomination Agrobacterium tumefaciens. In order to study the relative distribution of Agrobacterium strains according to their origins, we performed a multilocus sequence-based analysis (MLSA) on a large collection of 89 clinical and environmental strains from various origins. We proposed an MLSA scheme based on the partial sequence of 7 housekeeping genes (atpD, zwf, trpE, groEL, dnaK, glnA, and rpoB) present on the circular chromosome of A. tumefaciens C58. Multilocus phylogeny revealed that 88% of the clinical strains belong to genovar A7, which formed a homogeneous population with linkage disequilibrium, suggesting a low rate of recombination. Comparison of genomic fingerprints obtained by pulsed-field gel electrophoresis (PFGE) showed that the strains of genovar A7 were epidemiologically unrelated. We present genetic evidence that genovar A7 may constitute a human-associated population distinct from the environmental population. Also, phenotypic characteristics, such as culture at 42°C, agree with this statement. This human-associated population might represent a potential novel species in the genus Agrobacterium
    corecore