49 research outputs found

    Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Get PDF
    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition

    Clay Minerals in Recent Sediments of the Niger Delta

    No full text

    Siderite- and Calcite-bearing Concretionary Nodules in the Lias of Yorkshire

    No full text

    Differential expression in humans of the viral entry receptor ACE2 compared with the short deltaACE2 isoform lacking SARS-CoV-2 binding sites.

    Get PDF
    ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.This research was funded in whole, or in part by: Wellcome Trust (WT107715/Z/15/Z, A.P.D., and J.J.M.); Wellcome Trust Programme in Metabolic and Cardiovascular Disease (203814/Z/16/A, T.L.W., D.N.), Wellcome Trust Major Award (208363/Z/17/Z) for Imaging Core (G.S.); British Heart Foundation (FS/17/61/33473 A.P.D., R.G.C.M; TG/18/4/33770, A.P.D., J.J.M.; FS/18/46/33663, S.S.). Cambridge Biomedical Research Centre Biomedical Resources Grant (University of Cambridge, Cardiovascular Theme, RG64226). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care
    corecore