77 research outputs found

    Instruction scheduling optimizations for energy efficient VLIW processors

    Get PDF
    Very Long Instruction Word (VLIW) processors are wide-issue statically scheduled processors. Instruction scheduling for these processors is performed by the compiler and is therefore a critical factor for its operation. Some VLIWs are clustered, a design that improves scalability to higher issue widths while improving energy efficiency and frequency. Their design is based on physically partitioning the shared hardware resources (e.g., register file). Such designs further increase the challenges of instruction scheduling since the compiler has the additional tasks of deciding on the placement of the instructions to the corresponding clusters and orchestrating the data movements across clusters. In this thesis we propose instruction scheduling optimizations for energy-efficient VLIW processors. Some of the techniques aim at improving the existing state-of-theart scheduling techniques, while others aim at using compiler techniques for closing the gap between lightweight hardware designs and more complex ones. Each of the proposed techniques target individual features of energy efficient VLIW architectures. Our first technique, called Aligned Scheduling, makes use of a novel scheduling heuristic for hiding memory latencies in lightweight VLIW processors without hardware load-use interlocks (Stall-On-Miss). With Aligned Scheduling, a software-only technique, a SOM processor coupled with non-blocking caches can better cope with the cache latencies and it can perform closer to the heavyweight designs. Performance is improved by up to 20% across a range of benchmarks from the Mediabench II and SPEC CINT2000 benchmark suites. The rest of the techniques target a class of VLIW processors known as clustered VLIWs, that are more scalable and more energy efficient and operate at higher frequencies than their monolithic counterparts. The second scheme (LUCAS) is an improved scheduler for clustered VLIW processors that solves the problem of the existing state-of-the-art schedulers being very susceptible to the inter-cluster communication latency. The proposed unified clustering and scheduling technique is a hybrid scheme that performs instruction by instruction switching between the two state-of-the-art clustering heuristics, leading to better scheduling than either of them. It generates better performing code compared to the state-of-the-art for a wide range of inter-cluster latency values on the Mediabench II benchmarks. The third technique (called CAeSaR) is a scheduler for clustered VLIW architectures that minimizes inter-cluster communication by local caching and reuse of already received data. Unlike dynamically scheduled processors, where this can be supported by the register renaming hardware, in VLIWs it has to be done by the code generator. The proposed instruction scheduler unifies cluster assignment, instruction scheduling and communication minimization in a single unified algorithm, solving the phase ordering issues between all three parts. The proposed scheduler shows an improvement in execution time of up to 20.3% and 13.8% on average across a range of benchmarks from the Mediabench II and SPEC CINT2000 benchmark suites. The last technique, applies to heterogeneous clustered VLIWs that support dynamic voltage and frequency scaling (DVFS) independently per cluster. In these processors there are no hardware interlocks between clusters to honor the data dependencies. Instead, the scheduler has to be aware of the DVFS decisions to guarantee correct execution. Effectively controlling DVFS, to selectively decrease the frequency of clusters with slack in their schedule, can lead to significant energy savings. The proposed technique (called UCIFF) solves the phase ordering problem between frequency selection and scheduling that is present in existing algorithms. The results show that UCIFF produces better code than the state-of-the-art and very close to the optimal across the Mediabench II benchmarks. Overall, the proposed instruction scheduling techniques lead to either better efficiency on existing designs or allow simpler lightweight designs to be competitive against ones with more complex hardware

    Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs

    Get PDF

    Improvements in reading and spelling skills after a phonological and morphological knowledge intervention in Greek children with spelling difficulties : a pilot study

    Get PDF
    In this study, we evaluated the effects of the online computer-based training program “Lexilogy-Greek” on the reading and spelling performance of young poor readers and spellers. The training is based on psycholinguistic principles that emphasize the importance of acquiring efficient phonological as well as morphological knowledge in remediating reading and spelling difficulties. Our sample consisted of fifteen 5th and 6th grade primary school children. Reading and spelling were tested at three points, with a no-intervention period and subsequently an intervention period in between these time points. We adopted a single group repeated measurement design and tested for intervention effects using repeated measures ANOVAs. The results revealed substantial treatment effects on spelling, word reading fluency and text reading fluency

    Developmental surface and phonological dyslexia in both Greek and English.

    Get PDF
    The hallmark of developmental surface dyslexia in English and French is inaccurate reading of words with atypical spelling-sound correspondences. According to Douklias, Masterson and Hanley (2009), surface dyslexia can also be observed in Greek (a transparent orthography for reading that does not contain words of this kind). Their findings suggested that surface dyslexia in Greek can be characterized by slow reading of familiar words, and by inaccurate spelling of words with atypical sound-spelling correspondences (Greek is less transparent for spelling than for reading). In this study, we report seven adult cases whose slow reading and impaired spelling accuracy satisfied these criteria for Greek surface dyslexia. When asked to read words with atypical grapheme-phoneme correspondences in English (their second language), their accuracy was severely impaired. A co-occurrence was also observed between impaired spelling of words with atypical phoneme-grapheme correspondences in English and Greek. These co-occurrences provide strong evidence that surface dyslexia genuinely exists in Greek and that slow reading of real words in Greek reflects the same underlying impairment as that which produces inaccurate reading of atypical words in English. Two further individuals were observed with impaired reading and spelling of nonwords in both languages, consistent with developmental phonological dyslexia. Neither of the phonological dyslexics read words slowly. In terms of computational models of reading aloud, these findings suggest that slow reading by dyslexics in transparent orthographies is the consequence of a developmental impairment of the lexical (Coltheart, Rastle, Perry, Langdon, & Zeigler, 2001; Perry, Ziegler, & Zorzi, 2010) or semantic reading route (Plaut, McClelland, Seidenberg, & Patterson, 1996). This outcome provides evidence that the neurophysiological substrate(s) that support the lexical/semantic and the phonological pathways that are involved in reading and spelling are the same in both Greek and English

    HelexKids:a word frequency database for Greek and Cypriot primary school children

    Get PDF
    In this article, we introduce HelexKids, an online written-word database for Greek-speaking children in primary education (Grades 1 to 6). The database is organized on a grade-by-grade basis, and on a cumulative basis by combining Grade 1 with Grades 2 to 6. It provides values for Zipf, frequency per million, dispersion, estimated word frequency per million, standard word frequency, contextual diversity, orthographic Levenshtein distance, and lemma frequency. These values are derived from 116 textbooks used in primary education in Greece and Cyprus, producing a total of 68,692 different word types. HelexKids was developed to assist researchers in studying language development, educators in selecting age-appropriate items for teaching, as well as writers and authors of educational books for Greek/Cypriot children. The database is open access and can be searched online at www.helexkids.org
    corecore