

Edinburgh Research Explorer

Cooperative partitioning: Energy-efficient cache partitioning for
high-performance CMPs

Citation for published version:
Sundararajan, KT, Porpodas, V, Jones, TM, Topham, NP & Franke, B 2012, Cooperative partitioning:
Energy-efficient cache partitioning for high-performance CMPs. in High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on. IEEE COMPUTER SOC, pp. 1-12. DOI:
10.1109/HPCA.2012.6169036

Digital Object Identifier (DOI):
10.1109/HPCA.2012.6169036

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
High Performance Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/HPCA.2012.6169036
http://www.research.ed.ac.uk/portal/en/publications/cooperative-partitioning-energyefficient-cache-partitioning-for-highperformance-cmps(baa1fbae-4fc0-4deb-a930-8e9e3a7b94e0).html

Cooperative Partitioning: Energy-Efficient Cache Partitioning

for High-Performance CMPs

Karthik T. Sundararajan† Vasileios Porpodas† Timothy M. Jones‡
Nigel P. Topham† Björn Franke†

†School of Informatics

University of Edinburgh

{t.s.karthik, v.porpodas}@ed.ac.uk

{npt, bfranke}@inf.ed.ac.uk

‡Computer Laboratory

University of Cambridge

timothy.jones@cl.cam.ac.uk

Abstract

Intelligently partitioning the last-level cache within a

chip multiprocessor can bring significant performance im-

provements. Resources are given to the applications that

can benefit most from them, restricting each core to a num-

ber of logical cache ways. However, although overall per-

formance is increased, existing schemes fail to consider en-

ergy saving when making their partitioning decisions.

This paper presents Cooperative Partitioning, a runtime

partitioning scheme that reduces both dynamic and static

energy while maintaining high performance. It works by

enforcing cached data to be way-aligned, so that a way is

owned by a single core at any time. Cores cooperate with

each other to migrate ways between themselves after par-

titioning decisions have been made. Upon access to the

cache, a core needs only to consult the ways that it owns

to find its data, saving dynamic energy. Unused ways can

be power-gated for static energy saving.

We evaluate our approach on two-core and four-core

systems, showing that we obtain average dynamic and static

energy savings of 35% and 25% compared to a fixed par-

titioning scheme. In addition, Cooperative Partitioning

maintains high performance while transferring ways five

times faster than an existing state-of-the-art technique.

1 Introduction

On-chip caches play a significant role in improving the

performance of a processor. Within a chip multiprocessor

(CMP), a multi-level cache hierarchy is employed, with the

last-level cache (LLC) being the largest and often shared

among all cores on the chip. Decreasing its energy con-

sumption is important because it is responsible for a signifi-

cant fraction of the total processor power budget. However,

Figure 1. Data allocation across partitioning
schemes in shared last-level caches.

any efficient energy-saving technique should cause minimal

or no performance degradation.

Cache energy reduction techniques have been widely

studied in the past. Most work has focused on single-core

designs. These turn off parts of the cache, to reduce static

energy, or predict the ways that will be accessed, to reduce

dynamic energy. However, these schemes are not directly

applicable to a CMP LLC due to the filtering effects of the

higher cache levels making access patterns hard to predict.

In contrast, there has been significant recent work in par-

titioning a shared LLC for performance [27, 28, 31, 32].

Applications are restricted to a number of logical ways

within the cache, giving the most resources to the programs

that obtain the most benefit from them. While these tech-

niques can unlock significant performance increases, they

do not consider energy saving when partitioning.

In our work we take a novel approach to LLC parti-

tioning by forcing data belonging to each core to be way-

aligned across all sets. Figure 1 gives an example of how

our approach differs from existing partitioning schemes. An

unmanaged cache is shown in A, where data belonging to

the cores is entirely mixed across sets and ways. In B, a

cache partitioning technique has been applied so that the

number of ways owned by each core is constant across all

sets. However, within the sets, data from each core can re-

side in any way. Our approach is shown in C. We apply the

same partitions as in B, but enforce data way-alignment so

that a way is owned entirely by a single core at a time.

The energy savings we can achieve are two-fold. First,

dynamic energy can be reduced on each access because a

core only needs to consult the ways that it currently owns.

Our scheme guarantees that its data will never be found

anywhere else in the cache. Second, when a whole way

is unused by any core, it can be turned off to save static en-

ergy. Implementing our technique in a partitioned architec-

ture combines large energy savings with high performance.

We call our approach Cooperative Partitioning, because

cores cooperate with each other after partitioning to mi-

grate ways between themselves. Using our technique in a

two-core system brings dynamic energy savings of 32% and

static energy savings of 25% compared to a fixed partition-

ing scheme. In a four-core environment, dynamic and static

energy savings of 31% and 20% respectively are achieved.

In addition, due to our cooperative takeover algorithm for

transferring ways, migration is five times faster on average

than a state-of-the-art partitioning scheme and flushes less

data back to memory.

The rest of this paper is structured as follows. Section 2

describes our cache monitoring scheme and partitioning al-

gorithm and explains the internals of our cache architec-

ture. This section also discusses the overheads associated

with the cache reconfiguration. Section 3 describes the ex-

perimental methodology, workloads, and metrics used for

evaluation. Section 4 evaluates our approach on two-core

and four-core systems and Section 5 analyses the reasons

behind our results. Section 6 describes the related work and

the importance of our cache architecture. Finally, Section 7

presents our conclusions.

2 Cooperative Partitioning

Our cooperative partitioning scheme is split into two dis-

tinct parts. The first monitors cache usage and determines

the optimal partitions for the running applications. The sec-

ond enforces the required partitions, enabling static and dy-

namic energy savings. As is common in last level caches,

we assume accesses are serial. Therefore dynamic energy

savings come from the tag side only.

An overview of our cache partitioning system is shown

in Figure 2. During the first phase, LLC accesses are mon-

itored and, periodically, partitioning decisions are made

about the number of ways to allocate to each core accord-

ing to their cache requirements. In the second phase, this

information is used to set the appropriate access permission

registers that determine how each core can access each LLC

way. During this phase, ways are gradually migrated be-

tween cores or turned off.

Figure 2. An overview of the cooperative par-
titioning architecture.

To enforce the required partitioning decisions and enable

way-alignment of data, we introduce two new registers for

each way called the read access permission (RAP) and write

access permission (WAP) registers. These allow specific

cores to read and write in each way.

We first describe our cache monitoring scheme, then ex-

plain the RAP and WAP registers in more detail. Then

we describe how reconfiguration is achieved by transferring

ways between cores. We call this cooperative takeover and

give an example of its workings. Finally, we describe the

overheads associated with our cache architecture.

2.1 Usage Monitoring and Partitioning

Our cache architecture builds on prior work to deter-

mine the optimal partitions for the LLC. As in state-of-the-

art schemes, we target a cache that is shared among mul-

tiprogrammed workloads [2, 5, 14, 20, 32]. Accesses are

tracked by utility monitors [20] for computing each appli-

cation’s use of the cache. Other partitioning schemes have

also made use of these monitors [32], although they could

also be specified through the operating system [21].

We use a modified UCP look-ahead algorithm [20] to de-

termine partitions, shown in Algorithm 1. This contains a

threshold value that is used when allocating ways to a core.

The threshold controls the decrease in miss-ratio for each

application, preventing each core from being awarded ad-

ditional ways unless it can significantly benefit from them.

Therefore, after running the algorithm, there may be ways

that are not allocated to any core. These can be turned off

for static energy savings with minimal loss of performance.

2.2 Cache Partitioning Control

To control each core’s access to the ways, and enforce

way-aligned data, we introduce an additional RAP register

and WAP register for every way within the cache. Each

Algorithm 1: Cores obtain extra ways when their per-

formance increases above a threshold.

balance = N; /* Number of Blocks to be allocated */

allocations[i] = 0; /* For each competing application, i */

prev max mu = 0;

while balance do

foreach application i do
alloc = allocations[i];

max mu[i] = get max mu(i, alloc, balance);

blocks req[i] = min blocks to get max mu[i] for i;

winner = application with maximum value of max mu;

/***** Modified implementation starts here *****/

if |prev max mu - max mu| < (prev max mu * T hold) then

allocations[winner] += blocks req[winner];

balance -= blocks req[winner];

prev max mu = max mu;

/***** End of modifications *****/

return allocations;

get max mu(p, alloc, balance):

max mu = 0;

for j=1; j<=balance; j++ do

mu = get mu value(p, alloc, alloc+j);

if mu > max mu then

max mu = mu;

return max mu;

get mu value(p, a, b):

return = (miss a - miss b)/(b-a);

RAP register has one bit per core to indicate whether that

core can read from the associated way. This is used in con-

junction with the WAP register for that way. This also has

one bit per core and indicates whether the core has permis-

sion to write to the way or not.

For each core and way, there are three possible modes

of operation. If both registers are set for a particular core,

then this core can both read and write in that particular way.

Otherwise, if the RAP register is set and the WAP register

is unset, then the core has only read permission for access-

ing that way. If both registers are unset, then the core can

neither read nor write that way.

Only one core can have full access (RAP set and WAP

set) to a particular way at any given time. In fact, under

normal conditions only one core can have any access to the

way. However, during a transition period, when reconfigu-

ration is taking place, one core can have full access and an-

other can have read-only access. This lasts until the whole

way has been transferred from one core to the other and is

discussed in more detail in Section 2.3. Algorithm 2 de-

scribes how the RAP and WAP registers are set at the be-

ginning of a transition period.

The RAP and WAP registers serve three purposes. First,

they enforce the cache partitioning that is currently in opera-

tion by restricting cores’ accesses to only the ways that they

are allocated. Second, they enable dynamic energy savings

because cores only need to access the ways that they have

Algorithm 2: Setting the RAP and WAP registers to

initiate cooperative takeover.

Pre = Previous way allocations per core;

Cur = Current way allocations per core;

for i = 0; i < n; i = i+ 1 do

if Pre[i] < Cur[i] then /* Core i acts as a recipient */
receive[i] = Cur[i]− Pre[i]; donate[i] = 0;

else if Pre[i] > Cur[i] then /* Core i acts as a donor */
donate[i] = Pre[i]− Cur[i]; receive[i] = 0;

for i = 0; i < n; i = i+ 1 do

for j = 0; j < n; j = j + 1 do

if receive[i] > 0 and donate[j] > 0 then

if donate[j] > receive[i] then

donation = receive[i];

else

donation = donate[j];

for d = 0; d < donation; d = d+ 1 do

w = Random way owned by core j;

RAP[w][i] = 1; WAP[w][i] = 1; WAP[w][j] = 0;

receive[i] -= 1; donate[j] -= 1;

/* Turn ways on or off */

for i = 0; i < n; i = i+ 1 do

if donate[i] > 0 then

for d = 0; d < donate[i]; d = d+ 1 do

w = Random way owned by core i;

WAP[w][i] = 0;

donate[i] = 0;

else if receive[i] > 0 then

for r = 0; r < receive[i]; r = r + 1 do

w = Random way currently off;

RAP[w][i] = 1; WAP[w][i] = 1;

receive[i] = 0;

permission for, rather than all ways within the cache. Third,

when no cores have access to a particular way (RAP and

WAP unset for all cores), then the whole way can be turned

off for static energy savings.

Figure 3 shows an example of the RAP and WAP reg-

isters before, during and after a transition period. Initially

both cores own two ways and the registers are set accord-

ingly. A partitioning decision is then made, that transfers

way 2 to core 0. To allow this, core 0 gets read and write

access to way 2, and core 1’s write permission is revoked.

After the transition period, core 0 has full control of the way

and core 1’s read permission is also withdrawn.

2.3 Cache Reconfiguration

Once the RAP and WAP registers have been set, the

cache must be reconfigured to the new partitioning that is

required. To achieve this, we introduce a new technique

called cooperative takeover. In this scheme, for each way

to be transferred, the donor and recipient cores cooperate

to quickly flush dirty data back to memory and allow the

recipient core to take full ownership of all lines in the way.

Our scheme avoids the cost of immediately flushing data

Figure 3. RAP and WAP register changes
when transferring way 2 between cores.

back to memory, but quickly transfers ownership of the

whole way, enabling fast realisation of the dynamic energy

savings that can be achieved (when the donor core no longer

accesses this way). During transitional periods, dynamic

energy consumption is higher than normal because multiple

cores access the ways that are being transferred. Therefore,

we wish to transfer ways as quickly as possible to minimise

the length of time that the way is transitioning.

To enable cooperative takeover, the cache is augmented

with a takeover bit vector for each core that is the size of the

number of sets in the cache (i.e., one bit per set per core).

The donor cores’ bit vectors are reset at the start of a tran-

sition period. Whenever a donor core accesses a particu-

lar set, dirty data is flushed back to main memory from the

ways that it is transferring. This happens whether it hits or

misses on that particular access. At the same time, the bit

for that particular cache set in the core’s bit vector is set.

Additionally, whenever a recipient core accesses a particu-

lar set, dirty data is flushed back to memory from the ways

that it will be receiving. Again, this occurs whether it hits

or misses on that access. In this situation, the bit for that

cache set in the donor core’s bit vector is set.

The donor core knows that it is donating ways because

it has read permission on those ways, but not write per-

mission. The recipient core knows that it will receive cer-

tain ways because it will have read and write permission to

the ways, but another core will also have read permission.

When donating or receiving ways, dirty data is flushed in

all ways with read permission on each access.

Bit vectors are reset at the start of a transition period for

each donor core that is giving away a way. This could inter-

fere with a prior transition of a different way from a donor

core that is still in progress. In this situation the bit vector

is still reset and the only result is that the first transition will

Figure 4. An example of cooperative takeover
where core 1 will donate a way to core 0.

Whenever either core accesses a set, dirty
data is flushed back to memory. Once all sets
have been accessed by at least one core, the

way can be owned entirely by core 0.

take longer to complete. However, this situation is rare and

we have not seen it in any of our experiments.

2.4 Cooperative Takeover Example

Figure 4 shows an example of cooperative takeover in

practice. In this example there are two cores and four cache

ways. Initially, the partitioning decision has just been made

and two ways are assigned to each core, but core 1 will do-

nate way 2 to core 0. The takeover bit vector for core 1 is

totally unset. In the second step, core 1 performs a read that

hits in set c in the cache. Its own dirty data from this set in

way 2 is flushed back to memory and the takeover bit is set.

Following this, core 0 writes to the cache which misses

in set b. In this case, core 1’s dirty line from set b, way 2

is flushed and the corresponding takeover bit set as before.

When the new line comes in from memory, it can be placed

in way 2 instead of replacing an existing line in another way.

Core 0 then has a read hit in set d. In this case the line in

way 2 is not dirty so does not need flushing, but the takeover

bit is still set. In the fifth step, core 1 has a read hit in

set b. However, the line in way 2 is now owned by core

0 and, even though it is dirty, does not need flushing back

to memory. Core 1 can see this because the corresponding

takeover bit is already set. Finally, core 1 has a read miss in

set a. Again, no dirty data needs flushing, and the takeover

bit is set. However, when the line comes into the cache, it

will replace the data in way 3 (core 1’s only way).

At this point, the all takeover bits are set and therefore

core 0 takes complete ownership of way 2. This is achieved

simply by resetting the bit for core 1 in the RAP register

for way 2, meaning that it no longer has read permission for

that way (write permission had already been withdrawn).

2.5 Reconfiguration Overheads

There are four types of overhead associated with our

cache partitioning and reconfiguration scheme. These are

the changes to the replacement policy, hardware overheads

of implementation, and the performance and power over-

heads of carrying out the partitioning.

Replacement Policy We use the scheme proposed in [20]

where an extra two bits are added to each tag entry to distin-

guish data belonging to each core. Algorithm 2 determines

which ways will be transferred between cores, then the re-

placement algorithm links the corresponding ways accord-

ingly [6, 11, 28].

Hardware Overheads As in other schemes [32], we use

an existing cache monitoring scheme to track the usage of

each set by each core and require the same hardware as

this [20]. To implement cooperative takeover, we only re-

quire one bit vector for each core for each set, along with

RAP and WAP registers for each way. In the 4MB L2 cache

that we use for our four-core experiments in Section 4, this

comes to a little over 8k bits. Table 1 details the require-

ments for the two caches that we study.

Performance Overheads When transferring a way from

one core to another, we must select blocks from each set to

be given to the recipient core. State-of-the-art schemes are

free to choose any block within each set; selecting the LRU

block is one method [32]. In our approach we must keep the

data way-aligned, so do not have the flexibility to choose

blocks on a per-set basis. This makes our scheme closer

in performance to a random choice of replacement block.

However, in practice, this causes a negligible performance

loss compared with prior work and is more than offset by

our energy savings.

Power Overheads Since the cache has extra circuitry for

monitoring and partitioning, it consumes more power than

a regular cache. However, our approach can realise con-

siderable savings in dynamic and static energy, which far

outweigh the overheads incurred. Nevertheless, all power

overheads are included in our simulated results in Section 4.

2.6 Summary

This section has described Cooperative Partitioning,

a high-performance, energy-efficient cache partitioning

scheme. We introduce RAP and WAP registers to control

access to cache ways, keeping data way-aligned and en-

abling unused ways to be turned off. During transition pe-

riods, when ways are being transferred between cores, both

donor and recipient cores cooperate to flush dirty data back

to memory. This enables the recipient to quickly take own-

ership of the ways and maximises the time when dynamic

energy savings can be realised.

Two Core Four Core

Hardware Description Details Bits Details Bits

Takeover Bit Vectors 2048 * 2 4096 2048 * 4 8192

RAP 8 * 2 16 16 * 4 64

WAP 8 * 2 16 16 * 4 64

Total 4128 8320

Table 1. Summary of the hardware overheads
of our scheme for two-core and four-core
systems.

Parameters Configuration

Processor 4-wide, out-of-order, 7 stage pipeline

ROB 128 entry

LSQ 48 entry

Branch Pred. Gshare, minimum 10 cycle misprediction penalty

BTB 1024 entry, 4-way set-associative

L1 ICache 32kB, 64B lines, 4-way, 2 cycle lat

L1 DCache 32kB, 64B lines, 4-way, 2 cycle lat

Shared L2 2MB, 64B lines, 8-way, 15 cycle lat (two-core)

4MB, 64B lines, 16-way, 20 cycle lat (four-core)

MSHR 128 entry

Memory 8 DRAM banks, 400 cycle lat, 64 outstanding reqs

Table 2. System configuration.

3 Experimental Methodology

This section describes the environment used to evaluate

our proposed cache architecture.

3.1 Simulator

We implemented our partitioned cache architecture in

Marss-x86 [18]. Table 2 shows the configuration of the sys-

tem. We simulated a 4-wide, x86-based out-of-order pro-

cessor with a 7 stage pipeline. We modelled both a two-core

and a four-core system to fully evaluate the effects of shar-

ing and partitioning the last level cache. All level 1 caches

are private and all processors share a common level 2 cache.

We model the DRAM conflicts and bus queueing delays and

use Cacti [29] at 45nm to get energy information. Finally,

we assume a 5 million cycle phase interval for monitoring

and partitioning decisions, as in prior work [20].

3.2 Workloads

We ran all C and C++ benchmarks from SPEC

CPU2006 [25], which totals 19 applications; FORTRAN

benchmarks could not be incorporated into our simulation

environment. To select groups to run in parallel, we first

arranged them into categories according to their misses per

Group Benchmark MPKI Group Benchmark MPKI

High Gobmk 9 Low DealII 0.8

Lbm 20.1 Gromacs 0.32

Sjeng 9.5 H264ref 0.89

Soplex 18 Milc 0.96

Medium Astar 4.8 Namd 0.25

Bzip2 3.2 Omnetpp 0.26

Calculix 1.1 Perlbench 0.98

Gcc 4.92 Povray 0.1

Libquantum 3.4 Xalan 0.6

Mcf 4.8

Table 3. Workload classification based on
misses per kilo instructions (MPKI). The High

group has MPKI > 5, Medium is 1 < MPKI < 5
and Small has MPKI < 1.

Two Core Workloads Four Core Workloads

G2-1 Soplex, Namd G4-1 Gobmk, Gcc, Perl., Xalan

G2-2 Soplex, Milc G4-2 Sjeng, Lbm, Calculix, Om.

G2-3 Gobmk, H264. G4-3 DealII, Sjeng, Soplex, Namd

G2-4 Lbm, Povray G4-4 Soplex, Sjeng, H264., Astar

G2-5 Gobmk, Perl. G4-5 Lbm, Libq., Gromacs, Mcf

G2-6 Lbm, Bzip2 G4-6 Gobmk, Libq., Namd, Perl.

G2-7 Lbm, Astar G4-7 Lbm, Sjeng, Povray, Om.

G2-8 Lbm, Soplex G4-8 Lbm, Soplex, H264., DealII

G2-9 Soplex, DealII G4-9 Lbm, Xalan, Milc, Soplex

G2-10 Sjeng, Calculix G4-10 Sjeng, Povray, Milc, Gobmk

G2-11 Sjeng, Xalan G4-11 Gobmk, Libq., H264., Gromacs

G2-12 Soplex, Gcc G4-12 Soplex, Astar, Om., Milc

G2-13 Sjeng, Povray G4-13 Soplex, Gcc, Libq., Xalan

G2-14 Gobmk, Om. G4-14 Soplex, Bzip2, Astar, Milc

Table 4. Workload groupings.

kilo instructions (MPKI) within the last level cache. Table 3

shows this classification.

We created 14 two-application workloads by randomly

selecting benchmarks so that there was at least one highly

memory intensive program (MPKI > 5) in each group. The

14 four-application workloads were created by randomly

selecting applications so that groups contained at least one

highly memory intensive and one mediumly memory inten-

sive program (1 < MPKI < 5). These are shown in table 4.

We ran each benchmark using the reference inputs, after

first skipping the initialisation routines that we discovered

through source code inspection. Having fast-forwarded

through initialisation, we warmed the caches and branch

predictor for 5 million cycles. We then simulated for at

least 1 billion instructions per application, as is common

practice [9, 32]. Statistics are reported for 1 billion instruc-

tions per benchmark, but all applications continued running

until the last program in the group had reached 1 billion in-

structions, to keep contending for cache resources.

3.3 Evaluation Metrics

To measure system performance we use weighted

speedup. This shows the reduction in execution time for

each benchmark compared to its running in isolation (so

higher is better).

WeightedSpeedup =
N∑

i=1

IPC shared [i]

IPC alone [i]
(1)

IPC alone is the IPC of an application when it is running

in isolation, IPC shared is the IPC of the same application

when it is running in conjunction with other applications,

and N refers to the number of concurrent threads.

3.4 Comparison Approaches

To fully evaluate our partitioning scheme, we compare

against four different approaches. Unmanaged is the base-

line case. This corresponds to an LLC with no partitioning

at all. Therefore, all cores compete for cache resources and

can evict each others’ data at any time. The next approach

is Fair Share which corresponds to a statically-partitioned

cache, where all cores have an equal number of ways, re-

gardless of their memory behaviour.

CPE is a state-of-the-art static cache partitioning archi-

tecture for energy efficiency [23]. Using profile data, a static

partition of the cache is computed. Applications can only

access their designated regions of the cache, and these do

not change during runtime. This design is the most flexible

in terms of partitioning, because both sets and ways are con-

figurable, leading to significant energy savings. In this com-

parison we extended the architecture to work with dynamic

reconfiguration. To do this, we profiled the applications and

then used this data to drive the dynamic partitioning at run-

time. Although unrealistic, this scheme serves as a useful

comparison against an existing energy-focused technique.

UCP is a state-of-the-art dynamic cache partitioning

scheme for high performance [20]. We implemented UCP

using its look-ahead algorithm to allocate ways to cores.

Finally, Cooperative Partitioning is our proposed scheme

which aims for high performance and large energy savings.

4 Evaluation

We evaluated Cooperative Partitioning in terms of per-

formance and energy consumption. Results are shown for

both two-core and four-core systems. Unless otherwise

stated, all results are normalised to the Fair Share scheme

and the average used is the geometric mean.

0.0

0.4

0.8

1.2

1.6

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

W
e

ig
h

te
d

 S
p

e
e

d
u

p
N

o
rm

a
li

s
e

d
 t

o
 F

a
ir

 S
h

a
re

Unmanaged
Fair Share

Dynamic CPE

UCP
Cooperative Partitioning

Figure 5. Weighted speedup of two-
application workloads.

4.1 Evaluation of a Two-Core System

Performance Figure 5 shows the weighted speedup of

each group of two-application workloads. It is clear that

UCP and Cooperative Partitioning consistently have the

highest performance across all combination of benchmarks.

Further, almost all workloads benefit from some form of

partitioning in the LLC. The exceptions are Group2–5 to

Group2–7, Group2–12 and Group2–13 where the Unman-

aged cache performs better than the Fair Share scheme. Ap-

plications such as astar, bzip2, gcc, perlbench and povray

benefit significantly from a large amount of cache space,

which can be achieved in Unmanaged. In Fair Share,

there are fixed boundaries which penalises these programs.

Hence Unmanaged achieves a speedup of 14% in Group2–

12 because gcc is unconstrained. This motivates the need

for a flexible cache partitioning approach, such as UCP or

Cooperative Partitioning.

The modified comparison Dynamic CPE algorithm does

not perform as well as would be expected, given that it

has profile information to guide its partitioning decisions.

This is because it has high flushing costs whenever alter-

ing the LLC. When workload partitioning changes are in-

frequent, CPE performs close to UCP and our approach.

This is most evident in workloads Group2–1 to Group2–

3. On the other hand, when there are frequent changes to

the partitions, Dynamic CPE performs worse than UCP and

Cooperative Partitioning. For example, in Group2–7, CPE

achieves a speedup of 1.31, compared with 1.45 for UCP

and our scheme, meaning we are 11% faster.

The performance of our approach is close to UCP. On av-

erage, we achieve a speedup of 1.13 and UCP achieves 1.14.

The reason for this is that we use cooperative takeover of

ways and must keep data way-aligned, whereas UCP does

not have this restriction. As our results show, in practice this

is not a significant issue and we can still get large perfor-

mance benefits despite this method of partitioning. Further,

performance is not the main focus of our approach and we

turn our attention to energy consumption in the next section.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

 A
V
G

D
y

n
a

m
ic

 E
n

e
rg

y
N

o
rm

a
li

s
e

d
 t

o
 F

a
ir

 S
h

a
re

Unmanaged
Fair Share

Dynamic CPE

UCP
Cooperative Partitioning

2.00 2.04

Figure 6. Dynamic energy consumption of
the two-application workloads.

0.0

0.2

0.4

0.6

0.8

1.0

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

S
ta

ti
c

 E
n

e
rg

y
N

o
rm

a
li

s
e

d
 t

o
 F

a
ir

 S
h

a
re

Unmanaged
Fair Share

Dynamic CPE

UCP
Cooperative Partitioning

Figure 7. Static energy consumption of the

two-application workloads.

Dynamic Energy Figure 6 shows the dynamic energy

consumption of each different partitioning scheme. As ex-

plained earlier, Unmanaged and UCP do not provide dy-

namic energy savings as they do not support aligned data

(instead each access consults all cache ways). Our approach

achieves energy savings of up to 50% compared with the

Fair Share scheme. This is because our scheme accesses

only 2.9 ways, on average, compared with 8 for the base-

line and 4 for Fair Share. The largest savings are achieved

by Group2–3, the reason being that on average only two

ways per access are active.

In Group2–4, Group2–6, Group2–7, Group2–12 and

Group2–13, frequent partitioning occurs due to the chang-

ing requirements of astar, bzip2, gcc and povray. For these

workloads, CPE incurs significant overheads from flushing

data while partitioning. However, our scheme can cope with

these changes and still achieves significant energy savings

(between 18% and 26%). On average, Cooperative Parti-

tioning has a dynamic energy consumption of just 68% of

the Fair Share scheme, compared to 74% for CPE.

Static Energy Static energy consumption is shown in

Figure 7 and we see that again our approach provides sig-

nificant savings. The Unmanaged, UCP and Fair Share

schemes do not reduce static energy because they do not en-

force way-aligned data. In Cooperative Partitioning, when

workloads under-utilise the cache memory, then the remain-

ing cache ways can be turned off. In CPE, sets and ways

can be shut down for static energy savings. As can be

0.0

0.4

0.8

1.2

1.6

G
4
-1

G
4
-2

G
4
-3

G
4
-4

G
4
-5

G
4
-6

G
4
-7

G
4
-8

G
4
-9

G
4
-1

0

G
4
-1

1

G
4
-1

2

G
4
-1

3

G
4
-1

4

A
V
G

W
e

ig
h

te
d

 S
p

e
e

d
u

p

 N
o

rm
a

li
s

e
d

 t
o

 F
a

ir
 S

h
a

re

Unmanaged
Fair Share

Dynamic CPE

UCP
Cooperative Partitioning

Figure 8. Weighted speedup of the four-
application workloads.

seen from Figure 7, in Group2–2, static energy savings of

48% are achieved. In this workload, only two ways are

required by each application, on average, therefore almost

half the cache can be power-gated. However, for Group2–6,

Group2–7 and Group2–12 the cache is used in its entirety,

hence no ways can be turned off at all.

The unrealistic Dynamic CPE scheme also saves consid-

erable amounts of energy, although never more than Co-

operative Partitioning. On average our approach consumes

75% of the static energy of the Unmanaged, UCP and Fair

Share caches, whilst Dynamic CPE consumes 78%. Over-

all, Cooperative Partitioning consumes less energy than

other schemes with performance just 1% away from the best

across all comparison approaches.

4.2 Evaluation of a Four-Core System

Performance Figure 8 shows the weighted speedup of

our four-application workloads, where it is clear to see that

Dynamic CPE performs very poorly. This is due to fre-

quent partitioning changes, leading to significant amounts

of flushing in this approach. Dynamic CPE is not scal-

able across a large number of cores because the number of

flushes increases with the number of applications.

Workloads like Group4–3 have small cache require-

ments, meaning that there is not a significant amount of

performance improvement available beyond the Fair Share

scheme. Further, these workloads benefit significantly

from partitioning due to thrashing between two applications

(sjeng and soplex) in Unmanaged. On the other hand, work-

loads like Group4–13 contain at least one application that

requires a large fraction of the cache (i.e., more than a quar-

ter given by Fair Share). In this case the program is gcc

which obtains 7 ways on average. Fair Share unnecessarily

constrains these applications, meaning that other schemes

can achieve significant speedups.

As in the two-application workloads, Cooperative Par-

titioning performs similarly to UCP and is never slower

than Fair Share. On average UCP achieves a 1.13 speedup

whereas our approach achieves 1.12.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
4
-1

G
4
-2

G
4
-3

G
4
-4

G
4
-5

G
4
-6

G
4
-7

G
4
-8

G
4
-9

G
4
-1

0

G
4
-1

1

G
4
-1

2

G
4
-1

3

G
4
-1

4

A
V
G

D
y

n
a

m
ic

 E
n

e
rg

y
N

o
rm

a
li

s
e

d
 t

o
 F

a
ir

 S
h

a
re

Unmanaged
Fair Share

Dynamic CPE

UCP
Cooperative Partitioning

4.00 4.06

Figure 9. Dynamic energy consumption of
the four-application workloads.

0.0

0.2

0.4

0.6

0.8

1.0

G
4
-1

G
4
-2

G
4
-3

G
4
-4

G
4
-5

G
4
-6

G
4
-7

G
4
-8

G
4
-9

G
4
-1

0

G
4
-1

1

G
4
-1

2

G
4
-1

3

G
4
-1

4

A
V
G

S
ta

ti
c

 E
n

e
rg

y
N

o
rm

a
li

s
e

d
 t

o
 F

a
ir

 S
h

a
re

Unmanaged
Fair Share

Dynamic CPE

UCP
Cooperative Partitioning

Figure 10. Static energy consumption of the

four-application workloads.

Dynamic Energy Figure 9 shows the dynamic energy

consumption of these workloads. Group4–3 obtains the

lowest energy consumption that is 46% of the Fair Share

scheme. In this workload, two applications get only two

ways within the cache and these account for the majority

of LLC accesses. Workloads Group4–4, Group4–12 and

Group4–13 have at least one application that benefits from

a large LLC. These are astar and gcc. Therefore it might

be reasonable to expect the dynamic energy consumption

of these groups to be larger in Cooperative Partitioning than

in Fair Share, because these applications are assigned larger

cache partitions which consume more energy on each ac-

cess. However, the energy increases prove to be negligible

compared to the consumption from the high MPKI appli-

cations that co-execute alongside. The memory intensive

applications get assigned to a narrow partition, so consume

less energy than in Fair Share. Since these dominate the

cache accesses, our scheme ends up with significant dy-

namic energy savings, even in these cases.

In total, our approach consumes just 69% of the dynamic

energy of the Fair Share scheme. In comparison, Dynamic

CPE consumes 82%. This is because we access 3.2 ways

on average, compared to 4 for Fair Share.

Static Energy Finally, static energy consumption is

shown in Figure 10. Here, five workloads completely utilise

the cache space, meaning that no ways are turned off. How-

ever, in the other groups, large savings are achieved by Co-

operative Partitioning, such as Group4–3, Group4–8 and

0.0

0.2

0.4

0.6

0.8

1.0

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

W
e

ig
h

te
d

 S
p

e
e

d
u

p

 N
o

rm
a

li
s

e
d

 t
o

 T
 =

 0

T=0 T=0.01 T=0.05 T=0.10 T=0.20

Figure 11. Impact of altering the takeover
threshold value on performance.

0.0

0.2

0.4

0.6

0.8

1.0

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

D
y

n
a

m
ic

 E
n

e
rg

y

 N
o

rm
a

li
s

e
d

 t
o

 T
 =

 0

T=0 T=0.01 T=0.05 T=0.10 T=0.20

Figure 12. Impact of altering the takeover
threshold value on dynamic energy.

Group4–11 where there are 38% savings. This is because

these workloads use fewer ways on average compared to

other schemes (e.g., two applications have 2 ways and two

have 3 ways in Group4–11). This leads to an average static

energy consumption of 80% of the Fair Share approach.

5 Analysis of Results

Having evaluated cooperative partitioning in terms of

both performance and energy consumption, we now analyse

the reasons for the benefits seen. We first consider the sensi-

tivity of our algorithm to the turn-off threshold, to show how

small values maintain high performance but enable large

energy savings. We then show the amount of time taken

to transfer ways between cores, which we want to keep as

short as possible. To show how cooperation between cores

takes place when migrating ways, we show the types of ac-

cess that set the takeover bit vector, then analyse the LLC

to memory bandwidth used when transferring. We conduct

this analysis on the two-application workloads only, due to

space limitations. In addition, the four-application work-

loads behave similarly and thus the same conclusions can

be applied to them.

5.1 Impact of Takeover Threshold

Figure 11 shows the performance impact of altering the

takeover threshold, described in Section 2.3. We explored a

range of thresholds, from 0 to 0.2. A threshold value of 0

0.0

0.2

0.4

0.6

0.8

1.0

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

S
ta

ti
c

 E
n

e
rg

y

 N
o

rm
a

li
s

e
d

 t
o

 T
 =

 0

T=0 T=0.01 T=0.05 T=0.10 T=0.20

Figure 13. Impact of altering the takeover
threshold value on static energy.

0.0

0.2

0.4

0.6

0.8

1.0

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

F
ra

c
ti

o
n

 o
f

E
v

e
n

ts

Recipient Misses

Recipient Hits

Donor Misses

Donor Hits

Figure 14. Events that set takeover bits when
transferring ways between cores.

corresponds to an allocation of ways in the same manner as

UCP. Increasing it makes it more difficult for an application

to obtain more ways; they are only given out if the applica-

tion significantly benefits from them. At the other extreme,

a threshold value of 1 would mean that no ways were ever

allocated to any core.

When a threshold value is 0.05 or less, there is no change

in performance compared with a threshold of 0. For a 0.1

threshold, 17% performance loss is incurred. When this

is increased to 0.2, all workloads experience large perfor-

mance losses. The reason is that with such a high value,

performance benefits from increasing ways are less than the

threshold allows. Therefore, the algorithm falsely prohibits

the acquisition of extra ways, leading to poor performance.

On the other hand, large energy savings can be achieved

as the threshold value increases. These are shown in Fig-

ures 12-13. With a threshold of 0.05, almost all workloads

achieve dynamic energy savings (all apart from Group2–

6, Group2–7 and Group2–12) and all achieve static energy

savings. This justifies our use of a 0.05 threshold value for

all other experiments, as this provides a good trade-off be-

tween high performance and significant energy savings.

5.2 Cooperative Takeover Events

Cooperative Partitioning relies on cooperative takeover

to implement its partitioning decisions. Figure 14 shows the

breakdown of events that set takeover bits when transferring

ways between cores. We show hits and misses by the donor

0

20

40

60

80

100

G
2
-1

G
2
-2

G
2
-3

G
2
-4

G
2
-5

G
2
-6

G
2
-7

G
2
-8

G
2
-9

G
2
-1

0

G
2
-1

1

G
2
-1

2

G
2
-1

3

G
2
-1

4

A
V
G

C
y

c
le

s
 R

e
q

u
ir

e
d

(M

il
li

o
n

s
)

UCP
Cooperative Partitioning

Figure 15. Cycles taken to transfer a way.

and recipient cores for each of our fourteen workloads.

In almost all groups, donor hits and recipient misses ac-

count for well over half the takeover bits being set. In

the majority of cases, these events correspond to approxi-

mately two-thirds of the bits being set. The only exception

is Group2–8 where this only happens 48% of the time.

There is an intuitive reason for this finding. The donor

core is has enough space in the LLC and, in fact, is giv-

ing away one of its ways because it does not need so much

room. Therefore most of its accesses will hit in the cache.

On the other hand, the recipient core needs more space be-

cause its data cannot fit comfortably in the LLC. Therefore,

it will miss frequently in the cache until its allocation of

ways increases. Hence, these two events are expected to be

the most common, and, as Figure 14 shows, in practice they

do lead to the majority of takeover bits being set.

5.3 Transition Time

Setting of takeover bits on donor and recipient accesses

means that ways can quickly be transferred between cores.

To quantify the amount of time this actually takes, con-

sider Figure 15. This shows the average number of cy-

cles for Cooperative Partitioning to transfer each complete

way between cores for each workload. For comparison, we

show UCP too. Since UCP does not enforce way-aligned

data, this value corresponds to the average number of cy-

cles taken to transfer one block from each set.

It is clear that Cooperative Partitioning is significantly

faster to transfer ways than UCP. On average, we take 10m

cycles whereas UCP takes 58m. The reason for this is that

UCP only transfers blocks on a recipient miss. Since these

account for just 33% of all accesses to each way during par-

titioning (as shown in Figure 14), it follows that Coopera-

tive Partitioning is faster. Further, there are some blocks that

are infrequently accessed and these take a large number of

cycles to cause a recipient miss. This also accounts for the

large transition time in UCP.

5.4 Memory Bandwidth Usage

Our final analysis concerns the amount of memory band-

width used to flush dirty cache blocks back to main memory

0.0

400.0

800.0

1200.0

0 2 4 6 8 10 12L
in

e
s

 T
ra

n
s

fe
rr

e
d

Cycles in Millions

UCP Cooperative Partitioning

Figure 16. LLC to memory bandwidth usage
for flushing data after a partitioning decision.

during a transition. Figure 16 shows how the average num-

ber of flushed blocks varies over time once a partitioning

decision has been made. Due to the speed that Cooperative

Partitioning transfers ways between cores (Section 5.3), we

incur a higher cost initially, with a large number of lines

being flushed. However, this quickly drops off 4 million cy-

cles after a partitioning decision is made and stays close to

0 until 10 million when the transfer of the way is complete.

For UCP, there is also a peak in the number of lines

flushed during the first period (up to 4 million cycles), al-

though its magnitude is considerably smaller than for Co-

operative Partitioning. However, after this point there is a

steady use of memory bandwidth, rising to another peak at

7.5 million cycles, then down to nearly 0 just after 10 mil-

lion cycles. As previously stated, UCP does not complete its

transfer until 58 million cycles have passed. Therefore UCP

has a more constant memory bandwidth usage, whereas Co-

operative Partitioning causes a shorter, larger activity burst.

In fact, what is not shown is that UCP has to flush more

lines from LLC to memory during a transition than Coop-

erative Partitioning. This is because UCP only flushes on a

miss by the recipient. Before this happens there can be mul-

tiple writes by the donor core, making clean blocks dirty.

Although this can also happen in Cooperative Partitioning,

it is much less likely, since all accesses by the donor will

cause the takeover bit vector to be set and the block trans-

ferred to the recipient. On average Cooperative Partitioning

flushes 5102 lines, whereas UCP flushes 6536.

5.5 Summary

This section has analysed the results of Cooperative Par-

titioning. We have shown that ways are quickly transferred

between cores after a partitioning decision is made, through

cooperative takeover. During this transition period, all ac-

cesses by the donor and recipient cores help to migrate

ways; donor hits and recipient misses accounting for ap-

proximately two-thirds of the events. This enables Cooper-

ative caching to transfer ways five times more quickly than

occurs in a comparison approach.

6 Related Work

Existing state-of-the-art cache partitioning techniques

can be split into two groups.

Partitioning for Performance Cache partitioning has

been widely studied in the past with both static and dynamic

schemes proposed. Chiou et al. [6] were the first to intro-

duce column caching and also proposed changes that are

required by the replacement policy to be aware of partition-

ing. Suh et al. [27, 28] used the recency position of hits

in cache lines to drive dynamic cache partitioning. How-

ever, a global monitoring scheme is used to collect data and

hence hit statistics of individual applications get polluted by

other co-executing programs. Later Qureshi et al. [20] ad-

dressed these shortcomings with utility based cache parti-

tioning (UCP) that uses a low-overhead auxiliary tag direc-

tory to monitor each core’s cache usage through the LRU

stack property [15]. Cache utility curves are generated peri-

odically and partitioning performed accordingly. We use the

cache monitoring scheme from UCP and compare against

the full technique. However, our method for creating par-

titions and transferring blocks between cores is different to

Qureshi’s since we focus on energy efficiency.

Xie et al. [32] and Jaleel et al. [13] modified the shared

cache replacement policy to provide performance benefits

compared to an unmanaged cache. A two-dimensional

cache partitioning was proposed by Chang et al. [5]. This al-

lowed both space and time sharing within the cache, mean-

ing that a few processors share a small cache region for

particular time interval while the rest share the remaining

large region. However, our work is orthogonal to these ap-

proaches, as we partition for energy saving.

The thrasher caging scheme [31] identifies workloads

that thrash the cache and isolates them through partition-

ing. This technique obtains the benefits of partitioning

for thrashing applications and an unmanaged cache for

non-thrashing workloads, targeting performance. Similarly,

Sanchez et al. [24] proposed fine-grained partitioning using

an efficient hashing function. The scheme provides data iso-

lation, with a small unpartitioned area that can be used by

competing cores to increase their original partitions, rather

than taking ways from other cores. Again, Cooperative Par-

titioning can be used in all partitioned areas, thereby offer-

ing energy reduction in addition to performance benefits.

There have been proposals to perform set-wise cache

partitioning [22, 30]. However, in a dynamic setting, these

schemes would require frequent flushing of data due to the

varying memory requirements of different phases of the

programs. In comparison, our cooperative takeover does

not incur immediate flushing costs and is simple to imple-

ment since we enforce way-alignment of data.

Bitirgen et al. [2] applied machine learning to efficiently

manage the shared cache and off-chip bandwidth for im-

proved performance. They used dynamic voltage scaling to

set the optimal per-core voltage level for various configu-

rations. Our scheme can be incorporated into this to offer

energy reduction.

There have been various schemes to offer quality of ser-

vice by assigning priority levels to threads and partition-

ing accordingly [3, 9, 11, 12, 17]. Chandra et al [4] stud-

ied the impact of inter-thread interference by predicting

the number of cache evictions that would be introduced

by another thread that runs in a CMP system. However,

fully-partitioned caches inherently avoid inter-thread inter-

ference. Static schemes have determined the optimal par-

titions for any combination of applications [26] or have

been used to set parameters for various management poli-

cies [10]. In summary, Cooperative Partitioning is orthogo-

nal to most prior work and can be applied to these schemes

to offer energy reduction on top of performance benefits.

Partitioning for Energy Efficiency In terms of energy

efficiency, Reddy et al. [23] statically profiled each appli-

cation to determine their cache requirements. This infor-

mation was used to compute cache partitions that can be

adapted to sets and associativity. However, as the number of

workload combination increases, static profiling becomes

more impractical. We have adapted this CPE algorithm for

a dynamic setting and compare against it in Section 4.

Albonesi [1] proposed a cache design that can vary its

size and associativity by enabling or disabling cache ways.

Powell et al. [19] developed a gated-Vdd (non-state preserv-

ing) technique to reconfigure the cache and turn off unused

cache lines. Meng et al. [16] explored the upper limits of

reducing leakage power by combining both drowsy [7] and

gated-Vdd techniques. However, this work is only a theo-

retical upper bound on energy saving since it assumes the

existence of an ideal prefetcher, which is impossible to pro-

vide in practice. We do, however, implement their gated-

Vdd technique to turn off unused ways.

Ghosh et al. [8] proposed way-guarding, a mechanism

to reduce dynamic energy by accessing fewer ways. Com-

pared with this our scheme also reduces static energy by

turning of unused ways, while using much less hardware.

Finally, Kedzierski et al. [14] proposed a power-aware

partitioning using a drowsy cache implementation to reduce

both dynamic and static power. In contrast, Cooperative

Partitioning is a new technique that provides both dynamic

and static energy savings and the drowsy scheme can also be

implemented in our cache to offer further energy reductions.

7 Conclusion

This paper has proposed Cooperative Partitioning, a

novel partitioning scheme for last-level caches in CMPs.

This approach maintains high performance while saving

significant dynamic and static energy. It achieves this by

enforcing way-aligned data within the cache, and by coop-

eration between cores when migrating ways between them-

selves. Evaluation on a two-core system shows savings of

32% dynamic and 25% static energy compared to a fixed

partitioning scheme. In a four-core environment, dynamic

and static energy savings of 31% and 20% are achieved,

with negligible loss of performance. Further, our scheme

migrates ways between cores five times more quickly than a

state-of-the-art partitioning approach and requires less data

to be flushed back to memory.

The energy savings realised by Cooperative Partitioning

create additional headroom in the processor’s thermal de-

sign power. Thus the negligible reduction in performance

can be mitigated through higher clock rates for the same

number of cores, or increased numbers of active cores on

the chip, which we will investigate in future work.

Acknowledgements This work was supported by the

UK’s Royal Academy of Engineering and EPSRC. We

thank Nikolas Ioannou, Luis Fabricio Wanderley Goes and

Andrew J. McPherson for their comments and feedback.

The authors are members of HiPEAC.

References

[1] D. H. Albonesi. Selective cache ways: On-demand cache

resource allocation. InMICRO, 1999.

[2] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated man-

agement of multiple interacting resources in chip multipro-

cessors: A machine learning approach. InMICRO, 2008.

[3] F. J. Cazorla, P. M. Knijnenburg, R. Sakellariou,

E. Fernández, A. Ramirez, and M. Valero. Predictable per-

formance in SMT processors. In CF, 2004.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-

thread cache contention on a chip multi-processor architec-

ture. In HPCA, 2005.

[5] J. Chang and G. S. Sohi. Cooperative caching for chip mul-

tiprocessors. In ISCA, 2006.

[6] D. Chiou, S. Devadas, L. Rudolph, and B. S. Angz. Dynamic

cache partitioning via columnization. In DAC, 2000.

[7] K. Flautner, N. S. Kim, S. M. Martin, D. Blaauw, and

T. Mudge. Drowsy caches: Simple techniques for reducing

leakage power. In ISCA, 2002.

[8] M. Ghosh, E. Ozer, S. Ford, S. Biles, and H.-H. S. Lee. Way

guard: a segmented counting bloom filter approach to reduc-

ing energy for set-associative caches. In ISLPED, 2009.

[9] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for

providing quality of service in chip multi-processors. InMI-

CRO, 2007.

[10] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Com-

munist, utilitarian, and capitalist cache policies on CMPs:

Caches as a shared resource. In PACT, 2006.

[11] R. Iyer. CQoS: A framework for enabling QoS in shared

caches of CMP platforms. In ICS, 2004.

[12] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,

Y. Solihin, L. Hsu, and S. Reinhardt. QoS policy and archi-

tecture for cache/memory in CMP platforms. In SIGMET-

RICS, 2007.

[13] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High

performance cache replacement using re-reference interval

prediction (RRIP). In ISCA, 2010.

[14] K. Kedzierski, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,

and M. Valero. Power and performance aware reconfig-

urable cache for CMPs. In IFMT ’10, 2010.

[15] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Eval-

uation techniques for storage hierarchies. IBM Systems Jour-

nal, 1970.

[16] Y. Meng, T. Sherwood, and R. Kastner. On the limits of

leakage power reduction in caches. In HPCA, 2005.

[17] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private

caches. In ISCA, 2007.

[18] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A

full system simulator for x86 CPUs. In DAC, 2011.

[19] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vi-

jaykumar. Gated-Vdd: A circuit technique to reduce leakage

in deep-submicron cache memories. In ISLPED, 2000.

[20] M. K. Qureshi and Y. N. Patt. Utility-based cache parti-

tioning: A low-overhead, high-performance, runtime mech-

anism to partition shared caches. In MICRO, 2006.

[21] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural

support for operating system-driven CMP cache manage-

ment. In PACT, 2006.

[22] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable

caches and their application to media processing. In ISCA,

2000.

[23] R. Reddy and P. Petrov. Cache partitioning for energy-

efficient and interference-free embedded multitasking. ACM

Transactions on Embedded Computing Systems, 9, 2010.

[24] D. Sanchez and C. Kozyrakis. Vantage: Scalable and effi-

cient fine-grain cache partitioning. In ISCA, 2011.

[25] SPEC Corporation. SPEC CPU2006.

http://www.spec.org/cpu2006/.

[26] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of

cache memory. IEEE Transactions on Computers, 41, 1992.

[27] G. E. Suh, S. Devadas, and L. Rudolph. A new memory

monitoring scheme for memory-aware scheduling and parti-

tioning. In HPCA, 2002.

[28] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partition-

ing of shared cache memory. The Journal of Supercomput-

ing, 28, 2004.

[29] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.

Jouppi. Cacti 5.1. Technical Report HPL-2008-20. HP Lab-

oratories Palo Alto, 2008.

[30] K. Varadarajan, S. Nandy, V. Sharda, A. Bharadwaj, R. Iyer,

S. Makineni, and D. Newell. Molecular caches: A caching

structure for dynamic creation of application-specific het-

erogeneous cache regions. InMicro, 2006.

[31] Y. Xie and G. Loh. Scalable shared-cache management by

containing thrashing workloads. In HiPEAC, 2010.

[32] Y. Xie and G. H. Loh. PIPP: Promotion/insertion pseudo-

partitioning of multi-core shared caches. In ISCA, 2009.

