

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429713988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Instruction Scheduling Optimizations for

Energy Efficient VLIW Processors

Vasileios Porpodas

T
H

E

U
N I V E R

S

I
T

Y

O
F

E
D

I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2013

Abstract

Very Long Instruction Word (VLIW) processors are wide-issue statically scheduled

processors. Instruction scheduling for these processors is performed by the compiler

and is therefore a critical factor for its operation. Some VLIWs are clustered, a design

that improves scalability to higher issue widths while improving energy efficiency and

frequency. Their design is based on physically partitioning the shared hardware re-

sources (e.g., register file). Such designs further increase the challenges of instruction

scheduling since the compiler has the additional tasks of deciding on the placement

of the instructions to the corresponding clusters and orchestrating the data movements

across clusters.

In this thesis we propose instruction scheduling optimizations for energy-efficient

VLIW processors. Some of the techniques aim at improving the existing state-of-the-

art scheduling techniques, while others aim at using compiler techniques for closing

the gap between lightweight hardware designs and more complex ones. Each of the

proposed techniques target individual features of energy efficient VLIW architectures.

Our first technique, called Aligned Scheduling, makes use of a novel scheduling

heuristic for hiding memory latencies in lightweight VLIW processors without hard-

ware load-use interlocks (Stall-On-Miss). With Aligned Scheduling, a software-only

technique, a SOM processor coupled with non-blocking caches can better cope with

the cache latencies and it can perform closer to the heavyweight designs. Performance

is improved by up to 20% across a range of benchmarks from the Mediabench II and

SPEC CINT2000 benchmark suites.

The rest of the techniques target a class of VLIW processors known as clustered

VLIWs, that are more scalable and more energy efficient and operate at higher fre-

quencies than their monolithic counterparts.

The second scheme (LUCAS) is an improved scheduler for clustered VLIW pro-

cessors that solves the problem of the existing state-of-the-art schedulers being very

susceptible to the inter-cluster communication latency. The proposed unified cluster-

ing and scheduling technique is a hybrid scheme that performs instruction by instruc-

tion switching between the two state-of-the-art clustering heuristics, leading to better

scheduling than either of them. It generates better performing code compared to the

state-of-the-art for a wide range of inter-cluster latency values on the Mediabench II

benchmarks.

The third technique (called CAeSaR) is a scheduler for clustered VLIW architec-

tures that minimizes inter-cluster communication by local caching and reuse of already

iii

received data. Unlike dynamically scheduled processors, where this can be supported

by the register renaming hardware, in VLIWs it has to be done by the code generator.

The proposed instruction scheduler unifies cluster assignment, instruction scheduling

and communication minimization in a single unified algorithm, solving the phase or-

dering issues between all three parts. The proposed scheduler shows an improvement

in execution time of up to 20.3% and 13.8% on average across a range of benchmarks

from the Mediabench II and SPEC CINT2000 benchmark suites.

The last technique, applies to heterogeneous clustered VLIWs that support dy-

namic voltage and frequency scaling (DVFS) independently per cluster. In these pro-

cessors there are no hardware interlocks between clusters to honor the data dependen-

cies. Instead, the scheduler has to be aware of the DVFS decisions to guarantee correct

execution. Effectively controlling DVFS, to selectively decrease the frequency of clus-

ters with slack in their schedule, can lead to significant energy savings. The proposed

technique (called UCIFF) solves the phase ordering problem between frequency selec-

tion and scheduling that is present in existing algorithms. The results show that UCIFF

produces better code than the state-of-the-art and very close to the optimal across the

Mediabench II benchmarks.

Overall, the proposed instruction scheduling techniques lead to either better ef-

ficiency on existing designs or allow simpler lightweight designs to be competitive

against ones with more complex hardware.

iv

Lay Summary of Thesis

Nowadays computing technology is more widespread than ever before. Many com-

puters, in the form of consumer electronic devices, are mobile. People carry these

computers on them as they aid them in their everyday life. Mobile devices have to be

cheap, high performance and energy efficient so that they are affordable to everyone

and they perform complex tasks without draining the battery. To achieve these goals,

improvements have to be made across all levels of the stack starting from the program

developer, the programming languages, the tools used to transform the programs into

machine code (compiler tools), all the way down to the computer architecture and the

low level hardware design.

This thesis focuses on improving the compiler tool, which stands between pro-

grams and computer architecture. The processors considered follow the Very Long

Instruction Word (VLIW) design philosophy, which aims at lower hardware complex-

ity at the cost of higher compiler (software) complexity. In more detail, any task that

could be done efficiently off-line (in advance) by the the compiler tool, should be done

by the tool (in software), not by the processor (in hardware). VLIW processors are

in general: i) cheaper to build (by being less complex to design and requiring less

hardware components) ii) as well performing as more complex designs and iii) more

energy efficient. These benefits, however, require advanced compiler optimizations.

This thesis proposes new and improved optimizations for the compiler tool, to bet-

ter support this class of high performance yet energy efficient processors. Our tech-

niques let the compiler generate more efficient programs to run on these processors

with benefits in performance or energy. The experimental evaluation of the proposed

techniques shows that our techniques outperform the state-of-the-art.

v

Acknowledgements

I would like to thank my supervisor, Marcelo Cintra, for guiding me through my PhD

and teaching me to stay focused and avoid chasing “crazy” ideas.

Living in “New Texas” (a.k.a. office 1.05, Informatics Forum) for the past 4 years,

I met a good number of nice people. Many of them have been kind enough to help

me with my work by explaining things to me, providing valuable feedback and giving

me advice. Andrew J. McPherson, Chris Fensch, Christos Margiolas, George Ste-

fanakis, George Tournavitis, Luis Fabricio Wanderley Goes, Karthik Thucanakken-

palayam Sundararajan, Kiran Chandramohan, Konstantina Mitropoulou, Vijay Na-

garajan, Nikolas Ioannou, Polychronis Xekalakis, Zheng Wang, just to name a few.

I would finally like to thank my family and friends for their support.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• “UCIFF: Unified Cluster assignment Instruction scheduling and Fast Frequency

selection for heterogeneous clustered VLIW cores”

Vasileios Porpodas, and Marcelo Cintra

International Workshop on Languages and Compilers for Parallel Computing

(LCPC), 2012

• “LUCAS: Latency-adaptive Unified Cluster Assignment and instruction Schedul-

ing”

Vasileios Porpodas, and Marcelo Cintra

Conference on Languages, Compilers and Tools for Embedded Systems (LCTES),

2013

• “CAeSaR: unified Cluster-Assignment Scheduling and communication Reuse

for clustered VLIW processors”

Vasileios Porpodas, and Marcelo Cintra

International Conference on Compilers Architecture and Synthesis for Embed-

ded Systems (CASES), 2013

• “Aligned Scheduling: Cache-efficient Instruction Scheduling for VLIW Proces-

sors”

Vasileios Porpodas, and Marcelo Cintra

International Workshop on Languages and Compilers for Parallel Computing

(LCPC), 2013

(Vasileios Porpodas)

vii

Table of Contents

1 Introduction 1

1.1 Aligned Scheduling: Exploiting MLP to hide cache-miss latencies on

VLIWs . 3

1.2 Latency-adaptive Unified Clustering and Scheduling (LUCAS) 3

1.2.1 Clustered architectures . 3

1.2.2 LUCAS . 5

1.3 Cluster Assignment, Scheduling and Communication Reuse (CAeSaR) 5

1.4 Unified Clustering, Scheduling and Fast-Frequency selection for Het-

erogeneous Clustered VLIW (UCIFF) 6

2 Background 7

2.1 VLIW Machine Model . 7

2.2 Basic Terminology . 9

2.3 Compiler Structure . 12

2.4 Instruction Scheduling . 13

2.5 Scheduling Regions . 15

2.6 Clustered VLIW Machine Model . 17

2.7 Heterogeneous Clustered VLIW . 19

2.8 Cluster Assignment . 20

2.9 Load Scheduling . 24

3 Aligned Scheduling 27

3.1 Introduction . 27

3.2 Motivation . 30

3.2.1 Hoisting of Low-Priority Loads (HLPL) 32

3.2.2 Lowering of Low-Priority Loads (LLPL) 34

3.2.3 Discussion . 36

ix

3.3 Aligned Scheduling . 36

3.3.1 Overview . 36

3.3.2 Aligned Scheduling driver 38

3.3.3 Aligned Scheduling selection 39

3.3.4 Complexity Analysis and Comparison 42

3.4 Experimental Setup . 44

3.5 Results and Analysis . 44

3.5.1 Case study: cjpeg . 46

3.5.2 All benchmarks . 53

3.6 Conclusion . 55

4 LUCAS 57

4.1 Introduction . 57

4.2 Motivation . 59

4.2.1 Clustering Heuristics . 59

4.2.2 Scheduling . 61

4.3 LUCAS . 64

4.3.1 Algorithm . 64

4.3.2 Algorithmic Complexity . 68

4.4 Experimental Setup . 69

4.4.1 Architecture . 69

4.4.2 Compiler . 70

4.4.3 Evaluation . 70

4.5 Results and Analysis . 71

4.5.1 Performance . 72

4.5.2 Instruction Distribution . 76

4.6 Conclusion . 79

5 CAeSaR 81

5.1 Introduction . 81

5.2 Motivation . 85

5.3 CAeSaR . 89

5.3.1 High Level Overview . 89

5.3.2 CAeSaR Main Body . 89

5.3.3 Compute ICCs . 91

5.3.4 Clustering Heuristic . 92

x

5.3.5 ICC Reuse . 94

5.3.6 Register File Coherence . 95

5.3.7 ICC Reuse Across Scheduling Regions 96

5.3.8 Complexity Analysis . 96

5.4 Experimental Setup . 98

5.5 Results and Analysis . 100

5.5.1 Overview . 100

5.5.2 ICC Overhead . 100

5.5.3 Performance . 103

5.5.4 Phase-ordering . 105

5.6 Conclusion . 106

6 UCIFF 107

6.1 Introduction . 107

6.2 Motivation . 109

6.2.1 Homogeneous vs Heterogeneous 109

6.2.2 Phase Ordering . 110

6.3 UCIFF . 110

6.3.1 Scheduling for fixed heterogeneous processors 112

6.3.2 Scheduling for non-fixed heterogeneous processors (UCIFF) . 113

6.3.3 DVFS region . 121

6.3.4 Algorithmic Complexity . 122

6.4 Experimental Setup . 124

6.5 Results . 125

6.5.1 Accuracy of Frequency Selection 126

6.5.2 UCIFF code quality . 127

6.5.3 UCIFF runtime . 129

6.6 Conclusion . 130

7 Related Work 131

7.1 Instruction Scheduling for VLIW processors 131

7.2 Clustered Architectures . 132

7.3 Scheduling for clusters . 133

7.4 Combined Cluster Assignment & Instruction Scheduling 135

7.5 Heterogeneous Clustered VLIW . 136

7.6 Scheduling for Caches . 137

xi

8 Conclusions and Future Work 141

8.1 Summary of Contributions . 141

8.2 Future Work . 142

8.2.1 Unifying Register Allocation 142

8.2.2 Bigger Regions and Loop Scheduling 143

8.2.3 Hardware Reconfiguration and Scheduling at Run-Time . . . 144

Bibliography 145

xii

List of Figures

1.1 A 2-cluster VLIW architecture. The red arrow shows the Inter-Cluster

Copy (ICC) Latency. 4

2.1 The VLIW architecture. 8

2.2 Priority, ASAP, ALAP and Mobility. Each node in the DFG has a delay

of 1 cycle. 10

2.3 A modern retargetable compiler. 12

2.4 Major target-specific passes. 12

2.5 A Data Flow Graph (DFG) with the nodes tagged with their priority.

All instructions have a latency of 1 cycle (not shown). 13

2.6 Various scheduling regions on a CFG. The region is marked by the

dashed blue lines. The control edges are tagged with their % profile

probability and they are colored accordingly (red is high, black is low).

The single-BB regions are not shown. 16

2.7 A Clustered VLIW architecture with 2 clusters. 18

2.8 Two different ways of treating ICC instructions. 18

2.9 A Heterogeneous Clustered VLIW architecture with 2 clusters. Cluster

0 operates at the maximum frequency, while cluster1 operates at 1/3

of the maximum frequency. 20

2.10 Heuristic values calculated on schedules. 21

3.1 Dynamic schedules on architectures with Load stall semantics of in-

creasing hardware complexity. 29

3.2 The VLIW semantics of a regular long-latency instruction (a) versus a

cache-miss instruction (b) on a Stall-On-Miss architecture. 29

3.3 Two different schedules (a) and (b) under increasing miss conditions.

Schedule (b) (Aligned) exhibits miss-overlapping under heavy miss

conditions (b.iii). 31

xiii

3.4 The instruction schedule of the DFG (a), under baseline (b, d and f)

and Aligned-HLPL Scheduling (c, e and g). The dynamic schedule

in the event of two consecutive Load-misses on a Stall-On-Miss and

a Stall-On-Use architecture is listed in (d and e) and (f and g) for the

Baseline and Aligned-HLPL, respectively. 33

3.5 The instruction schedule of the DFG (a), under baseline (b, d, and f)

and Aligned-LLPL Scheduling (c, e and g). The dynamic schedule

in the event of two consecutive Load-misses on a Stall-On-Miss and

a Stall-On-Use architecture is listed in (d and e) and (f and g) for the

Baseline and Aligned-LLPL respectively. 35

3.6 Overview of scheduling algorithms. 37

3.7 The compilation flow. 45

3.8 Normalized Cycle count of the Baseline list scheduler and the vari-

ous Aligned Scheduling optimizations for both SOM and SOU stall

semantics, over various L1 cache configurations. This is a case study

of the cjpeg benchmark on a range of 2 to 4-issue machines. 47

3.9 L1 cache-miss rate for various L1 cache configurations. This is a case

study of the cjpeg benchmark on a range of 2 to 4-issue machines. . . 48

3.10 L2 cache-miss rate for various L1 cache configurations. This is a case

study of the cjpeg benchmark on a range of 2 to 4-issue machines. . . 49

3.11 Normalized cache-miss overlapping for various L1 cache configura-

tions. This is a case study of the cjpeg benchmark on a range of 2 to

4-issue machines. 50

3.12 Memory Access Time (i.e., the average Load latency) for various L1

cache configurations. This is a case study of the cjpeg benchmark on a

range of 2 to 4-issue machines. 51

3.13 Normalized Cycle count, Miss Rates, Miss overlaps and average Mem-

ory Access Time for 6 of the Mediabench II and the SPEC CINT2000

benchmarks. 54

4.1 A 4-cluster 4-issue clustered VLIW architecture (a). The instruction

schedule in (b) corresponds to the code in (c). 58

xiv

4.2 Qualitative performance comparison of clustering heuristics under in-

creasing inter-cluster latency: Start-Cycle (SC) [27, 41], Critical-Successor

(CS) [96], Completion-weighted Predecessor (CWP) [72], Completion-

Cycle (CC) [27] and the proposed heuristic used in LUCAS. 60

4.3 Motivating example 1. Schedules for the instructions in the Data Flow

Graph (DFG) (a) on a 2-cluster 2-issue clustered architecture, for the

Start-Cycle, Completion-Cycle and LUCAS-Cycle-Congestion clus-

tering heuristics. The inter-cluster delay ranges from 1 to 3 cycles. . . 62

4.4 Motivating example 2. Schedules for the instructions in the Data Flow

Graph (DFG) (a) on a 2-cluster 2-issue clustered architecture, for the

Start-Cycle, Completion-Cycle and LUCAS-Mobility clustering heuris-

tics. The inter-cluster delay ranges from 1 to 3 cycles. Each node in

the DFG is tagged with its mobility number. 63

4.5 The two variants of embedding the clustering heuristic into the instruc-

tion scheduler. The numbers denote the order of execution of each step. 64

4.6 Visualization of the Congestion Threshold. 67

4.7 The fully-connected point-to-point interconnect. 69

4.8 The compilation flow. 70

4.9 Normalized cycles of the 4-issue, 4-cluster configuration for inter-

cluster delay 1 to 4, normalized to Start-Cycle (SC), delay 1. 73

4.10 Normalized cycles of the 8-issue, 4-cluster configuration for inter-

cluster delay 1 to 4, normalized to Start-Cycle (SC), delay 1. 74

4.11 Distribution of instructions on each cluster, for all clustering heuristics

and for delays ranging from 1 to 4. This is for the 4-issue 4-cluster

machine. 77

4.12 Distribution of instructions on each cluster, for all clustering heuristics

and for delay ranging from 1 to 4. This is for the 8-issue 4-cluster

machine and just for the mpeg2 benchmarks. 78

5.1 A 4-cluster 4-issue clustered VLIW architecture (a). The instruction

schedule in (b) corresponds to the code in (c). 82

5.2 Two different ways of treating ICC instructions. 84

5.3 The various compilation pipelines. 86

xv

5.4 Instruction schedules for the Data Flow Graph (DFG) in (f), based on

various scheduling algorithms. The first one (a) is on a monolithic non-

clustered VLIW architecture. The rest are on a clustered architecture:

(b) Decoupled Cluster Assignment and Scheduling, (c) Unified As-

signment and Scheduling (UAS), (d) UAS + ICC-reuse optimization,

(e) CAeSaR (proposed). 87

5.5 The Register File Coherence. 95

5.6 The ICC reuse challenges across scheduling regions. 96

5.7 The compilation flow. 98

5.8 Measurements for the 4-cluster, 4-issue, 1-cycle inter-cluster delay

VLIW machine. 101

5.9 Measurements for the 2-cluster, 4-issue, 1-cycle inter-cluster delay

VLIW machine. 102

5.10 Distribution of original instructions across clusters for both 4-cluster

and 2-cluster machines. 104

6.1 Under-utilized cluster1 can have half the frequency with no perfor-

mance loss and possible energy gains. 109

6.2 The two-phase scheduling of the current state-of-the-art (a). The pro-

posed unified approach (b) is free of this phase-ordering problem. . . 111

6.3 The scheduling problem of misaligned cycle boundaries for the hetero-

geneous processor. 112

6.4 The scheduler’s internal clock period Tsched compared to the periods of

the two clusters Tcl0 and Tcl1, for a homogeneous (a) and a heteroge-

neous (b) architecture. 113

6.5 Overview of the UCIFF gradual hill climbing algorithm for a schedule

that consists of three steps. 115

6.6 The compilation flow. 124

6.7 The Accuracy of the Frequency Selection (Y axis) within the range

from the Oracle (X axis) for Decoupled (Left) and UCIFF (Right).

UCIFF is executed with STEP=8, STEPVAR=2 and NBR=4 127

xvi

List of Tables

3.1 Complexity comparison. 43

3.2 Processor configuration. 45

3.3 Benchmarks . 45

4.1 Processor configuration. 69

4.2 Evaluated schemes. 71

5.1 Complexity of UAS (baseline) and CAeSaR algorithms. 97

5.2 Target Architecture Configuration. 99

5.3 Benchmarks. 99

6.1 Formulas for energy calculation. 120

6.2 Some features of the algorithms under comparison. 126

7.1 Summarized features of LUCAS, CAeSaR, UCIFF and other cluster-

ing schedulers in the literature. 137

7.2 Summarized comparison of memory-aware instruction schedulers for

VLIW. 139

xvii

Chapter 1

Introduction

We are now in the mobile era. With the widespread adoption of mobile devices, high-

performance and low power embedded processors are becoming the focus of the com-

puting industry. Energy consumption in terms of performance per watt has become

a primary design goal. Both architecture and compiler techniques that improve effi-

ciency are the focus of research in both academia and industry.

The compiler’s role in improving performance has recently become particularly

important. In the past, one would get large performance and energy improvements

without changing the software, thanks to advances in silicon scaling. Nowadays, how-

ever, this is no longer true since silicon scaling has got very close to its physical limits

and further improvements are harder and more expensive than ever before. Therefore

any improvements at that level will come from either the hardware design, the micro-

architecture, or the compiler. In contrast to the first two, compiler optimizations require

no additional chip real estate, they do not consume any extra energy at run-time and

they can apply immediately even to existing chips by a recompilation of the workload.

The Very Long Instruction Word (VLIW) design philosophy is about reducing

hardware complexity in the expense of a more advanced compiler. This is nicely sum-

marized by Joseph Fisher in the phrase “A smart compiler and a dump machine” [31].

This design philosophy is particularly important nowadays that energy consumption is

a major design constraint. The compiler back-end for VLIWs offloads code generation

work from the micro-architecture hardware to the compiler back-end. The back-end

tasks are instruction selection, instruction scheduling and register allocation, all of

which are specifically tuned for the target architecture. The VLIW design allows for

simple, more energy efficient, wide-issue designs. However, the performance of such

architectures depends highly on the quality of the code generated by the compiler.

1

2 Chapter 1. Introduction

According to the VLIW design philosophy, the processor hardware is to be kept

simple. Optimizations that can be done in the compiler instead of the hardware, should

be done there, whenever this is practical and beneficial. For example VLIW machines

rely on the compiler to perform instruction scheduling. This is practical because a

large portion of the data dependencies between instructions can be fully analyzed and

determined by the compiler. This includes register dependencies and a part of the

memory dependencies that can be determined with the help of the compiler’s alias

analysis. It is often beneficial too, since compile-time scheduling leads to simpler

hardware designs, with fewer and less complicated hardware interlocks, and with wide

issue widths that can operate at higher clock frequencies and consume less energy.

Therefore, instruction scheduling done at compile time is both beneficial and practical

compared to a hardware-only solution (like that of dynamically scheduled superscalar

processors).

Deciding which micro-architectural tasks should be offloaded to the compiler is

a complicated design trade-off. There are several factors that have to be taken into

account, such as the target operating energy-performance point, the workloads, the

other micro-architectural components used (e.g., the size/type/design of cache) and

others. It is common for all VLIWs to offload instruction scheduling to the compiler,

therefore static scheduling is one of the identifying features for VLIWs.

In this thesis we propose new or we improve existing instruction scheduling op-

timizations following the VLIW design philosophy. We firstly present a scheduling

technique that allows a lightweight VLIW processor without load-use hardware inter-

locks (Stall-On-Miss) to effectively hide cache-miss latencies (Chapter 3). In Chapter

4, we present a high-performance scheduler for clustered VLIWs powered by a novel

clustering heuristic that adapts to a wide range of inter-cluster delays. Next, in Chapter

5 we present a novel high-performance instruction scheduler for clustered VLIW pro-

cessors that caches and reuses data transmitted to clusters, thus decreasing the inter-

cluster communication more than any existing solution. Finally, we present a novel

scheduling algorithm with DVFS capabilities. It accurately determines the voltage-

frequency points of each cluster of a clustered VLIW, while performing instruction

scheduling (Chapter 6).

In the following Sections (1.1, to 1.4) we introduce each of these techniques and

we discuss how they advance the state-of-the-art.

1.1. Aligned Scheduling: Exploiting MLP to hide cache-miss latencies on VLIWs 3

1.1 Aligned Scheduling: Exploiting MLP to hide cache-

miss latencies on VLIWs

Traditional VLIW processors were connected directly to the memory, with no caches in

between. Later, as the gap between logic and memory increased, cache memories were

introduced. Caches, however, lead to statically unpredictable memory latencies, since

a memory access can either be a cache-hit or a cache-miss. With no extra control logic

hardware support, a Load-miss will stall the processor, causing a pause in the com-

putation, degrading performance. For this reason several hardware techniques have

been proposed to overlap computation with outstanding misses, typically for dynam-

ically scheduled processors. Such techniques track the instruction data dependencies

and cause a stall only if the value of the missing load is about to be consumed. These

mechanisms are usually referred to as “load-use interlocks”.

In Chapter 3, we propose a compiler-only approach to improve the performance

caused by cache-misses, without resorting to the use of load-use interlocking. We

call this approach “Aligned Scheduling” since it relies on aligning independent Load

instructions on the same VLIW cycle. The technique targets VLIW processors and

is in harmony with the VLIW design philosophy of performing work at compile-time

rather than at run-time (in hardware). This is the first compiler technique of this nature

that targets VLIW processors with no memory interlocks. The experimental results

show that it manages to improve the performance of the processor significantly and to

bring it closer to the hardware solution, particularly in cases with many cache-misses.

1.2 Latency-adaptive Unified Clustering and Schedul-

ing (LUCAS)

1.2.1 Clustered architectures

Clustered designs for Instruction Level Parallelism (ILP) were introduced as a solution

to the poor performance and energy scalability of wide-issue ILP processors. This

is done by partitioning the design into smaller sections called clusters (as shown in

Figure 1.1). Within the cluster, data transfers between the register file and functional

units are fast and energy efficient, while across clusters there is a performance and

energy penalty. On the contrary, monolithic (non-clustered) architectures have some

4 Chapter 1. Introduction

FU FU FU FU

RF

CLUSTERED VLIWMONOLITHIC VLIW

RF RF

cluster1

FU FU FU FU

ICC Latency

cluster0

ICC

Figure 1.1: A 2-cluster VLIW architecture. The red arrow shows the Inter-Cluster Copy

(ICC) Latency.

bulky resources (such as the register file) that are shared across many functional units

and therefore do not exploit the opportunity to improve performance or to save energy

whenever global communication is not required. A clustered design, on the other hand,

does exactly that as its resources are partitioned into smaller, locally accessible chunks.

Each cluster usually contains a portion of the register file tightly connected to a small

number of other resources (e.g., functional units). In this way any local communication

within the cluster is fast and efficient while any inter-cluster communication comes

at the extra cost, close to that of a monolithic design. It is this partitioning of the

global resources and its localization within a cluster that gives the clustered design an

advantage in both energy and operating frequency [92].

Clustered VLIW processors are designed to be more scalable than their monolithic

counterparts and more energy efficient, while achieving higher operating frequencies

[92]. They operate at an attractive power/performance ratio point. The Texas Instru-

ments C64xx family is an example of a clustered VLIW architecture.

The clustering algorithm, regardless of whether it is implemented in hardware or

in the compiler, makes use of some data-flow information and assigns the instructions

to clusters. The cluster selected is the one suggested by the clustering heuristic, which

has a major impact on performance.

An important parameter of the clustered design is the Inter-Cluster Copy (ICC)

latency. It signifies the time needed for data to be communicated between clusters (red

arrow in Figure 1.1). The longer the ICC latency, the more the penalty of offloading

instructions to distant clusters.

The techniques that follow (Sections 1.2, 1.3, 1.4 and Chapters 4, 5, 6, all target

1.3. Cluster Assignment, Scheduling and Communication Reuse (CAeSaR) 5

clustered VLIW processors.

1.2.2 LUCAS

The Inter-Cluster Copy delay (ICC delay) of a clustered VLIW architecture is an im-

portant parameter. It is the extra latency needed for some cluster to bring in data to

its own register file from a distant one. This is important because it controls how

effectively the clusters can be utilized: a high ICC delay makes it harder for the clus-

ters to be utilized fully, since any communication between the clusters is followed by

additional latency, the ICC delay.

Our target being a statically scheduled architecture, it is up to the instruction sched-

uler, and more specifically to the cluster assignment algorithm, to effectively utilize the

clusters. The scheduler must be aware of the ICC delay to generate an effective sched-

ule. The problem that the scheduler solves is where in space (i.e., cluster) and time

(i.e., cycle) each instruction of the program should be scheduled at such that the final

schedule is of minimum length.

An effective scheduler for clustered VLIW architectures should be capable of gen-

erating good (fast) code no matter the ICC delay. As we show in Chapter 4, however,

the existing scheduling algorithms generate good code for either small ICC delays or

for high ICC delays. As a further complication, the point where the one overtakes

the other is not fixed and it is benchmark dependent. Our solution to this problem

is a novel scheduling algorithm called LUCAS, that is powered by a novel clustering

heuristic that is capable of achieving best performance across a wide range of inter-

cluster delays. A detailed description of LUCAS and comparison against the existing

state-of-the-art is in Chapter 4. It is shown that LUCAS outperforms the existing state-

of-the-art across a wide range of inter-cluster latencies.

1.3 Cluster Assignment, Scheduling and Communica-

tion Reuse (CAeSaR)

As already discussed, the Inter-Cluster Copy delay (ICC delay) of clustered architec-

tures is an important design attribute. ICCs not only add to the latency of computation

that uses data from distant clusters, but also occupy issue slots linked to the ICC units

and the interconnect. The existing state-of-the-art schedulers, do not try to optimize

away the ICCs in any way.

6 Chapter 1. Introduction

In Chapter 5 we propose CAeSaR, an optimized instruction scheduler for clus-

tered architectures, which is particularly effective on architectures with limited ICC re-

sources. CAeSaR is the first scheduler to include a communication re-use mechanism,

such that any data communicated across clusters gets re-used when required, instead of

being re-communicated. The proposed scheme is free from any phase-ordering issues

between ICC-reuse and scheduling as both problems are solved together in a unified

algorithm. As shown in Chapter 5, our scheme outperforms the existing state-of-the-art

across a wide range of benchmarks.

1.4 Unified Clustering, Scheduling and Fast-Frequency

selection for Heterogeneous Clustered VLIW (UCIFF)

Heterogeneous clustered VLIW processors are similar to the standard (homogeneous)

clustered VLIWs, with the main difference being that they allow each cluster to operate

at an individually different frequency-voltage point. This allows for energy efficient

operation as the under-utilized clusters can be slowed down to save energy.

These architectures, being statically scheduled, rely on the compiler to decide on

the operating frequencies. This is because VLIWs have no hardware interlocks to

check the instruction dependencies and to guarantee correct execution at run-time.

Therefore any change in the architecture frequencies (at run-time), not considered by

the scheduler (at compile-time) will most probably lead to incorrect execution.

Existing schemes solve the two problems of i) frequency selection and ii) instruc-

tion scheduling in a decoupled way, usually the first preceding the second. In Chapter 6

we present a novel solution to these problems. We show that the two problems should

be solved together in a unified algorithm in order to get the best results. Our Uni-

fied Cluster-assignment Instruction scheduling and Fast Frequency selection algorithm

(UCIFF) solves these problems together in a unified algorithm. It is shown to outper-

form the state-of-the-art for various energy and performance related metrics and to be

very close to a theoretical oracle solution.

Chapter 2

Background

2.1 VLIW Machine Model

Very Long Instruction Word (VLIW) processors are wide-issue statically scheduled

processors with RISC-style instruction sets (e.g., [17]). Instructions in a single instruc-

tion word execute in parallel and are controlled by a single control flow. Compared to

vector processors (e.g. [48, 71, 81]), VLIW machines are less restrictive as they can

execute instructions of different types in parallel. Similarly to the vector units, the op-

erations are executed in lock-step. Compared to a dynamically scheduled superscalar

processor, the VLIW requires fewer hardware components. It lacks the hardware that

performs dynamic instruction scheduling and interlocking, and therefore: i) it uses less

hardware on the chip, ii) it can achieve a faster clock, iii) it uses less power and iv) it

can achieve larger amounts of ILP [30].

In the past, Multiflow and Cydrome built large VLIW systems: The Cydra-5 by Cy-

drome and Trace 7/200 by Multiflow were introduced in 1987. The Multiflow Trace

28/300 [57] could issue up to 28 operations per cycle. The Philips (later NXP) Trime-

dia, introduced in 1996, was the first VLIW microprocessor and is still in used today

(the PNX1005). VLIWs have been used as general purpose processors in the 1990s.

Transmeta’s Crusoe [20, 47] was a VLIW processor with an x86 front-end that com-

peted with Intel’s and AMD’s pure x86 processors. A VLIW-like architecture (with

many unique dynamic hardware additions for run-time optimizations) is also used in

servers (Intel’s Itanium/Itanium2 EPIC architecture [63, 87]). Today, VLIWs are still

in wide use in embedded systems like the STMicroelectronics ST231, the Texas In-

struments C6xx family, and the Fujitsu FR-V. The Intel Itanium is still in production

in 2013. AMD’s GPUs are built with VLIW units (AMD’s VLIW-5 architecture on

7

8 Chapter 2. Background

InstrA

InstrB

InstrC

InstrD

InstrE

InstrF

FU FU FU FU

b. Instr. Sequence c. VLIW schedule

1
0

2
3

...
4

InstrA InstrC
InstrB InstrD InstrE
InstrF

Register File

InstrA InstrC NOP NOP

a. VLIW Architecture

Figure 2.1: The VLIW architecture.

Radeon GPUs and in APUs [11]).

Being statically scheduled, VLIWs rely on the compiler back-end, and more specif-

ically on the instruction scheduler, to perform the performance-critical optimization of

instruction scheduling. From the scheduler’s standpoint, the VLIW architecture looks

like the one in Figure 2.1.a. It is composed of a register file which is shared between

multiple Functional Units (FU). We use the term “FU” to refer to a unit that executes

a machine instruction of some type. In practice, it is often the case that an FU can

execute instructions of several types.

In the VLIW machine model, all Functional Units execute in parallel in a synchro-

nized fashion. The VLIW FUs are fed with a single very long VLIW instruction that

contains multiple FU instructions, one for each FU. These instructions that map to a

specific FU are usually referred to as “operations” in the literature.

The scheduler’s job is to transform the original program’s instruction sequence (as

in Figure 2.1.b) into a parallel schedule as shown in Figure 2.1.c. The parallel schedule

on VLIW processors, reduces the execution time of the program.

2.2. Basic Terminology 9

2.2 Basic Terminology

This section introduces some of the basic concepts that are widely used throughout the

thesis. The concepts are introduced and discussed in several compiler books [4, 19, 32,

42].

A program is an ordered sequence of instructions. For example instructions i, j and

k in this order form a program. When we refer to instructions of a program we usually

refer to the instructions in the Intermediate Representation (IR) (see Section 2.3) of the

compiler which have the same semantics as the original program in the source-level

language.

A Basic-Block (BB) is a sequence of consecutive instructions such that control can

only enter through the first instruction in the BB and control can only leave at the last

BB instruction without halting or branching in between [4].

The Control Flow Graph (CFG) is a directed graph whose nodes are the pro-

gram’s Basic-Blocks and its directed edges represent which BBs can be followed by

which BBs (control flow).

The Data-Flow Graph (DFG), or Data Dependence Graph (DDG) of a BB is a

directed acyclic graph the nodes of which map directly to the program (or intermediate

representation) instructions and the directed edges denote an ordering between the

nodes that must be maintained in order to maintain the program semantics. An example

DFG is shown in Figure 2.5.

A directed edge between two nodes represents a data dependence between them.

Data dependencies are of several types:

• Flow dependence (or True or Read-After-Write): This describes a producer-

consumer relationship between the two instructions. The first instruction writes

a value that the second instruction reads. For example there is a True dependence

A → f B between instructions A: x=... and B: ...=x.

• Antidependence (or Write-After-Read): This dependence is caused by an in-

struction writing to a value that is read by some instruction before it. It is usually

caused by re-using the same location to store data. For example there is an An-

tidependence A →a B between A: ...=x and B: x=... .

• Output dependence (or False or Write-After-Write): This dependence is

caused by both instructions writing to the same value. For example there is

an output dependence A →o B between A: x=... and B: x=... .

10 Chapter 2. Background

The edges of the DFG are usually annotated with i) the type of the dependence and

ii) the latency required between the instructions so that the second can safely start exe-

cuting after the first one has completed. It is common that the majority of instructions

in an ISA have a latency of 1 cycle, therefore the latencies are usually omitted.

We use lower case letters for instructions and higher case letters for DFG nodes. As

already discussed, there is a unique mapping between the DFG nodes and the program

(or intermediate representation) instructions. For example instruction i corresponds to

node I in the DFG only and node I corresponds to i only.

A

B

C

E

F

G

H

D

the earliest scheduling cycle
ASAP "as soon as possible"

ALAP "as late as possible"
the latest possible scheduling cycle
such that a valid schedule that
completes in L cycles is feasible

MOBILITY= ALAP−ASAP

0
0

1

2

3

4

1

2

3

4

1

2

0
3

3

4

ASAP:
ALAP:

0

0

0

3

2

3

0

0

4

3

2

1

0

1

0

1

: PRIORITY
: MOBILITY

L=5

PRIORITY is the longest path to roots

on a datapath with infinite resources.

Figure 2.2: Priority, ASAP, ALAP and Mobility. Each node in the DFG has a delay of 1

cycle.

• A Data-Flow immediate successor node of node P is a node S in the DFG that

is connected to P with an edge directed from P to S. For example in the DFG of

Figure 2.2, B and F are both immediate successors of A.

• A Data-Flow immediate successor instruction of an instruction p is an instruc-

tion s that its DFG node S is a Data-Flow successor node of P.

• A Data-Flow immediate predecessor node of node S, is a node P in the DFG

that is connected to S with an edge directed from P to S. For example in the DFG

of Figure 2.2, all D, F and G are immediate predecessors of E.

• A Data-Flow immediate predecessor instruction p of an instruction s is an

instruction that its DFG node P is a Data-Flow predecessor node of S.

2.2. Basic Terminology 11

• If node S is reachable from P then P is a predecessor of S and S is a successor

of P. For example in the DFG of Figure 2.2, D is a successor of A and A is a

predecessor of D.

• Nodes A and B are Data-Flow sibling nodes if they have a common Data-Flow

immediate predecessor node. For example in the DFG of Figure 2.2 B and F are

siblings.

• Instructions a and b are Data-Flow siblings if their corresponding DFG nodes A

and B are sibling nodes.

The nodes of a DFG are usually annotated with numbers that characterize the nodes

and are particularly useful during instruction scheduling. The most frequently used

ones are:

• Priority of node N is the maximum latency-weighted path length from N to any

of the roots of the DFG. The length between two connected nodes A and B, where

the edge points to B is equal to the latency of the source instruction (in this case

instruction a). Other priority schemes have also been proposed in the literature

but this is one of the most popular ones.

• ASAP (As Soon As Possible) of node N is the earliest cycle that node N can

be scheduled on a data-path with infinite resources. The ASAP number is only

restricted by the data dependencies and not by the resources of the target proces-

sor.

• ALAP (As Late As Possible) of node N is the latest possible scheduling cy-

cle such that a valid schedule is feasible that completes in as many cycles as a

schedule with infinite resources.

• Mobility of node N is equal to ALAP-ASAP of node N. This corresponds to the

cycles that can be the execution of N can be delayed, after it becomes ready to

schedule, without this guaranteeing a longer schedule.

An example that shows the Priority, ASAP, ALAP and Mobility values on a small DFG

is shown in Figure 2.2.

12 Chapter 2. Background

2.3 Compiler Structure

The compiler’s job is to transform a source-level program into an assembly-level pro-

gram of a specific Instruction Set Architecture (ISA) that will run on the target pro-

cessor. Modern compilers can transform source-level programs written in a large set

of languages and can generate assembly code of a large set of ISAs. To do that they

are equipped with multiple front-ends (one per language) and multiple back-ends (one

per target ISA) (Figure 2.3). Such compilers are usually referred to as retargetable

compilers. GCC [1] is an example of such a compiler.

IR
 P

a
ss

 1

IR
 P

a
ss

 2

IR
 P

a
ss

 N
...

Intermediate Representation
Optimization Passes

...

Front−End 1

Front−End 2

Front−End 3

Front−End L

Language 1

Language 3

Language 2

Language L

...

Front−Ends

...

Back−End 1

Back−End 2

Back−End B

Back−Ends

ISA 1

ISA 2

Assembly

Source Languages

COMPILER

...

ISA B

Figure 2.3: A modern retargetable compiler.

To minimize the engineering effort required to build such systems, the front-ends

and back-ends are connected with a common Intermediate Representation (IR) lan-

guage (Figure 2.3). In this way the compiler developer of a new back-end has to focus

only on mapping the IR to the target ISA. Similarly a front-end developer has to work

only on the translation of the language to the IR.

An optimizing compiler is also capable of optimizing the code it generates. It is

therefore equipped with several optimization passes which perform optimizations at

the IR level (Figure 2.3). The GCC compiler [1] is structured in a similar way.

In
st

ru
ct

io
n

S
el

ec
ti

o
n

In
st

ru
ct

io
n

A
ll

o
ca

ti
o

n

R
eg

is
te

r

S
ch

ed
u

li
n

g

... ...

Figure 2.4: Major target-specific passes.

2.4. Instruction Scheduling 13

This thesis is focused on target-specific optimizations in order to exploit target-

specific features of the architecture. The proposed optimizations are therefore placed

among the target-specific optimization passes. These passes are target dependent but

operate on a common intermediate representation language (in GCC it i the RTL IR).

The major target-specific passes are shown in Figure 2.4. They are usually executed in

the order shown.

2.4 Instruction Scheduling

A

B

C

D

F

E

0

1

2 2

1 1

Figure 2.5: A Data Flow Graph (DFG) with the nodes tagged with their priority. All

instructions have a latency of 1 cycle (not shown).

Instruction scheduling is a compiler optimization that operates at the lower IR level

of the compiler. Instruction scheduling of an acyclic code region (that does not contain

loops) is traditionally done by a list scheduler. The list scheduling algorithm works

as shown in Algorithm 2.1. Its input is a Data Flow Graph (DFG) and its output is

scheduled code. An example DFG is shown in Figure 2.5. In short it follows the

following steps:

1. Walk the dependence graph and prioritize the instruction nodes (usually based

on their height from the roots of the DFG, as discussed in Section 2.2) (Algorithm 2.1

line 6). The priorities are next to each instruction node in Figure 2.5.

2. While there are unscheduled instructions, form a list of ready instructions (in-

structions with scheduled immediate predecessors or with no predecessors at all) (Al-

gorithm 2.1 lines 8 - 9).

3. Sort the ready list based on the priority of each instruction (Algorithm 2.1 line

10).

14 Chapter 2. Background

Algorithm 2.1: Simplified List Scheduling.

1 /* List Scheduling:

2 In1 : DFG

3 Out : Schedule */

4 list_schedule (DFG)

5 {

6 Walk the DFG and prioritize the nodes

7 CYCLE = 0

8 while (exist unscheduled instructions):

9 READY_LIST = get list of ready instructions of the DFG

10 sort READY_LIST based on priority

11 for INSTR in prioritized READY_LIST:

12 if (can issue INSTR on CYCLE):

13 Issue (INSTR , CYCLE)

14 else

15 Skip INSTR

16 Remove INSTR from READY_LIST

17 CYCLE ++

18 }

4. Start from the instruction with the highest priority and try to issue it on the

current cycle (Algorithm 2.1 lines 11-13). If it cannot be issued due to resource con-

straints, then skip it (line 15) and try the next instruction in the ready list. In any case

remove the current instruction from the ready list (line 16). Checking whether the in-

struction can be issued under the current resource constraints can be either simple (a

lookup of a reservation table) on architectures with regular structural hazards, or more

advanced (using finite-state automata [8, 62, 67, 76]) on architectures with irregular

hazards.

5. Once all the instructions in the ready list have been tried increase the current

cycle by 1 (Algorithm 2.1 line 17).

The end result is a schedule like the one in Figure 2.1.c. Compared to the serial exe-

cution on a scalar processor, the VLIW in this example achieves twice the performance

on the code that corresponds to this DFG (Figure 2.1.b).

2.5. Scheduling Regions 15

2.5 Scheduling Regions

Originally instruction schedulers used to operate at the Basic-Block (BB) level. Recall

from Section 2.2 that a Basic-Block is a sequence of instructions with a single entry and

single exit. This means that the instructions in the body of a BB cannot be the target

of branch instructions (no side entries), nor can there be any control flow instructions

within it apart from the last instruction (no side exits). A scheduler working at the BB

level has a limited scope since it has few instructions available to operate on. Recall

that the scheduler’s input is the Data Flow Graph of the region considered. If the region

is a single BB, then the ready instructions at each cycle can only be from within that

BB only. A BB-level scheduler schedules one BB after the other, never scheduling

instructions across BBs.

Several ways of improving the scope of the instruction scheduler have been pro-

posed. All of them share the idea of forming larger blocks composed of an acyclic

section of the Control Flow Graph (CFG) with more than a single BB. Such blocks are

usually referred to as scheduling regions. After the regions are formed, scheduling is

applied on the large region as a whole. What differentiates these approaches is the type

of regions considered:

• Traces [29] (Figure 2.6.a) were the first proposed scheduling region in the lit-

erature. A Trace is a sequence of basic-blocks in the CFG that follows a linear

high-probability acyclic path. Both multiple-entries and multiple-exits are al-

lowed. Selecting the right path for the Trace is vital. The path is chosen using

profiling control-flow information such that there is high probability that all BBs

in the Trace are executed in each run. The scheduler has to make sure that the

inter-BB code movement is allowed and it has to emit compensation code in

several cases, to maintain the code semantics.

• Superblocks [39] (Figure 2.6.b) are Traces but with the added restriction that

they are single-entry, meaning that they do not allow branches to within the

region except to the first instruction. Just like Traces, Superblocks are multiple-

exit linear regions that are formed using profiling control-flow information.

• Hyperblocks [61] (Figure 2.6.c) are similar to Superblocks but allow for control-

flow which can be folded with if-conversion (e.g., the control flow for BB1 and

BB2 in Figure 2.6.c can be removed).

16 Chapter 2. Background

a. TRACE
P

ro
fi

le
−

D
ri

v
en

N
o
t

D
ri

v
en

 b
y
 P

ro
fi

li
n

g
c. HYPERBLOCK

BB1

BB0

90

99 1

90

BB2

BB3

BB4 BB5

10

10

BB1

BB0

90

99 1

90

BB2

BB3

BB4 BB5

10

10

BB1

BB0

90

99 1

90

BB2

BB3

BB4 BB5

10

10

d. EBB e. GLOBAL

BB1

BB0

90

99 1

90

BB2

BB3

BB4 BB5

10

10

BB1

BB0

90

99 1

90

BB2

BB3

BB4 BB5

10

10

b. SUPERBLOCK

Figure 2.6: Various scheduling regions on a CFG. The region is marked by the dashed

blue lines. The control edges are tagged with their % profile probability and they are

colored accordingly (red is high, black is low). The single-BB regions are not shown.

2.6. Clustered VLIW Machine Model 17

• Extended Basic Blocks [66] and Treegions [35] (Figure 2.6.d) are tree-like non-

linear single-entry multiple-exit regions. No profiling is required to form them,

since instead of selecting a CFG path, they instead include BBs of all paths.

Such regions are particularly effective on irregular workloads (that is when the

control flow cannot be predicted) being executed on wide-issue processors.

• Global code scheduling techniques [64, 65, 70] (Figure 2.6.e) operate on larger

non-linear acyclic regions across which they apply several code motion rules

and scheduling. The region formation is not guided by profiling. Similarly to

EBB schedulers, global schedulers are effective on irregular workloads being

executed on wide-issue architectures.

Selecting which region a scheduler should operate on is a complicated trade-off

between i) the type of workloads to be compiled (regular or irregular), ii) the type

of the target architecture (e.g., Issue-width, support for predicated execution) iii) the

engineering effort of implementing the scheduler (simpler/smaller regions are easier)

and iv) the software development cycle (e.g., whether profiling is part of it). Industrial-

grade compilers usually give the user an option to choose which scheduler to use.

As the optimization level (-O flag) increases, usually more aggressive schedulers are

selected that operate on larger regions.

The region type and size is usually orthogonal to the main structure of the schedul-

ing algorithm and the heuristics used in it. Therefore most of the improvements in the

scheduling techniques for one scheduler are easily transferable to others operating on

other regions.

2.6 Clustered VLIW Machine Model

A clustered VLIW is a VLIW processor that is designed for scaling to large issue

widths without this affecting its operating frequency. It is a well known fact that the

issue width of a processor does not scale to large numbers [15]. The reason is that

increasing the issue width adds extra ports to the register file, which are practically

limited in number and increase the clock cycle. To make the VLIW more scalable,

the processor’s Register File (RF) is partitioned into smaller chunks with limited con-

nectivity to the functional units. Only the units that are private to a partition of the

register file can directly access it. A cluster contains a partition of the register file and

its private functional units. Accessing a remote partition of the register file is subject

18 Chapter 2. Background

RF RF

cluster1

FU FU FU FU

cluster0

ICC

Figure 2.7: A Clustered VLIW architecture with 2 clusters.

ICCU ICCU

ICC ICCINSN INSN

ICCU ICCU

or ICC
INSN INSN

or ICC

FU FU

4 units

2 issue slots

b. Clustered VLIW with shared ICC slots
This increases the burden on the code
generator

FU FU

4 units

4 issue slots

a. Clustered VLIW with separate ICC slots
This requires a large issue width

Figure 2.8: Two different ways of treating ICC instructions.

to additional latency and requires special Inter-Cluster copy instructions. This design

ensures the frequency and energy scalability to large issue widths. A high-level view

of the clustered architecture is shown in Figure 2.7.

The clusters are connected through scalable point to point links. In Figure 2.7, the

communication between the clusters takes place through the Inter-Cluster-Copy (ICC)

unit. This unit executes inter-cluster copy instructions that move data from the register

file of one cluster to the register file of another. For example if the register file of

cluster 0 contains registers 0 to 31 and the register file of cluster 1 contains registers 32

to 63, then an ICC could be: “r41 = r13”. This would copy the contents of r13 into

r41. The latency of the ICC instruction is often higher than the fastest FUs.

The term inter-cluster communication bandwidth (or Inter-Cluster Copy bandwidth,

or ICC bandwidth) refers to the maximum number of simultaneous ICCs that the ar-

2.7. Heterogeneous Clustered VLIW 19

chitecture can handle. There are several factors that can control the ICC bandwidth:

1. The register file ports. As with regular FUs, each additional ICC unit increases

the number of register file ports.

2. The issue width. An ICC instruction looks like a regular instruction, therefore

it has to pass through the processor front-end, similarly to regular instructions.

Increasing the ICC bandwidth, increases the issue width by an equal amount.

This is shown in Figure 2.8.a. This model is used in Chapters 3, 6 and 4.

If ICC instructions are allowed to share issue slots with other instructions (as

in Figure 2.8.b), then the issue width does not necessarily have to increase, but

there are scheduling challenges that are considered in Chapter 5.

3. The scalability of the interconnect. This could become a major factor for archi-

tectures with many clusters. In practice, the clusters are very few.

In this thesis we assume a fully-connected interconnect, meaning that each cluster

is a neighbor with every other, and therefore the communication latency is uniform,

no matter which cluster is accessed. This model is implementable in practice since the

number of clusters is usually very small.

2.7 Heterogeneous Clustered VLIW

A variant of the clustered VLIW architecture described in Section 2.6 is the heteroge-

neous clustered VLIW. This design allows each cluster to operate independently at its

own frequency and voltage (Figure 2.9). This allows for a fine-grain DVFS control at

the cluster level and can lead to significant energy savings since underutilized clusters

can be set to operate at lower frequencies.

These architectures are statically scheduled and have no hardware interlocks to

enforce the instruction data dependencies. Therefore controlling the frequency of each

cluster can only be done in collaboration with the mechanism that maintains the code’s

data dependencies, which in this case is the instruction scheduler. The scheduler has to

be fully aware of the cluster frequencies at any given point in order to generate correct

code. Chapter 6 focuses on optimized instruction scheduling for such architectures.

20 Chapter 2. Background

Freq FreqRF RF

cluster1

FU FU FU FU

cluster0

ICC

Figure 2.9: A Heterogeneous Clustered VLIW architecture with 2 clusters. Cluster 0

operates at the maximum frequency, while cluster1 operates at 1/3 of the maximum

frequency.

2.8 Cluster Assignment

The compiler of a clustered VLIW architecture has the additional task of assigning

instructions to clusters. This is done by the cluster-assignment algorithm, which is

guided by a clustering heuristic. Cluster assignment can either be done within the

instruction scheduler, or as a separate back-end pass.

In this section we present the state-of-the-art clustering heuristics which are imple-

mented in various clustering algorithms.

Start-Cycle (SC): Several of the existing combined cluster-assignment and instruc-

tion scheduling schemes [40, 41] make use of the same clustering heuristic. It is the

resource-constrained earliest schedule cycle heuristic also known as the Start-Cycle. In

more detail, it returns the earliest cycle that an instruction can be scheduled at on any

given cluster, taking into account: 1) the scheduling cycle of its data-flow immediate

predecessors (Algorithm 2.2 line 11), 2) the instruction latency of its data-flow im-

mediate predecessors and (Algorithm 2.2 line 11) 3) the inter-cluster latency between

the cluster of the immediate predecessor and the cluster under consideration (Algo-

rithm 2.2 line 10). Finally the resource constraints (issue-slot occupancy) is taken into

account (Algorithm 2.2 lines 14-15).

Two examples that visualize how the Start-Cycle heuristic works are shown in Fig-

ure 2.10.b and Figure 2.10.c in red color. Both examples show the heuristic values of

instruction B for both CL0 and CL1, right after instruction A has been scheduled at

CL0 in cycle 0. Figure 2.10.b shows that the Start-Cycle of B on CL0 (denoted by

(B,CL0)) is 1, whereas the Start-Cycle of B on CL1 (B,CL1) is 2. Similarly, in Fig-

2.8. Cluster Assignment 21

X Instruction node
��
��
��
��Occupied issue slot

by some instruction
Free issue slot

X Occupied issue slot

A

B

a. Part of a

Data Flow Graph

(DFG)

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����
����

����
����
����
����

CL0

A0

1

2

3

4

CL1

B

B

c. Resource constrained

b. Latency constrained

CL0

A0

1

2

3

4

CL1

Start−Cycle (B, CL1)

Start−Cycle (B, CL0)

B

B

True dependence

Start−Cycle (B, CL1)

Completion−Cycle (B, CL0)
Completion−Cycle (B, CL1)

Completion−Cycle (B, CL0)

Start−Cycle (B, CL0)

Completion−Cycle (B, CL1)

Figure 2.10: Heuristic values calculated on schedules.

ure 2.10.b, where the shaded boxes represent occupied issue slots (instructions already

scheduled), the Start-Cycle of B on CL0 is 3 and on CL1 is 2.

The Start-Cycle heuristic spreads the instructions across the clusters in an aggres-

sive and greedy way. Each and every instruction gets scheduled on the cluster where

it will execute the earliest. As shown in Section 4.2, this strategy proves to work best

on low inter-cluster communication latencies. The problem is that the performance

degrades linearly with an increasing inter-cluster latency.

Completion-Cycle (CC): The Completion-Cycle heuristic ([26, 57]) is a more

conservative clustering heuristic compared to the Start-Cycle, with better performance

as the inter-cluster latency increases. It distributes the instructions only if it is guaran-

teed that they will not cause a slow-down at that scheduling point.

It works by calculating the Start-Cycle and adds to it the latency of the instruction

and the latency until this instruction’s data is sent over to its earliest data-flow imme-

diate successor (Algorithm 2.3). The first implementation of the Completion-Cycle

heuristic was in the BUG algorithm [26]. In that algorithm a bottom-up pass on the

DFG was required to propagate any known cluster numbers (due to live-out restric-

tions or due to resource constraints) towards the top. For example if a floating point

22 Chapter 2. Background

Algorithm 2.2: Start-Cycle heuristic.

1 /* Start-Cycle Heuristic.

2 In1 : Instruction INSN under consideration

3 In2 : The CLUSTER under consideration

4 In3 : The DFG

5 Out : The Start-Cycle value */

6 start_cycle (INSN , CLUSTER)

7 {

8 I = 0

9 for PRED in INSN’s immediate predecessors :

10 DST = inter -cluster -distance (PRED.cluster , CLUSTER)

11 LATENCY_AWARE_SC = PRED.cycle +PRED.latency +DST

12 /* Increase cycle until we get a free resource*/

13 CYCLE = LATENCY_AWARE_SC

14 while reservation_table_not_free (CLUSTER ,CYCLE):

15 CYCLE ++

16 RESOURCE_AND_LATENCY_AWARE_SC = CYCLE

17 SC [I++] = RESOURCE_AND_LATENCY_AWARE_SC

18 return MAX of all SC[]

19 }

2.8. Cluster Assignment 23

instruction could only be executed on a specific cluster with floating point support,

then the cluster number for that instruction was set during the bottom-up pass and was

propagated towards the top of the DFG. In the context of cluster assignment taking

place within the instruction scheduler (i.e. a unified cluster-assignment and scheduling

algorithm) however, the code is scheduled top-down only, therefore the cluster num-

ber of the DFG immediate successors of an instruction is not known (and defaults to

zero). The Completion-Cycle heuristic used in the context o the instruction scheduler

is shown in Figure 2.10.b and Figure 2.10.c in green color.

Critical-Successor (CS): A more recently introduced clustering algorithm was

presented in [96]. The clustering heuristic introduced by it is based on the observation

that when a data-flow sibling instruction node has been already assigned to a cluster,

then it is highly probable that there exists an immediate successor of it that is also a

highly critical immediate successor of the current instruction node. In this case the

clustering heuristic should select the cluster which achieves the best start-cycle, not of

the current instruction but of the critical-successor node instead. To be more precise,

the Critical-Successor start-cycle is selected only if the Critical-Successor start-cycle

of one of the clusters is better by a large margin than the other clusters. The heuristic

defaults to standard Start-Cycle if no clear winner cluster has been found. The CS

heuristic exhibits similar behavior to SC with respect to the increasing inter-cluster

delay, mostly due to the fact that it is built upon the Start-Cycle heuristic.

Algorithm 2.3: Completion-Cycle heuristic.

1 /* Completion-Cycle Heuristic

2 In1 : Instruction INSN under consideration

3 In2 : The CLUSTER under consideration

4 In3 : The DFG

5 Out : The completion cycle value */

6 completion_cycle (INSN , CLUSTER)

7 {

8 I = 0

9 START_C = start_cycle (INSN , CLUSTER)

10 for SUCC in INSN’s immediate successors:

11 DIST = inter -cluster -distance (SUCC.cluster , CLUSTER)

12 CC [I++] = START_C + DIST

13 return min of all CC[]

14 }

15 }

24 Chapter 2. Background

Completion Weighted Predecessor (CWP): This is one of the heuristics proposed

in the first Unified Assignment and Scheduling (UAS) algorithm [72]. It assigns a

weight to each cluster, based on the ready cycle of the immediate predecessor (in that

cluster) of the instruction being scheduled. For example if instruction c has two data-

flow immediate predecessors a and b, with a assigned to cluster 0 and ready at cycle

3 and b assigned to cluster 1 and ready at cycle 5, then the CWP heuristic will give a

higher priority to cluster 1 since b becomes ready later than a. The idea is that a we

should assign the current instruction on the same cluster as the immediate predecessor

that generates its output the latest, since if we don’t do so there might be an extra

inter-cluster latency on top of the latest immediate predecessor. The semantics of this

heuristic are very close to those of the Start-Cycle heuristic and its performance is

almost identical to SC (see Chapter 4, Section 4.5).

All of the above heuristics are greedy and are calculated once on a single top-down

walk of the DFG with no backtracking. Therefore they cannot guarantee a globally

optimal solution.

2.9 Load Scheduling

Load instructions have unpredictable latency. The Load latency varies significantly

depending on the cache level where the access hits and the DRAM access time if all

it misses in all cache levels. It can be as low as a few cycles and as high as several

hundred cycles (the latency of the main memory). The latency of a Load depends not

only on the program semantics but also on the micro-architecture setup. Factors such

as the cache configuration (e.g., size, associativity, block size, number of cache levels),

the use of data pre-fetchers, the sharing of the cache with other threads, all affect the

cache accesses.

The Load latency is known at run-time but an instruction scheduler requires in-

struction latency knowledge at compile time. In the absence of accurate techniques

to predict the Load latencies, instruction schedulers typically consider a Load latency

equal to a cache hit or a cache-miss or something in between. Any of these options

have their merit:

• Cache hit: In micro-architectures with i) balanced sized cache memories, ii)

support for preventing cache-misses (e.g., data pre-fetchers), or iii) support for

hiding cache latencies (e.g., out-of-order execution), the majority of Loads have

2.9. Load Scheduling 25

a low latency. Therefore an instruction scheduler that treat Loads as instructions

with latency equal to that of a cache hit, generate good schedules.

• Cache-miss: In micro-architectures with i) small caches and ii) no cache-miss

preventing techniques and iii) no cache latency hiding techniques, Load instruc-

tions have a high latency. In some cases even if there is hardware support for all

of the above, the application access patterns are such that the cache memories

are of little use. In either of these cases cache-misses are common. Therefore

an instruction scheduler should treat Loads as higher-latency instructions and it

should try to hide the Load latency by scheduling independent instruction after

it.

• In between: In the general case the average Load latency is between that of a

hit and a miss. A scheduler that treats Loads as neither hits nor misses but in

between, is optimized for the average case.

The above techniques are designed for architectures with hardware Load-Use in-

terlocks. This means that if a Load is a miss, then the processor can keep on executing

independent instructions until an instruction that uses the missing value is encountered.

These techniques aim at placing the right amount of independent instructions after the

Load such that a Load miss latency does not get noticed (i.e., the processor does not

stall). Determining the Load latency is either done with static approaches (e.g., based

on the available ILP [43]) or with profiling [54].

In absence of Load-Use hardware interlocks (in lightweight embedded processors),

the processor stalls upon any Load miss until it gets serviced. This happens without

considering the instructions that follow it (whether they use the loaded value or not).

Therefore specialized instruction scheduling techniques are required to make up for the

lacking hardware support. Chapter 3 proposes such a scheduling technique, specific to

VLIW processors without Load-Use hardware interlocks.

Chapter 3

Aligned Scheduling: Exploiting MLP to

hide cache-miss latencies on VLIWs

This chapter presents Aligned Scheduling, a novel instruction scheduling algorithm

for monolithic VLIW processors. Simple VLIW processors with no dedicated control

logic in hardware for Load-use interlocks are very susceptible to cache-misses, since

they cannot effectively overlap computation with cache-misses. Aligned Scheduling is

a VLIW-specific technique that generates optimized code for such architectures, im-

proving their performance and bringing it closer to that of architectures with hardware

support.

3.1 Introduction

Statically scheduled processors, are based on simpler, smaller and more energy ef-

ficient hardware designs than their dynamically scheduled counterparts. VLIW pro-

cessors, which are both statically scheduled and wide-issue ILP processors, combine

the hardware simplicity and energy advantage of statically scheduled processors with

the performance of wide-ILP processors, thus operating at a good energy-performance

point [30]. Since they are statically scheduled, VLIWs rely on the compiler to generate

high performance code. Instruction scheduling algorithms re-arrange the instructions

of the input program to hide pipeline latencies. Schedulers, for VLIW processors in

particular, express instruction level parallelism (ILP) explicitly in long VLIW words.

VLIW processors are wide-issue statically scheduled processors and are designed

with hardware simplicity in mind. This design goal however, comes at a cost: VLIW

processors are more sensitive to dynamic latencies triggered by micro-architectural

27

28 Chapter 3. Aligned Scheduling

events, such as cache-misses, than their dynamically scheduled counterparts. This is

because a traditional VLIW processor has no Load-use hardware interlocking and thus

comes to a complete halt upon a cache-miss caused by any instruction in the long

instruction word. Therefore, even if there exist instructions that could execute while

the miss is being serviced, they do not do so because the VLIW hardware does not

allow it. We refer to these VLIW cache-miss semantics as Stall-On-Miss (SOM). An

example of this is shown in Figure 3.1, where the Data Flow Graph (DFG) (Figure

3.1.a) is scheduled as in Figure 3.1.b and the SOM semantics can be observed in Figure

3.1.c.

Performance can be improved once we deviate from the VLIW design philosophy

and introduce data hazard detection in hardware. This limits the processor stalls to the

cases when a VLIW instruction tries to use data that is not available (brought in by

the Load-miss). We refer to this model as Stall-On-Use (SOU) (Figure 3.1.d). This

requires the use of Load-use hardware interlocking. In this model, the long instruction

words remain intact and the dependencies are tracked at the VLIW word level.

If we apply a full-blown register scoreboarding in hardware, we can break down

the instruction words into individual instructions and we can allow each instruction

to issue and stall independently of the others (Figure 3.1.e). This allows for optimal

pipeline throughput as the execution only stalls when dictated by the data dependen-

cies. This approach, however, requires hardware components that are normally found

in dynamically scheduled superscalar processors, thus deviating from the VLIW de-

sign concept of keeping the hardware simple. This is the reason why most VLIW

processors are designed to be either SOM or SOU. In our work we only consider the

SOM and SOU models where the hardware is simpler and investigate how the compiler

can better cope with these simple models.

An architecture with SOU semantics requires Non-Blocking caches [49] to func-

tion optimally. These caches are equipped with a simple hardware mechanism that al-

lows them to resolve multiple misses simultaneously. Their impact on performance on

dynamically scheduled processors is significant since they decrease the pipeline stalls.

The performance improvement however, on a VLIW processor with SOM semantics

is not as impressive under existing instruction schedulers.

Traditionally instruction schedulers required a complete knowledge of the target’s

underlying architecture, such as the functional unit types, their latencies, the bypass

circuits, the register file size etc. Meanwhile the schedulers have had little knowl-

edge of performance-critical micro-architectural resources, such as the cache memo-

3.1. Introduction 29

G

FH

F

1 B H

2 C G

0 A

3 D

4 E

1

0 A F

2

D

E

C G

B H3

4

5

6

S
T

A
L

L

S
T

A
L

L

B H

D

E

C G

0 A F

2

3

4

5

1

F

H

GD

E

C

Flow Dependency

Load Hit

Non−Load instruction

Load−Miss

A

B

C

E

b. Cache Hit

D

c. Stall−On−Miss (SOM) d. Stall−On−Use (SOU) e. Full Scoreboard

0 A

2

3

4

1 B

a. DFG

Increasing Hardware Complexity

Figure 3.1: Dynamic schedules on architectures with Load stall semantics of increasing

hardware complexity.

B

C

D

long−latency A with B,C,D

a. Execution overlap of b. No execution overlap of

Load−Miss A (only B)

C

B

DA

E

DFG

C

B

D
E

E

Load instruction Load−Miss instructionNon−Load instruction
Or Cache−Hit

0

1

2

A

3

B0

1

2

3

4

A

S
T

A
L

L

D

C
E

DFG

A

Stall−On−Miss

Figure 3.2: The VLIW semantics of a regular long-latency instruction (a) versus a cache-

miss instruction (b) on a Stall-On-Miss architecture.

ries. There are several reasons for this. Firstly, the scheduler is supposed to operate

at the architectural abstraction layer. Secondly, micro-architectural resources, such as

cache memories, exhibit unpredictable dynamic (run-time) behavior, which is hard for

the scheduler to estimate.

Most schedulers can effectively deal with regular long-latency instructions, such as

integer division. They try to hide long latencies by executing other low-latency instruc-

tions in parallel. Existing instruction schedulers consider Load instructions as regular

instructions of some latency: either low-latency (cache-hit), high-latency (cache-miss)

or something in between. This effectively changes how the scheduler treats the Loads:

as hits, misses or in between. This approach works fine for dynamically-scheduled

processors. The Stall-On-Miss semantics of a VLIW processor however, require spe-

30 Chapter 3. Aligned Scheduling

cial treatment by the instruction scheduler. Figure 3.2 shows that trying to hide Load

miss latency by scheduling other instructions in parallel is not suitable for VLIWs.

This is because on the SOM VLIW, the semantics of a regular long-latency instruction

(Non-Load instruction Figure 3.2.a) are different from a cache-miss of equal latency

(Load instruction Figure 3.2.b). On one hand the high-latency regular instruction A

in Figure 3.2.a can fully overlap its execution with B, C and D. On the other hand,

cache-miss A in Figure 3.2.b cannot overlap with instructions C or D due to Stall-On-

Miss semantics. Therefore VLIW architectures require a radically different scheduling

approach for hiding cache-miss latencies.

We propose Aligned Scheduling, a novel instruction scheduling algorithm for stat-

ically scheduled VLIW processors with non-blocking caches that treats Load instruc-

tions differently than existing schemes. It improves the tolerance of VLIW processors

to cache-miss latencies. It does so by exploiting four concepts:

• The VLIW-specific Stall-On-Miss or Stall-On-Use cache-miss semantics.

• Non-blocking caches ([49, 89]), that can service multiple cache-misses simulta-

neously.

• The statically provable Memory-Level Parallelism (MLP), that allows for multi-

ple memory Load operations to execute on the same VLIW cycle.

• The explicit instruction parallelism of VLIW instruction words.

These four concepts allow the instruction scheduler to hide cache-miss latencies by

effectively aligning memory Load instructions together on the same cycle. In this way,

during execution, the probability that multiple Load instructions miss simultaneously

increases. We refer to this effect of multiple aligned Load instructions missing simul-

taneously as miss overlapping.

3.2 Motivation

We start by shortly explaining the main idea of Aligned Scheduling and then present-

ing the Aligned Scheduling heuristics through two examples. These demonstrate the

weaknesses of the existing instruction scheduling algorithms when it comes to cache-

miss latencies on VLIW processors. Aligned Scheduling is shown to outperform the

existing schemes by exploiting the unique cache-miss semantics of VLIW processors

along with the existing MLP and the non-blocking feature of the data caches.

3.2. Motivation 31

B

C

D

C

D

C

D

B

D

DC C D

Load−Miss

Load−Hit

Non−Load

Instructions

a. Non−Aligned schedule

0

1

2

3

A

S
T

A
L

L

B

0

1

A 0

1

2

3

4

A

S
T

A
L

L

B

5

i.Both Hit

iii.Both Miss

more Misses

0

1

A

C

b. Aligned schedule

0

1

2

3

A

S
T

A
L

L

B 0

1

2

3

A

S
T

A
L

L

B

OVERLAP

MISS

i.Both Hit

ii.A Miss, B Hit iii.Both Miss

ii.A Miss, B Hit

Figure 3.3: Two different schedules (a) and (b) under increasing miss conditions.

Schedule (b) (Aligned) exhibits miss-overlapping under heavy miss conditions (b.iii).

The main concept that Aligned Scheduling is based on is the idea of miss overlap-

ping (Figure 3.3). If the architecture supports non-blocking caches, then more than a

single outstanding cache-miss can be serviced simultaneously. Instruction schedulers

currently do not exploit this feature of the architecture and tend to generate schedules

as in Figure 3.3.a, which perform well when there are no or few cache-misses (Figure

3.3.a.i and 3.3.a.ii) but are suboptimal when there are bursts of cache-misses (Figure

3.3.a.iii). An optimized scheduler for VLIW should exploit the non-blocking caches

to schedule Loads in parallel, whenever this is profitable. Aligned Scheduling does so

and generates a schedule which still performs well under low cache-miss conditions

(Figure 3.3.b.i and 3.3.b.ii) but manages to outperform the existing approaches under

bursts of cache-misses (Figure 3.3.b.iii).

The motivating examples (Figure 3.4 and Figure 3.5) describe two different but

complementary heuristics that are used in Aligned Scheduling. Each example is based

on its own Data Flow Graph (DFG), Figure 3.4.a and Figure 3.5.a respectively. Both

DFGs contain Load instructions (green) and non-Load instructions (light gray). The

examples compare the schedules generated by two schedulers: i) The baseline sched-

uler (top sub-figures b, d and f), a state-of-the-art list-scheduler (like the scheduler in

32 Chapter 3. Aligned Scheduling

GCC [1]) and ii) Aligned Scheduler (bottom sub-figures c, e and g). The colors on

the DFG and schedules are consistent. Red represents a Load that misses in the cache.

The leftmost column of each figure (sub-figures b and c) shows the static schedule

produced by the scheduler. These schedules also happen to match the dynamic (run-

time) schedule when all Load instructions are hits. This is why in both sub-figures b

and c the Loads are green, suggesting a cache-hit. The other two columns show the

case when all Loads miss: The center column (sub-figures d and e) corresponds to

a Stall-On-Miss (SOM) architecture and the rightmost column (sub-figures f and g)

corresponds to Stall-On-Use (SOU).

The baseline is a list scheduler. It prioritizes the ready instructions based on a

priority function (in this case the height of each node in the graph), and emits the

highest priority ready instruction into the schedule. Aligned Scheduling is also a list-

scheduler based algorithm, but differs from the baseline in the instruction selection

process (Figure 3.6 “Aligned-select”). The performance of a scheduler is inversely

proportional to the dynamic schedule length. In these examples (Figure 3.4 and Figure

3.5) we are interested in comparing the two schedulers in cache-hit (sub-figures b,

c) and cache-miss (sub-fiures d, e and f, g) scenarios in order to motivate the main

concept of Aligned Scheduling: The VLIW stall semantics require that a good schedule

(one that is resilient to misses) should have Load instructions scheduled in parallel

on the same cycle, so that the cache-misses can overlap in time. The first example

(Figure 3.4) motivates the need to hoist low-priority Load instructions next to a high-

priority Load. The second example (Figure 3.5) motivates the need to lower low-

priority Load instructions so that they can execute in parallel with Loads that come

later in the schedule.

3.2.1 Hoisting of Low-Priority Loads (HLPL)

The first example (Figure 3.4) shows that a scheduler that hoists low-priority Loads

by giving preference to them instead of other higher priority instructions, can improve

performance under a burst of Load misses.

The highest priority instruction of the DFG of Figure 3.4.a is Load A. At cycle

0 the scheduler’s ready list contains A, C and E. Since A is the instruction with the

highest priority (4), it gets issued at cycle 0. Next, an unmodified priority-based list

scheduler (Figure 3.4 b, d and f) would select C with priority 3. The HLPL heuristic

of Aligned Scheduling, though, will select E with priority 2, since this will allow for

3.2. Motivation 33

Y

X

True dependency

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
��������
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
����������
�����
�����
�����

�����
�����
�����
�����

Stall−On−UseStall−On−MissAll Hits

A
li

g
n

ed
−

H
L

P
L

B
a
se

li
n

e
S

ch
ed

u
le

r
0

1

2

6

3

4

5

0

1

2

6

3

4

5

7

0

1

2

3

A

B

st
a
ll

st
a
ll

A

B

st
a
ll

st
a
ll

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

A

B

c. Aligned−HLPL

st
a
ll

st
a
ll

A

B

A

B

A

B

D

D

D

D

D D

F

F

F

F

F F

C C C

C

C C

E

E E

E E E

e. Aligned−HLPL

b. Baseline
a. Data Flow Graph

(DFG)

B

1

2

3

A4

3

2D

F

C

E

Empty issue slot

d. Baseline f. Baseline

g. Aligned−HLPL

Load Hit

Load Miss

Load instr.

Non−Load instr.

Non−Load insr.

(all Hits) (all Misses) (all Misses)

(all Misses)(all Misses)(all Hits)

Figure 3.4: The instruction schedule of the DFG (a), under baseline (b, d and f) and

Aligned-HLPL Scheduling (c, e and g). The dynamic schedule in the event of two

consecutive Load-misses on a Stall-On-Miss and a Stall-On-Use architecture is listed

in (d and e) and (f and g) for the Baseline and Aligned-HLPL, respectively.

34 Chapter 3. Aligned Scheduling

both Loads (A and E) to execute on the same cycle (Figure 3.4.c, e and g).

If at run-time none of the Loads miss, the dynamic schedule will look exactly like

the static one (Figure 3.4.b). If, however, at run-time both Load instructions (A and

E) miss, then the execution will look as in Figure 3.4.d or Figure 3.4.f, depending on

the stall semantics. In this case, the run-time performance of the Baseline scheduler is

worse than the Aligned one for both Stall-On-Miss and Stall-On-Use semantics.

The Aligned-HLPL heuristic makes sure that the low-priority Load instructions

(like Load E) get hoisted and scheduled on the same cycle as high-priority Load in-

structions, like Load A on cycle 0 (Figure 3.4.c). This suggests that, unlike the baseline

scheduler, in Aligned-HLPL instruction priority does not always drive the schedul-

ing algorithm. Instead low-priority Load instructions may take precedence over high-

priority non-Load instructions. For example the high-priority non-Load instruction C

gets deferred to a later cycle than the lower-priority E (Figure 3.4.c). This leads to bet-

ter performance under bursts of misses, and still a good schedule under the “all Hits”

case (Figure 3.4 c, e and g).

3.2.2 Lowering of Low-Priority Loads (LLPL)

The previously described HLPL heuristic can only work if a high-priority Load is

scheduled first on the current scheduling cycle. The LLPL heuristic complements

HLPL by taking action when a high-priority non-Load instruction is scheduled first

on the current scheduling cycle.

The LLPL heuristic (Figure 3.5) avoids scheduling low priority Load instructions

if the highest priority instruction on the current scheduling cycle is not a Load. Even

if there are no instructions left to schedule but Loads, LLPL will defer them to some

later cycle. This is beneficial for two reasons:

1. It guarantees that the current cycle remains stall-free, since there are no Load

instructions to miss.

2. It increases the chances that more Load instructions get grouped together and

aligned on a future cycle.

LLPL can be better explained through the example of Figure 3.5. As in Section

3.2.1, the Baseline scheduler is driven purely by instruction priorities and issue slot

availability. Therefore, Load C gets scheduled on a different cycle than Load D, as

shown in Figure 3.5.b. This is because at cycle 0, when instructions A, C and E are

3.2. Motivation 35

Y

X

True dependency

����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����
����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
��������
����
����
����

���
���
���
���

���
���
���

���
���
��� ����

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

0

1

2

3

A

B

F

0

1

2

3

A

B

D

C

E

F

d. Baseline f. Baseline

A
li

g
n

ed
−

L
L

P
L

All Hits Stall−On−Miss Stall−On−Use

B
a
se

li
n

e
S

ch
ed

u
le

r
A0

1

2

3

4

5

C

B E

a. Data Flow Graph
(DFG)

0

1 1

2

F

D E

A

B 2

3

C

Empty issue slot

Load instr.

Non−Load instr.

Non−Load insr.

Load Hit

Load Miss

(all Misses) (all Misses)

(all Misses)(all Misses)(all Hits)

A0

1

2

6

3

4

5

7

C

EB

F

st
a

ll
st

a
ll

D

D

F

C

D

0

1

2

3

4

5

A

B

F

C

D

st
a

ll

0

1

2

3

4

5

A

B

F

C

D

st
a

ll
st

a
ll

E E E

e. Aligned−LLPL g. Aligned−LLPLc. Aligned−LLPL

(all Hits)

b. Baseline

Figure 3.5: The instruction schedule of the DFG (a), under baseline (b, d, and f) and

Aligned-LLPL Scheduling (c, e and g). The dynamic schedule in the event of two con-

secutive Load-misses on a Stall-On-Miss and a Stall-On-Use architecture is listed in (d

and e) and (f and g) for the Baseline and Aligned-LLPL respectively.

36 Chapter 3. Aligned Scheduling

in the ready list (in this order), the list scheduler will issue A (priority 3), then C

(priority 2) and since the cycle slots are full, will move on to the next cycle. The

other Load instruction (B) gets issued at the earliest cycle possible (cycle 1) due to

data-dependence with A.

Aligned-LLPL, however, is not guided solely by the instruction priorities. Instead

it focuses on deferring low-priority Load instructions of the ready list (e.g., C at cycle

0 which is not the highest priority instruction) to a later cycle as long as the high

priority instruction is not a Load (A at cycle 0). The end result is that instruction C

gets scheduled later (cycle 1) along with Load B.

When all instructions are hits (“all Hits” scenario) both the Baseline and Aligned

Scheduling-LLPL perform equally well (Figure 3.5.b and Figure 3.5.c). When both

Loads miss, however, Aligned-LLPL is faster (Figure 3.5.d and f vs Figure 3.5.e and

g). The speedup, is once again due to the overlapping of miss-latencies.

3.2.3 Discussion

As with most scheduling heuristics, the Aligned Scheduling heuristics have some limi-

tations. There are some cases where aligned scheduling can lead to performance degra-

dations. From a high-level standpoint, both HLPL and LLPL force the scheduler to

ignore the instruction priorities under certain conditions. The assumption is that under

a burst of cache-misses, the re-ordering is worth-while as it can improve performance.

If, however, there are no bursts of cache-misses and the application’s performance is

very sensitive to the critical path ordering, then the HLPL and LLPL re-ordering may

hurt performance. Aligned Scheduling attempts to balance the aggressiveness of the

instruction re-ordering so that we can still get performance improvements when the

conditions are favorable, but only get a small performance degradation when the con-

ditions are not suited for Aligned Scheduling.

3.3 Aligned Scheduling

3.3.1 Overview

Aligned Scheduling is based on the commonly used list-scheduling algorithm. An

overview of how the common (baseline) list scheduling algorithm works was discussed

in Section 2.4 and is shown in Figure 3.6.a.

3.3. Aligned Scheduling 37

priority

Ready list

DFG

update Ready list

a. Baseline list−scheduling

Issue instr. with
highest priority

priority

Ready list

DFG

Ready list

Select instruction

update Ready list

Best Instr

Aligned select

Issue instr. sel.
by AlignedSched

b. Aligned Scheduling

Figure 3.6: Overview of scheduling algorithms.

The input to list scheduling is a Data Flow Graph (DFG) with its nodes tagged

with priorities. The priority can be calculated based on various heuristics, a common

one being the height from the bottom of the DFG. With the term “ready instructions”

we mean the instructions that have all their inputs calculated and available to them.

The ready instructions of the DFG are placed into a ready list and are sorted based on

their priority. The highest-priority instruction is selected and scheduled. Scheduling an

instruction causes its DFG immediate successors to become ready and to be added to

the ready list. The scheduler steps to the next cycle under two conditions: 1) The ready

list is empty, meaning that there are no available instructions to schedule 2) The current

cycle is full, so no more instructions can be scheduled in it. This process repeats until

all instructions in the DFG are scheduled.

Aligned Scheduling (Figure 3.6.b) adds the “Aligned select” phase to the common

list scheduling algorithm. This process is placed in between sorting the ready list and

scheduling an instruction. It uses the ready instruction list and the highest priority in-

struction of the current cycle to make an informed decision on selecting the instruction

that should be scheduled at the current scheduling cycle. This is where HLPL and

LLPL are used. The instruction that “Aligned select” returns, gets scheduled at the

38 Chapter 3. Aligned Scheduling

current cycle.

Although Aligned Scheduling is built on top of GCC’s EBB-region-based sched-

uler, in principle the “Aligned select” step can be plugged in to other schedulers as well

(e.g., the Selective Scheduler ([64]), Modulo Scheduling [21, 50, 55, 78] etc.) without

major modifications to these algorithms.

The Aligned Scheduling algorithm can be logically split in two parts:

1. The main driver function (Algorithm 3.1), which performs the high-level ac-

tions of a list-scheduler.

2. The Aligned Scheduling selection function (Algorithm 3.2) which is used for

the selection of the instruction that gets scheduled by the main driver function.

3.3.2 Aligned Scheduling driver

The main driver function (Algorithm 3.1) performs the main actions of a list-scheduling

algorithm adjusted to work with the Aligned Scheduling heuristics. While there are in-

structions left to schedule (line 6) it iterates. First, it fills in the ready list with any

ready instruction (line 7), then it sorts the ready list (line 8) based on the instruction

priorities (which is usually the height of the instruction in the DFG). Next it finds the

highest priority instruction for this cycle and stores it into BEST INSTR (line 9).

The algorithm then schedules the ready instructions one by one (lines 11 to 20).

This part of the algorithm keeps iterating until: 1) the ready list is empty (line 11),

or 2) no instruction is selected by the align select function (line 12). The ready list

empties in two ways:

1. Scheduled instructions are removed from the ready list.

2. When no more instructions fit in the current cycle (due to insufficient execution

slots) then the ready instructions still get popped out of the ready list without

being scheduled and get deferred to the next cycle (line 20).

Instructions get selected from the ready list by the aligned select() function (line

12). The implementation of this function is shown in Algorithm 3.2. If no instruction is

selected by “aligned select” (i.e. there are no instructions left to schedule in this cycle),

then the algorithm breaks out of the innermost while loop (lines 13-14) to abandon

scheduling on the current cycle and to step to the next cycle. This enables LLPL to

leave a cycle partially scheduled even if there are ready instructions left to schedule.

3.3. Aligned Scheduling 39

Else, if an instruction has been selected, then it gets scheduled and removed from the

ready list (lines 15 to 17). If, due to resource constraints (e.g., no more issue slots)

the instruction cannot be scheduled on the current scheduling cycle, then it is removed

from the ready list (lines 19 and 20). Finally, if there are no instructions left in the

ready list, it is time to move to the next scheduling cycle (lines 22 and 23) and restart

with a fresh ready list at the top of the outer loop (line 6).

Algorithm 3.1: Aligned Scheduling algorithm.

1 /* In1 : Data Flow Graph (DFG)

2 Out : Scheduled Code. */

3 aligned ()

4 {

5 /* While there are unscheduled isntructions */

6 while (instructions left to schedule)

7 update READY_LIST [] with ready + deferred instructions

8 sort READY_LIST [] based on priorities

9 BEST_INSTR = READY_LIST [0]

10

11 while (READY_LIST not empty)

12 INSN=aligned_select (BEST_INSTR ,READY_LIST [])

13 if (no INSN selected)

14 break

15 if (INSN can be scheduled at CYCLE)

16 schedule INSN

17 remove INSN from READY_LIST []

18 /* If failed, defer to cycle+1 */

19 if (INSN unscheduled)

20 remove INSN from READY_LIST [] and reinsert at CYCLE + 1

21

22 /* READY_LIST is empty */

23 CYCLE ++

24 }

3.3.3 Aligned Scheduling selection

At the core of the Aligned Scheduling algorithm lies the aligned select() function (Al-

gorithm 3.2). This function decides which instruction, among the ready ones, will be

executed on the current scheduling cycle. This function makes use of the HLPL and

40 Chapter 3. Aligned Scheduling

LLPL heuristics to decide on the instruction selected.

This function exploits the statically (at compile time) analyzable MLP to improve

the schedule’s performance of VLIW processors with non-blocking caches under high

cache-miss rate conditions. The end result of the instruction selection (with the help

of the driver function of Algorithm 3.1) is a hoisting and lowering of Load instructions

aiming at grouping Loads together as much as possible.

Internally, the selection algorithm is composed of two different but complementary

heuristics: The “Hoisting of Low-Priority Load” (HLPL) heuristic as demonstrated in

the motivation Section 3.2.1 and the “Lowering of Low-Priority Load” (LLPL) heuris-

tic as discussed in Section 3.2.2. If both are active, either HLPL or LLPL executes

depending on the type of the highest priority instruction (BEST INSTR) of the

current scheduling cycle (Algorithm 3.2, lines 6 and 13). If it is a Load then HLPL

performs hoisting of other Loads. Else if it is not a Load, then LLPL forms a Load-free

cycle by lowering Loads to later cycles. The insight behind it is that the critical path

should be honored. Therefore, the highest priority instruction (BEST INSTR) of the

cycle should guide the type of instructions that are aligned with it. We can enable each

or both of these heuristics by controlling the HLPL and LLPL flags (Algorithm 3.2

lines 7 and 14, respectively).

The instruction hoisting/lowering of Aligned Scheduling is done in a balanced

way:

• The Load hoisting and lowering is mild enough such that the re-arranged in-

structions do not replace other highly-critical instructions. This guarantees ac-

ceptable performance on a low cache-miss rate conditions.

• The Load hoisting and lowering is aggressive enough that the Load instructions

get grouped together so that we get high miss overlapping and performance im-

provements on high cache-miss scenarios.

The first point is achieved by honoring the critical path and always scheduling

the highest priority instruction of the ready list (BEST INSTR) without any delays

(Algorithm 3.2 lines 9,16 guarantee this). Also the most critical instruction guides the

kind of hoisting/lowering that takes place (Algorithm 3.2 lines 6 and 13). The second

point is achieved by selectively hoisting/lowering all lower priority instructions.

3.3. Aligned Scheduling 41

Algorithm 3.2: Aligned Scheduling instruction selection

1 /* In1 : Highest prio. instr. of current cycle

2 In2 : List of ready instr. of current cycle

3 Out : Selected instr. to schedule on cycle */

4 aligned_select (BEST_INSTR , READY_LIST [])

5 {

6 if (BEST_INSTR is a Load)

7 if (HLPL)

8 for INSTR in sorted READY_LIST []

9 if (INSTR is a Load)

10 return INSTR

11 return READY_LIST [0]

12

13 else if (BEST_INSTR is not a Load)

14 if (LLPL)

15 for INSTR in sorted READY_LIST []

16 if (INSTR is not Load)

17 return INSTR

18 else

19 return READY_LIST [0]

20

21 return READY_LIST [0]

22 }

42 Chapter 3. Aligned Scheduling

3.3.3.1 HLPL

If BEST INSTR is a Load (Algorithm 3.2, line 6), then the HLPL heuristic can be

applied (line 7). It iterates over the list of sorted ready instructions (line 8) and selects

the first Load instruction encountered (lines 9 and 10). If there are no ready Load

instructions to choose from, HLPL will select a non-Load instruction (line 11) as this

can only be beneficial. This is because scheduling non-Load instructions, after all Load

instructions have been scheduled on the cycle, cannot cause any further stalls or delays

for this cycle, so it can cause no harm. Instead, deferring the execution of non-Load

instructions to later cycles can only degrade performance. HLPL will usually not harm

performance under low miss rate conditions.

3.3.3.2 LLPL

In the opposite case, if BEST INSTR, the highest priority instruction of the current

cycle, is not a Load (line 13), the LLPL heuristic can be applied. In short, LLPL

creates a Load-free cycle. It does so by deferring the execution of any Load instruction

to future cycles. This is done by iterating across the ready list (line 15) and selecting

only non-Load instructions to schedule (lines 16 and 17). Unlike HLPL, when LLPL

is “on” then even if there are no other non-Load instructions left in the ready list, the

algorithm will not select a Load, therefore the current scheduling cycle will be partially

empty. This is good for two reasons:

1. It guarantees that the current cycle does not stall (since it contains no Loads)

2. It enables future co-execution of Load instructions in later cycles.

However, LLPL could potentially harm performance as it deliberately leaves resources

under-utilized. LLPL proves to be an aggressive heuristic for high miss rate conditions,

but can cause slowdowns on low miss rate conditions.

Enabling both heuristics is usually the best practice, since the resulting perfor-

mance is usually better than either of them in isolation (see Section 3.5).

3.3.4 Complexity Analysis and Comparison

Comparing the complexity of Aligned Scheduling against that of the baseline list

scheduler is crucial. To compute the complexity of the Aligned Scheduling algorithm

we need to examine its source code (Algorithms 3.1 and 3.2). For the computation we

3.3. Aligned Scheduling 43

Complexity

Algorithm Worst-Case Expected

List Scheduling (baseline) O(N3) O(N)

Aligned Scheduling O(N3) O(N)

Table 3.1: Complexity comparison.

consider an input DFG of N nodes. The Aligned Scheduling algorithm has 3 levels of

nested loops :

1. The outer loop iterates until all instructions in the DFG are scheduled. In each

iteration a single cycle gets scheduled. If on average s instructions get scheduled

(with s ≤ issuewidth), then this loop iterates N/s times. On each iteration of this

loop, the ready list is sorted using quicksort. Given an average ready list size of

R, this usually costs R× logR and R2 in the worst case.

2. The middle loop iterates until all instructions in the ready list are examined for

scheduling, so it iterates R times.

3. The innermost loop is in the HLPL and LLPL heuristics (Algorithm 3.2). These

loops iterate over the ready list (which keeps shrinking as instructions get sched-

uled) until a suitable instruction is found. This iterates (R + 1)/2 times in the

worst case. We will use the worst case (R+1)/2 as the usual case.

Therefore, the complexity of Aligned Scheduling can be computed as:

• N/s×R× ((R+1)/2+ logR) in the usual case and

• N/s×R× ((R+1)/2+R) in the worst case

In all practical cases, both s and R are small constants with s < 4 and R < 10. This

leads to a complexity O(N). The worst-case scenario involves s = 1 and R = N, leading

to a complexity of N2 × (3N +1)/2, or O(N3).

The baseline List Scheduler does not include the third inner loop. For all practical

cases, the baseline List Scheduler is O(N) and in the worst-case it is O(N3). Therefore

both schedulers have practically the same complexity.

The summarized complexities are listed in Table 3.1.

44 Chapter 3. Aligned Scheduling

3.4 Experimental Setup

The target architecture is a statically scheduled Stall-On-Miss/Stall-On-Use VLIW,

that uses the IA64 [87] instruction set due to widespread availability of tools for this

ISA. The architecture has a configurable issue width. The target architecture used for

the evaluation, even though based on the IA64 ISA, is configured as a generic VLIW,

in the sense that it is not constrained by the IA64 bundles [87]. Instead it can issue any

type of instructions at any issue slot. It is worth noting that the real Itanium processor

used in servers is based on the EPIC 1 architecture, which although looking similar to

a VLIW one, has many hardware features not found in common VLIW architectures.

One of these hardware features is a hardware register scoreboard. Our target is a more

traditional VLIW without the full-blown register scoreboard of the Itanium.

We simulated the architecture on a modified version of ski [2] IA64 cycle accurate

simulator. The modified simulator supports a configurable non-blocking cache hier-

archy and both Stall-On-Miss and Stall-On-Use semantics. The processor and caches

configuration is listed in Table 3.2.

We have implemented Aligned Scheduling in the instruction scheduling pass (haifa-

sched) of GCC-4.5.0 [1] compiler for IA64. GCC runs the instruction scheduling pass

twice, once before register allocation and once after, as shown in Figure 3.7. This

is done so that some of the phase-ordering issues between instruction scheduling and

register allocation get eliminated.

We evaluated Aligned Scheduling on 6 of the Mediabench II video [34] and 6 of

the SPEC CINT2000 [3] benchmarks, listed in Table 3.3. These benchmarks were the

ones that we managed to fully build and run using our heavily modified compiler. All

benchmarks were compiled with several optimizations enabled (-O2) and both schedul-

ing passes (before and after register allocation) switched on. We ran all benchmarks to

completion.

3.5 Results and Analysis

We first present a detailed case study of Aligned Scheduling on the cjpeg benchmark

of the Mediabench II benchmark suite (Section 3.5.1). We then present summarized

results for the rest of the benchmarks (Section 3.5.2).

1Explicitly Parallel Instruction Computing

3.5. Results and Analysis 45

Processor: IA64 based VLIW

Issue width: 2-4 (configurable)

Instr. Latencies: Same as Itanium2 [63]

Register File: 128GP, 128FP, 64PR (Itanium2)

Branch Prediction: Perfect

Cache Stall semantics: Stall-On-Miss / Stall-On-Use

Prefetching: NO

Cache: Levels 2

Levels : L1 L2 Main

Cache size (Bytes): 16K 256K ∞

Cache block-size (Bytes): 64 128 -

Cache associativity: 1way 4ways -

Cache Latency (cycles): 1 (used on next cycle) 8 150

Non-Blocking: YES YES -

Outstanding Loads: ∞ ∞ -

Table 3.2: Processor configuration.

MediaBench II SPEC CINT2000

cjpeg 175.vpr

djpeg 181.mcf

h263enc 186.crafty

h263dec 197.parser

mpeg2enc 255.vortex

mpeg2dec 300.twolf

Table 3.3: Benchmarks

...

A
li

g
n

ed

S
ch

ed
u
li

n
g
 1

... ...

A
ll

o
ca

ti
o
n

.c

R
eg

is
te

r

A
li

g
n

ed

S
ch

ed
u
li

n
g
 2

IA64

GCC−4.5.0

Figure 3.7: The compilation flow.

46 Chapter 3. Aligned Scheduling

3.5.1 Case study: cjpeg

The cjpeg benchmark of the Mediabench II ([34]) video suite is a representative ex-

ample for evaluating Aligned Scheduling. This benchmark has a working set of 16KB

which is small enough that we can test Aligned Scheduling across a broad range of

cache-miss scenarios (ranging from high miss rates to low miss rates) by simply chang-

ing the L1 size.

Figure 3.8 compares the cycle counts of the Aligned Scheduling-{HLPL, LLPL

and BOTH} heuristics against the Baseline scheduling. The comparison is done over

various L1 cache sizes, ranging from 4KB to 32KB 1-way, and on three different issue

widths of the VLIW processor (issue 2 to 4). The L2 cache is a 256KB 4-way with 8

cycles latency. Figures 3.9 and 3.10 complement Figure 3.8 by providing the L1 and

L2 miss rates respectively for each case.

These figures provide some important insights on the strengths and weaknesses of

Aligned Scheduling.

• The first thing to notice in Figure 3.8 is that for the Stall-On-Miss semantics

(SOM) and small L1 sizes, Aligned Scheduling outperforms the baseline by a

considerable margin, in fact it performs equally well or better than the base-

line with twice as much L1 memory (e.g., Figure 3.8 3 and 4-issue, 4K and 8K

SOM), improving performance by about 20%. Aligned Scheduling performance

improvements, however, decrease as the cache size increases. This is because

cache-misses become less frequent (Figure 3.9) and therefore the probability of

them happening simultaneously (something that Aligned Scheduling could ex-

ploit) decreases. The point of diminishing returns for cjpeg is the point when the

working set size equals the cache size (16KB). For sizes greater than 32KB, the

L1 miss rate drops below 8% and Aligned Scheduling cannot improve perfor-

mance. Nevertheless it does not hurt performance either.

• An architecture with Stall-On-Use semantics can still benefit from Aligned schedul-

ing, though the performance improvements are less significant. For small cache

sizes, the performance improvements are about 5%, but as we get close to the

working set size, there is little or no improvement. The reason (explained in

Section 3.2) is that with SOU semantics there are fewer opportunities to increase

the miss overlap, beyond what the hardware provides.

• For small cache sizes, Aligned Scheduling bridges half the performance gap

3.5. Results and Analysis 47

0.60

0.70

0.80

0.90

1.00

1.10

4K 8K 16K 32K GMean

N
o
rm

a
liz

e
d
 c

y
c
le

s

 L1 Cache Size

Norm. Cycles (cjpeg,L2:256K4W,2-issue)

0.60

0.70

0.80

0.90

1.00

1.10

4K 8K 16K 32K GMean

N
o
rm

a
liz

e
d
 c

y
c
le

s

 L1 Cache Size

Norm. Cycles (cjpeg,L2:256K4W,3-issue)

0.60

0.70

0.80

0.90

1.00

1.10

4K 8K 16K 32K GMean

N
o
rm

a
liz

e
d
 c

y
c
le

s

 L1 Cache Size

Norm. Cycles (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM

Baseline-SOU
Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

Figure 3.8: Normalized Cycle count of the Baseline list scheduler and the various

Aligned Scheduling optimizations for both SOM and SOU stall semantics, over vari-

ous L1 cache configurations. This is a case study of the cjpeg benchmark on a range

of 2 to 4-issue machines.

48 Chapter 3. Aligned Scheduling

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4K 8K 16K 32K

L
1
 m

is
s
 r

a
te

 (
%

)

 L1 Cache Size

L1 Miss rate (cjpeg,L2:256K4W,2-issue)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4K 8K 16K 32K

L
1
 m

is
s
 r

a
te

 (
%

)

 L1 Cache Size

L1 Miss rate (cjpeg,L2:256K4W,3-issue)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4K 8K 16K 32K

L
1

 m
is

s
 r

a
te

 (
%

)

 L1 Cache Size

L1 Miss rate (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM

Baseline-SOU
Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

Figure 3.9: L1 cache-miss rate for various L1 cache configurations. This is a case study

of the cjpeg benchmark on a range of 2 to 4-issue machines.

3.5. Results and Analysis 49

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4K 8K 16K 32K

L
2
 m

is
s
 r

a
te

 (
%

)

 L1 Cache Size

L2 Miss rate (cjpeg,L2:256K4W,2-issue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4K 8K 16K 32K

L
2
 m

is
s
 r

a
te

 (
%

)

 L1 Cache Size

L2 Miss rate (cjpeg,L2:256K4W,3-issue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4K 8K 16K 32K

L
2

 m
is

s
 r

a
te

 (
%

)

 L1 Cache Size

L2 Miss rate (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM

Baseline-SOU
Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

Figure 3.10: L2 cache-miss rate for various L1 cache configurations. This is a case

study of the cjpeg benchmark on a range of 2 to 4-issue machines.

50 Chapter 3. Aligned Scheduling

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4K 8K 16K 32K GMean

N
o
rm

a
liz

e
d
 M

is
s
 O

v
e
rl
a
p

 L1 Cache Size

Miss Overlap (cjpeg,L2:256K4W,2-issue)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4K 8K 16K 32K GMean

N
o
rm

a
liz

e
d
 M

is
s
 O

v
e
rl
a
p

 L1 Cache Size

Miss Overlap (cjpeg,L2:256K4W,3-issue)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4K 8K 16K 32K GMean

N
o
rm

a
liz

e
d
 M

is
s
 O

v
e
rl
a
p

 L1 Cache Size

Miss Overlap (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM

Baseline-SOU
Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

Figure 3.11: Normalized cache-miss overlapping for various L1 cache configurations.

This is a case study of the cjpeg benchmark on a range of 2 to 4-issue machines.

3.5. Results and Analysis 51

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4K 8K 16K 32K avg

M
e
m

 A
c
c
e
s
s
 T

im
e
 (

c
y
c
le

s
)

 L1 Cache Size

Memory Access Time (cjpeg,L2:256K4W,2-issue)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4K 8K 16K 32K avg

M
e
m

 A
c
c
e
s
s
 T

im
e
 (

c
y
c
le

s
)

 L1 Cache Size

Memory Access Time (cjpeg,L2:256K4W,3-issue)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4K 8K 16K 32K avg

M
e
m

 A
c
c
e
s
s
 T

im
e
 (

c
y
c
le

s
)

 L1 Cache Size

Memory Access Time (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM

Baseline-SOU
Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

Figure 3.12: Memory Access Time (i.e., the average Load latency) for various L1 cache

configurations. This is a case study of the cjpeg benchmark on a range of 2 to 4-issue

machines.

52 Chapter 3. Aligned Scheduling

between a SOM and a SOU architecture, with no additional hardware (e.g.,

Figure 3.8 4-issue, 4K). Recall that offering compiler driven solutions to simplify

the VLIW hardware is the key objective in this thesis.

• The two Aligned Scheduling heuristics (HLPL and LLPL) work orthogonally

and when both enabled they act cooperatively. This is true for both SOM and

SOU semantics. Enabling both (Aligned-BOTH Figure 3.8) usually outperforms

each individual heuristic Aligned-HLPL or Aligned-LLPL, particularly in the

SOU case.

• Aligned Scheduling performs better as the issue width increases. In fact, for

cjpeg, and for the degenerate VLIW case of 2-issue and for SOM semantics,

Aligned scheduling causes a slowdown. This is an example where the alignment

cost outweighs the benefit: Since the issue width is too narrow, the cache-misses

cannot be effectively overlapped, therefore the scheduling penalty of issuing in-

structions ignoring their priorities outweighs the benefit of doing so.

For any issue width higher than 2, Aligned Scheduling improves performance

considerably. This is intuitive as the more the issue slots, the more Loads can

get serviced in parallel, which is exactly what Aligned Scheduling is meant to

exploit.

• A Miss-Overlap is the event of multiple cache-misses being serviced in parallel.

We measure it by counting all the cache-misses that happen on the same cycle

for the whole program run. The count of overlapping misses is a measure of the

effectiveness of Aligned Scheduling. Figure 3.11 shows that the performance

improvements of Figure 3.8 are indeed caused by the increase in cache overlaps

and not some other scheduling side-effect.

• The effective average latency of a Load (Memory Access Time) is shown in

Figure 3.12. This figure shows once more that Aligned scheduling manages to

decrease the cache overhead for wide-issue VLIW processors. This is the main

cause of the performance improvement.

• A last point to make from these measurements is that the L1 and L2 miss rate

(Figure 3.9) seems to be largely unaffected by the application of Aligned Schedul-

ing. This is because: i) a miss is still counted as a single miss even if it overlaps

with another miss and ii) Aligned scheduling does not cause large-scale mem-

ory access reordering that could affect the cache behavior. Therefore Aligned

3.5. Results and Analysis 53

Scheduling speedups are not due to fewer misses but rather due to decreasing

the total amount of time that the VLIW processor has to wait for the misses to

be serviced.

3.5.2 All benchmarks

We now consider all benchmarks (Figure 3.13). We measured the cycle count, the

miss rate on both L1 and L2 caches, the overlapping of cache-misses, and the average

memory access time. We ran the benchmarks on a 4-issue VLIW processor with 16KB-

1way L1 and 256KB-4way L2 cache (see Table 3.2). We focus on the performance of

Aligned Scheduling compared to the Baseline Scheduler, all on SOM. We compare

them against the Baseline on SOU, which is hardware supported and is, therefore, an

estimate of the optimal we could expect from Aligned Scheduling (a software-only

approach). In this figure, when we refer to Aligned we refer to Aligned-BOTH (both

HLPL and LLPL enabled).

The results in Figure 3.13 show that Aligned Scheduling works for a variety of

benchmarks and achieves a significant 4% average speedup on this architecture con-

figuration. In memory-bound benchmarks (e.g., 181.mcf) it even manages to reach

the performance levels of the hardware-based SOU. Aligned Scheduling is successful

at increasing the count of misses that overlap, as shown in the Miss-overlap graph of

Figure 3.13. In some cases (e.g., h263enc), the performance improvement can also

be attributed to a lower miss rate, a side-effect of the instruction re-ordering. Only

few benchmarks (197.parser and 300.twolf) have fewer miss overlaps compared to the

baseline, but even in these cases the performance achieved is either close to the base-

line or better, due to overlapping fewer misses but of greater latency, leading to better

average memory access time.

Some of the benchmarks however are marginally worse than the baseline with

175.vpr reaching a slowdown of 2.5%. These slowdowns can be attributed to one

of the following:

• High sensitivity to the priority of the critical path instructions. In such cases

any instruction re-ordering done by Aligned Scheduling can lead to a slowdown

(this is true for 186.crafty, 255.vortex and h263dec). In 175.vpr this effect is so

strong, that even with substantially increased miss-overlap (more than 20%), it

takes a performance hit.

54 Chapter 3. Aligned Scheduling

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

cjpeg
djpeg

h263enc
h263dec

mpeg2enc

mpeg2dec

175.vpr
181.mcf

186.crafty

197.parser

255.vortex

300.twolf

GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

 Benchmarks

Cycles (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00

cjpeg
djpeg

h263enc
h263dec

mpeg2enc

mpeg2dec

175.vpr
181.mcf

186.crafty

197.parser

255.vortex

300.twolf

M
is

s
 r

a
te

 (
%

)

 Benchmarks

L1 Miss rate (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

0.00

10.00

20.00

30.00

40.00

50.00

cjpeg
djpeg

h263enc
h263dec

mpeg2enc

mpeg2dec

175.vpr
181.mcf

186.crafty

197.parser

255.vortex

300.twolf

M
is

s
 r

a
te

 (
%

)

 Benchmarks

L2 Miss rate (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

cjpeg
djpeg

h263enc
h263dec

mpeg2enc

mpeg2dec

175.vpr
181.mcf

186.crafty

197.parser

255.vortex

300.twolfN
o

rm
a

liz
e

d
 M

is
s
-o

v
e

rl
a

p

 Benchmarks

Miss overlap (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

0.00

5.00

10.00

15.00

20.00

25.00

30.00

cjpeg
djpeg

h263enc
h263dec

mpeg2enc

mpeg2dec

175.vpr
181.mcf

186.crafty

197.parser

255.vortex

300.twolfM
e

m
 A

c
c
e

s
s
 T

im
e

 (
c
y
c
le

s
)

 Benchmarks

Mem Access Time (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

Figure 3.13: Normalized Cycle count, Miss Rates, Miss overlaps and average Memory

Access Time for 6 of the Mediabench II and the SPEC CINT2000 benchmarks.

3.6. Conclusion 55

• Inability of Aligned Scheduling to group Load instructions better than the base-

line. This happens rarely (see “Miss overlap”in Figure 3.13 for djpeg and 197.parser).

Benchmarks with high miss rates (L1 or L2) usually perform well under Aligned

Scheduling. As long as a benchmark has adequate amounts of statically analyzable

MLP, and is not very sensitive to its critical path instructions then a high miss rate

should provide opportunities for Aligned Scheduling to improve the execution cycles.

This is evident in 181.mcf and h263enc. In particular, h263enc has a low L1 miss

rate but a high L2 miss rate and gets a performance improvement of about 7%. This

suggests that Aligned Scheduling effectively overlaps some of the performance-critical

high latency L2 misses, leading to significant performance improvements.

It is worth noting that most of the Mediabench II benchmarks we run have very

small working sets ([34]), with the majority of them less than 16KB. Therefore with the

current cache setup the cache-misses are few and Aligned Scheduling is not expected to

give important speedups. As shown in Section 3.5.1 in Figure 3.8, Aligned Scheduling

can indeed improve performance on these benchmarks as long as the cache sizes are

smaller than their working sets.

3.6 Conclusion

VLIW architectures, being statically scheduled, rely on the compiler to produce high-

quality schedules for them to execute. The instruction scheduler has traditionally op-

timized for architecture-visible and statically-predictable events, mainly register-to-

register operations, and has widely ignored performance-critical micro-architectural

events like cache-misses.

This chapter proposes Aligned Scheduling, a new scheduling algorithm that gen-

erates schedules that are more resilient to cache-misses than existing schemes. It does

so by incorporating the micro-architectural knowledge of non-blocking caches into the

scheduling algorithm. Aligned Scheduling exploits the statically known MLP to group

together Load instructions on the same cycle. This increases the probability that cache-

misses overlap and get serviced simultaneously by the non-blocking cache, therefore

decreasing the amount of time the processor spends on cache stalls. Our simulation

results show that significant speed-ups can be achieved across a wide range of bench-

marks and VLIW architecture configurations.

Chapter 4

LUCAS: Latency-adaptive Unified

Cluster-Assignment and instruction

Scheduling

This Chapter presents an instruction scheduling algorithm for clustered VLIW archi-

tectures, powered by a novel clustering heuristic. It solves a common problem of the

existing state-of-the-art schemes: they generate high-performance code only for very

limited conditions, either at a low or at a high inter-cluster latency. The proposed al-

gorithm, LUCAS, generates fast code for a wide range of inter-cluster latencies. It

adjusts to the inter-cluster latency of the target architecture by performing a fine-grain

switching between two state-of-the-art clustering heuristics, one aggressive and one

conservative.

4.1 Introduction

As already discussed in Section 1.2.1, a homogeneous clustered VLIW processor (as

in Figure 4.1.a), has an additional performance and energy advantage compared to its

monolithic non-clustered counterpart due to the frequency and energy scalability of the

design. In the clustered case though, the compiler has to perform yet another task, that

of cluster assignment, deciding the cluster where each instruction should be executed

at (as shown in the code example of Figure 4.1.b).

In some early compilers for clustered VLIWs (e.g., the Bulldog compiler [27]),

cluster assignment was done just before instruction scheduling, in a separate pass.

This two-step solution (clustering before scheduling) worked well on that particular

57

58 Chapter 4. LUCAS

RF
r32 − r63

RF
r0 − r31

RF
r64 − r95

RF
r96 − r127

0. r33=...

1. r2 = r1 + r33

cluster1

a. A clustered VLIW processor with 4 clusters

cluster0

A
L

U

L
/S

IC
C

cluster2

A
L

U

L
/S

IC
C

cluster3

A
L

U

L
/S

IC
C

A
L

U

L
/S

IC
C

la
te

n
cy

ICC:
r33=...

...=r2

r3=r33

b. A sample schedule

r2=r1+r3

2. ... = r2

cluster1

cluster0

cluster0

c. The original sample code and the cluster each instruction is assigned to

F
P

U

F
P

U

F
P

U

F
P

U

Figure 4.1: A 4-cluster 4-issue clustered VLIW architecture (a). The instruction sched-

ule in (b) corresponds to the code in (c).

architecture without explicit inter-cluster copy instructions. Processors with explicit

inter-cluster copy instructions, however, benefit from a unified clustering and schedul-

ing pass. This removes any phase-ordering issues between the two [72, 40, 41]. In

these works, the instruction scheduler is modified so that upon scheduling an instruc-

tion, it also decides on the cluster where it should be assigned to based on the result of

the clustering heuristic.

There are two state-of-the-art clustering heuristic groups that guide the cluster-

ing algorithms: the group of heuristics that are very similar to the Start-Cycle (SC)

[27, 41] (this includes the Critical Successor (CS) [96] and the Completion-weighted

Predecessor (CWP) [72]) and the Completion-Cycle (CC) [27]. They differ in their

aggressiveness at spreading instructions across clusters. The first ones (SC, CS, CWP)

will eagerly spread instructions across clusters as long as the one-way latency cost is

covered, hoping for good performance, whereas the latter (CC) will only do so if the

round-trip cost is covered. The clustering heuristic has a major impact on performance,

and is particularly affected by the inter-cluster latency.

In this chapter, we identify a fundamental weakness of the existing state-of-the-art

schedulers that perform combined instruction scheduling and cluster assignment. The

code they generate performs well only under very limited conditions. Depending on

the heuristic used, they work well under either low inter-cluster latencies, or high in-

4.2. Motivation 59

struction latencies. To make matters worse, the intersection point, where one heuristic

overtakes the other, varies significantly and is benchmark specific.

We propose a Latency-adaptive Unified Cluster Assignment and Instruction Sched-

uler (LUCAS) which:

1. adapts to the inter-cluster latency and performs best across a wide range of inter-

cluster latencies and

2. often outperforms both existing heuristics

LUCAS is compared against the best state-of-the-art schemes and performs best under

a wide range of inter-cluster delays.

4.2 Motivation

The major weakness of the state-of-the-art cluster-assignment and instruction-scheduling

algorithms is that their clustering heuristics perform well on a limited range of inter-

cluster communication latencies. Figure 4.2 points out this fact. The Start-Cycle

(SC) [27, 41] (and Critical-Successor (CS) [96] and Completion-weighted Predeces-

sor (CWP) [72]) heuristics perform well only on low-latency configurations. The

Completion-Cycle (CC)[27], on the other hand performs well only on high-latency

configurations. Moreover, the intersection point is highly specific to the benchmark

and varies unpredictably.

The proposed scheme (LUCAS) addresses the shortcomings of both heuristics by

adapting to the inter-cluster latency. LUCAS switches between the aggressive (SC)

and conservative (CC) heuristic on a per-instruction basis. As shown in Figure 4.2

the goal of the proposed approach is to provide the best performance across the whole

range of inter-cluster latencies.

In the following text we use the term Start-Cycle to refer to the whole group of

heuristics that perform similarly to Start-Cycle unless explicitly stated otherwise.

4.2.1 Clustering Heuristics

The reason why the state-of-the-art heuristics perform in general as in Figure 4.2 and

why our heuristic performs the way it does, can be explained by the motivating exam-

ples of Figures 4.3 and 4.4. The LUCAS heuristic uses two switching heuristics: i) the

cycle-congestion (Figure 4.3) and ii) the instruction mobility (Figure 4.4), to guide the

60 Chapter 4. LUCAS

inter−cluster latency

Intersection point

cy
cl

es

CC

LUCAS

SC / CS / CWP

Figure 4.2: Qualitative performance comparison of clustering heuristics under in-

creasing inter-cluster latency: Start-Cycle (SC) [27, 41], Critical-Successor (CS) [96],

Completion-weighted Predecessor (CWP) [72], Completion-Cycle (CC) [27] and the

proposed heuristic used in LUCAS.

switching decision on when to use the Start-Cycle or the Completion-Cycle heuristic.

This will be explained in more detail later on. The examples of Figures 4.3 and 4.4

show the schedules obtained after scheduling the nodes of the Data Flow Graph (DFG)

(Figure 4.3.a and 4.4.a) using the clustering heuristics (vertical axis) for inter-cluster

latencies of 1 to 3 cycles (horizontal axis).

The Start-Cycle heuristic (Figures 4.3 b-d and 4.4 b-d) performs well on low la-

tencies but the schedule length increases almost linearly with the inter-cluster latency.

This is because the heuristic is very aggressive at dispersing the instructions across

distant clusters.

On the contrary, the Completion-Cycle heuristic (in both Figures 4.3 e-g and 4.4

e-g) performs best under high inter-cluster communication latencies. The schedule

length remains unchanged for the inter-cluster latencies shown. The reason for this is

that an instruction will only be scheduled on a distant cluster if its descendants are not

slowed down. This conservative policy bounds the schedule length for high latencies

but proves not as effective for low latencies.

LUCAS adjusts better to the inter-cluster latency. We show how it does so by

demonstrating how each of the sub-heuristics works in each example (Figures 4.3 and

4.4). The Cycle-Congestion sub-heuristic (Figure 4.3) measures the congestion on

each scheduling cycle. If there are too many ready instructions to fit in a single cluster,

then it chooses to follow the aggressive Start-Cycle heuristic. This happens in cycles

0 and 1 in Figure 4.3.h and 4.3.i (latency 1 and 2). On later cycles, however, there

is no congestion and therefore instruction ’E’ is scheduled based on the conservative

Completion-Cycle heuristic.

4.2. Motivation 61

The instruction Mobility sub-heuristic is shown in Figure 4.4. The concept is that if

an instruction has a high enough mobility, then its slack is high and thus there is little

chance that it can degrade the schedule if assigned to a distant cluster (the mobility

is calculated as ALAP-ASAP1 as in [51]). Therefore high-mobility instructions are

scheduled with the Start-Cycle heuristic. The mobility numbers are shown in the DFG

of Figure 4.4 on the left side of each instruction. Instruction ’C’ has mobility 1 which

is higher than the threshold for Latency 1. Therefore in that case ’C’ is scheduled in

Cluster 1, as dictated by the Start-Cycle heuristic.

As shown in the motivating examples, LUCAS is capable of adapting to the best

clustering heuristic, for the whole range of inter-cluster communication latencies. The

detailed description of the LUCAS algorithm and the sub-heuristics used is presented

later in Section 4.3.

4.2.2 Scheduling

While both UAS and CARS [72, 41] make use of a list scheduler, they have embedded

the clustering decision inside the instruction scheduler in a different way.

CARS 2 always honors the clustering decision and schedules only on the cluster

chosen by it (see Figure 4.5.a). The clustering heuristic tags each cluster with a score

and next the cluster with the best score wins (Figure 4.5.a.2 BEST CLUSTER).

On the contrary UAS [72] is more aggressive. It tries to honor the clustering de-

cision only at the first attempt, but if it fails to issue the instruction on the specified

cluster, it will try other clusters as well (Figure 4.5.b). Therefore the cluster with the

best score does not always win (Figure 4.5.b.3). The ordering of the clusters is decided

by the clustering heuristic, so clusters with high score are tried first. This is an aggres-

sive technique that might work on low inter-cluster latencies but performs poorly on

higher latencies. As shown in Section 4.5, this method has no major impact on perfor-

mance even for low inter-cluster latencies when combined with either the Start-Cycle

heuristic of Algorithm 2.2 or the original Completion-weighted Predecessor (CWP)

[72] as its aggressiveness is overshadowed by that of the aggressive heuristic.

LUCAS aims at performing best on the whole range of inter-cluster latencies.

Therefore it honors the clustering decision made by the heuristic (similarly to CARS)

1ALAP (As Late As Possible) is the latest possible scheduling cycle such that a valid schedule that

completes without causing a longer schedule than the one obtained with infinite resources. ASAP (As

Soon As Possible) is the earliest scheduling cycle. For more information see Section 2.2.
2CARS also performs register allocation, which is not shown.

62 Chapter 4. LUCAS

CL0

A0

1

2

3

4

CL1

B

C

D

E

CL0

A0

1

2

3

4

CL1

B

C

E

D

A

B

E

C

D

1: congestion
0: congestion
1: congestion

No congestion0: congestion

CL0

A0

1

2

3

4

CL1

B

C

D

E

CL0

A0

1

2

3

4

5

CL1

B

C

D

E

C
O

N
G

E
S

T
IO

N
S

T
A

R
T

−
C

Y
C

L
E

Latency: 1c Latency: 2c Latency: 3c

CL0

A0

1

2

3

CL1

B

C

D

E

CL0

A0

1

2

3

CL1

B

C

D

E

2: NO cong.
3: NO cong

2: NO cong.
3: NO cong

L
U

C
A

S

 a. Data Flow Graph

(DFG)

i.

d.c.

C
Y

C
L

E

CL0

A0

1

2

3

4

CL1

E

D

CL0

A0

1

2

3

4

CL1

E

D

CL0

A0

1

2

3

4

CL1

E

D

C
O

M
P

L
E

T
IO

N

e. f. g.

b.

j.h.

C

B B

C

B

C

Free issue slot

X Instruction node

Occupied slotX

True dependence

Cycle−CongestionLUCAS

Inter−cluster communication latency

Figure 4.3: Motivating example 1. Schedules for the instructions in the Data Flow Graph

(DFG) (a) on a 2-cluster 2-issue clustered architecture, for the Start-Cycle, Completion-

Cycle and LUCAS-Cycle-Congestion clustering heuristics. The inter-cluster delay

ranges from 1 to 3 cycles.

4.2. Motivation 63

D
CL0

A0

1

2

3

CL1

B

C

D

CL0

A0

1

2

3

CL1

B

C

D

CL0

A0

1

2

3

CL1

B

C

D

Latency: 1c Latency: 2c Latency: 3c

A

B

C
0

0

0

1

(DFG)
 a. Data Flow Graph

CL0

A0

1

2

3

CL1

B

C

CL0

A0

1

2

3

4

CL1

B

C

C
Y

C
L

E

C
O

M
P

L
E

T
IO

N
L

U
C

A
S

S
T

A
R

T
−

C
Y

C
L

E

CL0

A0

1

2

CL1

B

C

CL0

A0

1

2

CL1

B

C

D

D

D

D

CL0

A0

1

2

3

CL1

B

C

D

CL0

A0

1

2

3

CL1

B

C

D

b. c. d.

e. f. g.

MOB(C) > Thr.

h. i. j.

MOB(C) < Thr. MOB(C) < Thr. M
O

B
IL

IT
Y

Free issue slot

X Instruction node

Occupied slotX

True dependence

LUCAS Mobility

Inter−cluster communication latency

Figure 4.4: Motivating example 2. Schedules for the instructions in the Data Flow Graph

(DFG) (a) on a 2-cluster 2-issue clustered architecture, for the Start-Cycle, Completion-

Cycle and LUCAS-Mobility clustering heuristics. The inter-cluster delay ranges from 1

to 3 cycles. Each node in the DFG is tagged with its mobility number.

64 Chapter 4. LUCAS

A

A

LIST

EMPTY

B C D
No

Can Issue?

LowHigh Try Next Instruction
in Ready List

YesBEST

CLUSTEROrdered Ready List
Clustering

Heuristic BEST

CLUSTER

INSTR

Pop highest priority

instruction

Issue INSTR on

B C D

clX clY clZ

WorstBest

List of CLUSTERS Can Issue?

LowHigh

Yes

Ordered Ready List

Clustering

Heuristic
on clX

INSTR

Pop highest priority
instruction Issue INSTR

No

Try Next Instruction
in Ready List

Try Next Cluster

1. 2. 3. 4.

5b.

5c.

5a.

4a.
3.2.1.

4b.

b. Aggressive scheduler that ignores the clustering decision (UAS)

a. Scheduler that respects the clustering decision (CARS−like, LUCAS)

Figure 4.5: The two variants of embedding the clustering heuristic into the instruction

scheduler. The numbers denote the order of execution of each step.

as in Figure 4.5.a.

4.3 LUCAS

4.3.1 Algorithm

The proposed Latency-aware Unified Cluster-Assignment and instruction Scheduling

algorithm addresses the shortcomings of the existing algorithms (discussed in Section

4.2).

LUCAS is a list-scheduling-based algorithm that performs cluster assignment and

instruction scheduling simultaneously. The novelty lies in the clustering heuristic. The

algorithm is listed in Algorithm 4.1. A high-level view of the structure of the algorithm

is shown in Figure 4.5.a.

In detail, LUCAS performs the following actions:

1. It assigns a priority number to all instruction nodes of the DFG (Algorithm 4.1

line 4) using a priority function (for example the instruction height in the DFG).

4.3. LUCAS 65

2. It updates the ready list with instructions ready to be issued on the current cycle

(line 7).

3. It sorts the ready list based on the node priorities of step 1 (line 8).

4. Before scheduling the instruction under consideration the algorithm makes sure

its mobility is up to date: If any of its immediate data-flow predecessors has

been placed on a distant cluster, then update the current instruction’s mobility

(decrement it by the inter-cluster delay (ICD)) (line 10). The intuition behind

this is that the ICD consumes some of its ability to move freely.

5. Then the algorithm determines the best cl (best cluster) by evaluating the heuris-

tic for each candidate cluster and choosing the best among those (Algorithm 4.1

line 22). The get best cluster() function (lines 22 - 32) incorporates the adaptive

heuristic.

6. Then the algorithm tries to schedule the instruction only if it meets the Start-

Cycle constraint (which includes both dependence and clustering-related struc-

tural constraints) (Algorithm 4.1 line 12).

7. If all processor structural constraints allow scheduling the instruction at the cur-

rent cycle on best cl (Algorithm 4.1 line 13), then we can proceed.

8. If the required Inter-Cluster Copies (ICCs) can be emitted on the inter-cluster

network (that is if the network is not fully occupied) (line 14), then it emits the

ICCs and register renames the instructions that use the register brought in by the

ICCs (line 15) and it finally cluster-assigns and issues the instruction on best cl

(lines 16 and 17).

9. Repeat steps 5 to 9, by selecting the highest priority node until the ready list is

empty (line 9).

10. Finally repeat steps 2 to 10 until all instructions are scheduled (Algorithm 4.1

line 6).

The LUCAS heuristic is a hybrid Start-Cycle / Completion-Cycle heuristic. It de-

cides per instruction which of the two to use based on two metrics:

1. The cycle congestion (Algorithm 4.1 line 37). This is a binary metric. It returns

true if there are too many instructions to schedule on the current cycle. That is

66 Chapter 4. LUCAS

Algorithm 4.1: LUCAS: Latency-adaptive Clustering and Scheduling.

1 /* LUCAS Scheduling. In1: DFG, Out: Clustered Schedule*/

2 lucas_schedule_and_cluster (DFG)

3 {

4 Calculate DFG node priorities (e.g., node height from roots)

5 CYCLE = 0

6 while (exist unscheduled instructions)

7 Fill in READY_LIST []

8 sort READY_LIST [] based on priority

9 for INSTR in prioritized READY_LIST []

10 Update MOBILITY (INSTR) if required

11 BEST_CL = get_best_cluster (INSTR , CYCLE)

12 if (start_cycle (INSTR , BEST_CL)<=CYCLE)

13 if (can issue INSTR on CYCLE)

14 if (can schedule Inter -Cluster Copies)

15 Emit ICCs and register rename INSTR

16 INSTR.cluster = BEST_CL

17 Issue (INSTR , CYCLE , BEST_CL)

18 CYCLE ++

19 }

20

21 /* In1: Instruction, In2: Sched. cycle, Out: best cluster */

22 get_best_cluster (INSN , CYCLE)

23 {

24 for CLUSTER in all clusters

25 HEURISTIC [CLUSTER] = lucas (INSN ,CLUSTER)

26 /* Find best cluster: MIN_CL */

27 MIN_CL = 0

28 for CLI in clusters

29 if (HEURISTIC[CLI] < heuristic[MIN_CL])

30 MIN_CL = CLI

31 return MIN_CL

32 }

33

34 /* Return the heuristic score INSN on CLUSTER */

35 lucas (INSN , CLUSTER)

36 {

37 HIGH_CONGESTION = (number of ready instructions > IWPC × ICD)

38 HIGH_MOBILITY = (MOBILITY (INSN) > IWPC×2×(ICD -1))

39 if (HIGH_CONGESTION OR HIGH_MOBILITY)

40 return start_cycle (INSN , CLUSTER)

41 else

42 return completion_cycle (INSN , CLUSTER)

43 }

4.3. LUCAS 67

IWPC

IC
C

 L
a
te

n
cy

#
R

ea
d

y

Figure 4.6: Visualization of the Congestion Threshold.

if the number of instructions that are ready on the current cycle are greater than

the congestion threshold. The threshold reflects both the issue resources of a

cluster and the inter-cluster penalty. It is computed as the product: Issue-Width

Per Cluster (IWPC) times the Inter-Cluster Delay (ICD). This can be visualized

as the 2D volume of a 2D bucket IWPC wide and ICD tall (Figure 4.6).

2. The mobility of the instruction (Algorithm 4.1 line 38). The mobility is cal-

culated as ALAP-ASAP values in the Data-Flow-Graph [51] (see definition of

mobility in Section 2.2). A high mobility value suggests that there is enough

slack in the schedule for the instruction to be executed later without guaranteed

performance degradation of the schedule. The mobility threshold corresponds to

the inter-cluster round-trip time, which is an intuitive threshold for the mobility

value; if the round-trip time is longer than the available mobility, then we should

be conservative in the clustering decision.

The actual algorithm for the LUCAS heuristic is listed in Algorithm 4.1 in get best cluster()

function. It works as follows:

• At first each candidate cluster is tagged with the heuristic value (Algorithm 4.1

line 24). This uses the lucas() function (Algorithm 4.1 line 35).

• The LUCAS heuristic checks the two metrics (cycle congestion and instruction

mobility sub-heuristics) (lines 37 and 38) for the instruction to be scheduled and

decides on the heuristic to be used for the clustering decision (line 39). This is the

core of the LUCAS heuristic. The metrics decide whether the aggressive Start-

Cycle heuristic (line 40) or the more conservative Completion-Cycle heuristic is

used (line 42).

68 Chapter 4. LUCAS

• Finally, the algorithm does a linear search over all clusters to find the cluster with

the minimum heuristic value (line 28) (as shown in Figure 4.5.a.2). Once found,

the cluster that corresponds to the minimum value of the heuristic is returned as

the best cluster (line 31).

4.3.2 Algorithmic Complexity

In this section the algorithmic complexity of LUCAS is calculated. We do that by

examining the algorithm (Algorithms 4.1, 2.2 and 2.3). Let’s consider an input DFG

of N nodes. The LUCAS Scheduling algorithm has 2 visible levels of nested loops (the

3rd is in the Start-Cycle calculation):

1. The outer loop iterates until all instructions in the DFG are scheduled. In each

iteration a single cycle gets scheduled. If on average S (with S ≤ issuewidth)

instructions get scheduled, then this loop iterates N/S times. On each iteration

of this loop, the ready list is sorted using quicksort. Given an average ready list

size of R, this usually costs R× logR and R2 in the worst case.

2. The middle loop iterates until all instructions in the ready list are examined

for scheduling. Therefore it iterates R times. The best cluster is found by

get best cluster(). This iterates once over all clusters and sets the Start-Cycles.

The function get best cluster() (Algorithm 4.1 line 22) iterates over all clusters

(C times) and each time it calculates either the Start-Cycle or the Completion-

Cycle heuristic. Both Start-Cycle and Completion-Cycle heuristics iterate over

all data-flow immediate predecessors of the instruction to be scheduled and gets

calculated once for each cluster. If P is the number of data-flow immediate pre-

decessors, then this costs CP.

The complexity of LUCAS Scheduling is computed as:

• N/S×R× (logR+CP) in the usual case

• N/S×R× (R+CP) in the worst case

In all practical cases all S, R, P and C are small constants with typical values: S = 2,

R ≤ 10, P ≤ 10 and C = 4. This is an O(N) complexity. The worst-case scenario

involves S = 1 and R = N, P = N which leads to complexity O(N3).

UAS has a similar 3-nested loop structure and exhibits similar run-time with some

minor differences in some constant-time calculations in the loops. For all practical

4.4. Experimental Setup 69

cluster cluster

3

clustercluster

0 1

2

Figure 4.7: The fully-connected point-to-point interconnect.

Processor: IA64 based clustered VLIW

Issue Width: 4 or 8

Clusters: 4

Instruction Latencies: Same as Itanium2 [63]

Register File: (32GP, 32FL, 16PR) per cluster

Inter-Cluster Delay: 1 - 4 cycles

Inter-Cluster Bus Bandwidth: ∞

Branch Prediction: Perfect

Cache: Levels 3 (same as Itanium2 [63])

Levels : L1 L2 L3 Main Mem.

Size (Bytes): 16K 256K 3M ∞

Block size (Bytes): 64 128 128 -

Associativity: 4-Way 8-way 12-way -

Latency (cycles): 1 5 12 150

Table 4.1: Processor configuration.

cases, the UAS is O(N) and in the worst-case it is O(N3). Therefore both schedulers

have similar complexity.

4.4 Experimental Setup

4.4.1 Architecture

The target architecture is an IA64 (Itanium2) ISA based statically scheduled clustered

VLIW architecture. The architecture is configured to have 4 clusters with an issue-

width of 4 or 8 (1 or 2 issue per cluster).

70 Chapter 4. LUCAS

... ...

R
eg

is
te

r
A

ll
o
ca

ti
o
n

.c IA64

L
U

C
A

S

S
ch

ed
u
li

n
g

GCC−4.5.0

Figure 4.8: The compilation flow.

The inter-cluster communication bandwidth is infinite 3 , meaning that there is no

limit in the count of the simultaneous inter-cluster communication. Thus our results

have no noise from any inter-cluster bandwidth effects.

The clusters communicate through a fully-connected point-to-point interconnect as

shown in Figure 4.7. All clusters communicate with each other with equal latencies.

The latency is adjustable and in our experiments it ranges from 1 to 4 cycles.

The architecture configuration is summarized in Table 4.1.

4.4.2 Compiler

We implemented both UAS [72] and the proposed (LUCAS) unified clustering and

scheduling algorithms along with all clustering heuristics (see below) in the instruction

scheduling pass of GCC-4.5.0 [1] cross compiler with Itanium ([87]) as the target ISA

(IA64). As shown in Figure 4.8 the instruction scheduler (with the clustering built-in)

runs before register allocation.

The implementation of the scheduler enables us to easily swap the clustering heuris-

tics while the rest of the instruction scheduling pass remains unchanged. The heuristic

is one of the following: i) Start-Cycle ([72]), ii) Completion-Cycle ([27]), iii) Critical-

Successor ([96]) or iv) LUCAS (the proposed one).

4.4.3 Evaluation

We evaluated LUCAS on the 4-cluster architecture described in Section 4.4.1 config-

ured as a 4-issue and an 8-issue machine. We compare the LUCAS clustering heuristic

controlled by all switching heuristics (Congestion LUCAS-C, Mobility LUCAS-M

and both LUCAS-C-M) against the state-of-the-art Start-Cycle (SC) and Completion-

Cycle (CC) as well as the recently proposed Critical-Successor (CS) clustering heuris-

3This means that the condition in Algorithm 4.1 line 14 is always true.

4.5. Results and Analysis 71

Scheme Algorithm Clustering Heuristic

Obeys CWP Start Completion Critical

Heuristic [72] Cycle[27, 41] Cycle[27] Successor[96]

UAS-CWP × √ × × ×
UAS-SC × × √ × ×
SC

√ × √ × ×
CC

√ × × √ ×
CS

√ × √ × √

LUCAS-C
√ × √

(Hybrid)
√

(Hybrid) ×
LUCAS-M

√ × √
(Hybrid)

√
(Hybrid) ×

LUCAS-C-M
√ × √

(Hybrid)
√

(Hybrid) ×

Table 4.2: Evaluated schemes.

tic. All of the above are implemented on the same scheduling algorithm that LUCAS

is based on, as explained in Section 4.3 and as shown in Figure 4.5.a. In addition we

compared all these against an accurate implementation of the UAS algorithm and for

completeness we compared against UAS being powered by both the SC heuristic but

also by the Completion Weighted Predecessor (CWP) heuristic, which is the heuristic

proposed in [72]. These two algorithms look like the one shown in Figure 4.5.b. The

algorithms and heuristics compared are summarized in Table.4.2.

We evaluated LUCAS against the existing state-of-the-art heuristics on 6 of the

Mediabench II video [34] benchmarks. All benchmarks were compiled with -O2 opti-

mizations enabled. Each benchmark is compiled several times, once with each cluster-

ing heuristic enabled, and each binary is then executed on our modified ski simulator

[2], configured as discussed in Section 4.4.1.

4.5 Results and Analysis

We have two kinds of results: i) Performance results (normalized to the Start-Cycle

for delay 1), shown in Figures 4.9 and 4.10, which show that LUCAS meets its perfor-

mance goals for both 4-issue and 8-issue architectures with 4 clusters. ii) Instruction

distribution measurements (Figures 4.11 and 4.12) that provide important insights into

the workings of the heuristics. The LUCAS heuristic comes in three flavors: LUCAS-

C which is based only on the Congestion switching heuristic, LUCAS-M which is

72 Chapter 4. LUCAS

based only on the Mobility switching heuristic and LUCAS-C-M which is the full ver-

sion with both Congestion and Mobility enabled. This is a useful breakdown that lets

us better understand the effects of each part individually.

4.5.1 Performance

The performance results of Figures 4.9 and 4.10 show the normalized cycle count of

each benchmark under a range of inter-cluster latencies (1 to 4 cycles). The GMean

(geometric mean) summarizes all latencies.

The first thing that stands out is the non-scalability of the UAS-CWP [72], the

UAS-SC, the Start-Cycle (SC) ([27], Algorithm 2.2) and Critical-Successor (CS) [96]

heuristics. The performance degradation increases almost linearly with the delay, at an

average rate of about 25% per cycle of inter-cluster delay for the 4-issue,4-cluster case,

as seen in Figure 4.9. This is caused by the aggressiveness of the clustering heuristic,

which spreads instructions on distant clusters, disregarding the cost of communicating

the results back after they have been computed. The Critical-Successor heuristic is

partly based on the Start-Cycle, which contributes to its non-scalability.

The performance of both UAS schemes is very close to that of the Start-Cycle

scheme. As already explained in Section 4.2.2, the UAS-CWP scheme is very sim-

ilar to SC, within 1% on average for the 4-issue case and within 2% for the 8-issue

case. The CWP heuristic usually leads to the same decision as the Start-Cycle clus-

tering heuristic. UAS (in both UAS-CWP and UAS-SC) may ignore the decision of

the clustering heuristic if it cannot schedule on the chosen cluster due to resource con-

straints (see Figure 4.5.a). This is a greedy gamble as the scheduler tries to assign an

instruction to any cluster possible, even if this means ignoring the primary decision of

the clustering heuristic. This does not happen in the unified clustering and schedul-

ing algorithm that we propose (Figure 4.5.b). In our approach, the primary decision

of the clustering heuristic is honored by the scheduler. The CC, SC, CS and LUCAS

heuristics follow this second approach.

The Completion-Cycle heuristic (Algorithm 2.3) keeps performance at a reason-

able level. The reason is that the heuristic is conservative. It only issues an instruction

on a distant cluster if it can prove that it is beneficial even in case it needs to send the

data back. Therefore, if the inter-cluster latency is high, usually the round-trip latency

is too expensive and the Completion-Cycle heuristic will keep the instructions on the

same cluster. This however proves to be inadequate for low inter-cluster latencies (e.g.

4.5. Results and Analysis 73

1.00

1.20

1.40

1.60

1.80

2.00

2.20

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

cjpeg (4-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

djpeg (4-issue, 4-cluster)

UAS-CWP
UAS-SC

SC
CC
CS

LUCAS-C
LUCAS-M

LUCAS-C-M

Inter-Cluster-Delay

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

mpeg2enc (4-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.20

1.40

1.60

1.80

2.00

2.20

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

mpeg2dec (4-issue, 4-cluster)

Inter-Cluster-Delay

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

h263enc (4-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.20

1.40

1.60

1.80

2.00

2.20

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

h263dec (4-issue, 4-cluster)

Inter-Cluster-Delay

Figure 4.9: Normalized cycles of the 4-issue, 4-cluster configuration for inter-cluster

delay 1 to 4, normalized to Start-Cycle (SC), delay 1.

74 Chapter 4. LUCAS

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

cjpeg (8-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.20

1.40

1.60

1.80

2.00

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

djpeg (8-issue, 4-cluster)

UAS-CWP
UAS-SC

SC
CC
CS

LUCAS-C
LUCAS-M

LUCAS-C-M

Inter-Cluster-Delay

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

mpeg2enc (8-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.20

1.40

1.60

1.80

2.00

2.20

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

mpeg2dec (8-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.10

1.20

1.30

1.40

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

h263enc (8-issue, 4-cluster)

Inter-Cluster-Delay

1.00

1.20

1.40

1.60

1.80

2.00

2.20

d1 d2 d3 d4 GMean

N
o

rm
a

liz
e

d
 c

y
c
le

s

h263dec (8-issue, 4-cluster)

Inter-Cluster-Delay

Figure 4.10: Normalized cycles of the 8-issue, 4-cluster configuration for inter-cluster

delay 1 to 4, normalized to Start-Cycle (SC), delay 1.

4.5. Results and Analysis 75

Figure 4.9 mpeg2dec). In the worst case the Start-Cycle heuristic outperforms the

Completion-Cycle by over 40% (Figure 4.9 mpeg2dec).

The measurements of Figure 4.9 show that while the Completion-Cycle heuristic

is better at high inter-cluster delays (e.g., Figure 4.9 djpeg latency 2 or more), the

Start-Cycle heuristic usually works best at low inter-cluster delays. That is when being

aggressive at spreading the instructions across clusters as much as possible proves a

better choice than being conservative. This is the main motivation behind LUCAS.

If both of these approaches are combined, then we can get a clustering heuristic that

performs well across all inter-cluster delays. This assumption is confirmed by the

LUCAS results of Figure 4.9.

The intersection point where the Start-Cycle heuristic overtakes the Completion-

Cycle heuristic is not fixed. It is can be between delay 1 and 2 (e.g., Figure 4.9 djpeg)

or between delay 2 and 3 (e.g., Figure 4.9 cjpeg). Therefore selecting the right heuristic

cannot be based on some fixed static value. LUCAS performs an effective switching

between Start-Cycle and Completion-Cycle with the help of two metrics: the cycle

congestion and the instruction mobility.

LUCAS does not only adapt to the best heuristic, but it also quite often outperforms

both heuristics (e.g., Figure 4.9 mpeg2dec d3,d4, h263enc d2,d3,d4 and Figure 4.10

mpeg2dec d1, h263dec d1). This is intuitive because LUCAS performs a fine-grain

switching between the Start-Cycle and Completion-Cycle heuristic at the instruction

level. Thus, it can select the best heuristic at a fine granularity, when it is needed,

which is better in the long run than selecting one of the two for the duration of the

entire program.

The two sub-heuristics that form LUCAS, Congestion (C) and Mobility (M), do

work together and when combined (logical OR, Algorithm 4.1 line 39) usually lead to

better overall performance. The gains from applying the Mobility heuristic on top of

the Congestion one are up to 9% (Figure 4.9 mpeg2enc d3). In a few cases, however,

performance decreases (3.5% in the worst case). The reason behind the behavior is that

under high inter-cluster delays, any further aggressiveness (introduced by the logical

OR-ing of the heuristics), is usually detrimental.

Overall, in most cases LUCAS performs very closely to the best heuristic or better

(e.g., cjpeg). There are some outliers though. The mpeg2enc stands out from the rest,

as for both the 4-issue and 8-issue setups LUCAS cannot keep up with the best for

high inter-cluster delays, although it is still much better than UAS-CWP, UAS-SC, SC

and CS. In case of the 4-issue machine, the differences are great, but on the 8-issue

76 Chapter 4. LUCAS

machine, where the performance penalties get amplified, this effect is more evident.

The mpeg2enc, 8-issue case is notable as it is the only one that is strongly biased

against the Start-Cycle heuristic even for delay 1. Therefore, any attempt to spread the

instructions to distant clusters will lead to a slowdown. In most other cases if LUCAS

performs worse than the best performing heuristic it performs marginally worse (e.g.

Figure 4.10 djpeg d2,d3).

4.5.2 Instruction Distribution

To provide more insights into the internals of the clustering heuristics, including LU-

CAS, we show the distribution of the program instructions across clusters for all heuris-

tics and for both machine types (Figures 4.11 and 4.12). Each of the stacked bar shows

the breakdown of the instructions on each cluster (each cluster is represented by a

color). Each heuristic corresponds to 4 stacked bars, one for each inter-cluster delay

(ranging from 1 to 4). We observe that:

1. On the 4-issue machine (Figure 4.11), about 60% of the code is executed on

the first cluster, and the rest of it is spread across the rest for inter-cluster delay

of 1. The further away from cluster 0, the fewer the instructions. The second

cluster (cl1) usually contains about 25% of the instructions, the third cluster

(cl2) about 10% and the last one contains about 5%. This behavior is intuitive

as any inter-cluster communication has an extra overhead, forcing the scheduler

to be reluctant on spreading the instructions across clusters, doing so only when

absolutely necessary. This effect gets amplified on the 8-issue machine (Figure

4.12), where there is usually little need for extra issue slots on other clusters.

This is why, on this configuration there are even more instructions (> 80% in

some cases) in cluster 0 and fewer in the rest. It is worth noting that the first

cluster (cl0) is of no particular significance as the architecture is a symmetric

one, as shown in Figure 4.7.

2. The fundamental difference of the heuristics can be observed as we increase the

inter-cluster delay. The aggressive heuristics (UAS, SC and CS) do not seem to

adjust to the increase in the inter-cluster delay. Instead of being more conser-

vative in scheduling across clusters, they seem to become even more aggressive

(the instructions on cl0 decrease as the delay increases). On the other hand the

conservative CC heuristic behaves in the opposite way. As the inter-cluster de-

lay increases, it tries to keep more instructions within cl0. The LUCAS heuristic

4.5. Results and Analysis 77

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
In

s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for cjpeg (4-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for djpeg (4-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for mpeg2enc (4-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for mpeg2dec (4-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for h263enc (4-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for h263dec (4-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

Figure 4.11: Distribution of instructions on each cluster, for all clustering heuristics and

for delays ranging from 1 to 4. This is for the 4-issue 4-cluster machine.

78 Chapter 4. LUCAS

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for cjpeg (8-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for djpeg (8-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for mpeg2enc (8-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for mpeg2dec (8-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for h263enc (8-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

In
s
tr

u
c
ti
o

n
s
 p

e
r

c
lu

s
te

r

 Scheduling heuristic

Instructions per cluster for h263dec (8-issue, 4-cluster)

cl0 cl1 cl2 cl3

LUCAS-C-MLUCAS-MLUCAS-CCSCCSCUAS-SCUAS-CWP

Figure 4.12: Distribution of instructions on each cluster, for all clustering heuristics and

for delay ranging from 1 to 4. This is for the 8-issue 4-cluster machine and just for the

mpeg2 benchmarks.

4.6. Conclusion 79

(LUCAS-C-M in particular), bridges the gap between these two opposite strate-

gies. For small inter-cluster delays it behaves almost like the aggressive heuris-

tics, but as the inter-cluster delay increases, it behaves as the conservative one.

4.6 Conclusion

This chapter proposes LUCAS, a new unified cluster assignment and instruction schedul-

ing algorithm for clustered VLIW processors, that is powered by a novel hybrid clus-

tering heuristic. LUCAS outperforms the state-of-the-art as it is capable of switching

between two heuristics, the aggressive Start-Cycle and the conservative Completion-

Cycle at a very fine granularity. The switching is controlled by two metrics, the cycle

congestion and the instruction mobility. The end result is a scheduler that generates

code that performs best across a wide range of inter-cluster latencies.

Chapter 5

CAeSaR: unified Cluster-Assignment

Scheduling and communication Reuse

for clustered VLIW

This chapter presents CAeSaR, a novel instruction scheduling algorithm that performs

clustered-VLIW specific communication reuse within instruction scheduling. Reusing

the values communicated across clusters saves inter-cluster bandwidth and limits the

requirements for additional inter-cluster buses and Inter-Cluster Copy (ICC) units. The

existing state-of-the-art schedulers do not optimize away the redundant inter-cluster

communication. This has an important effect on architectures with limited inter-cluster

communication bandwidth, or in architectures with limited issue slots, like the ones

shown in Figure 2.8.b. CAeSaR is shown to outperform the existing state-of-the-art in

a wide range of benchmarks.

5.1 Introduction

Clustered VLIWs rely on the compiler to orchestrate the communication between clus-

ters, using explicit Inter-Cluster Copy instructions (ICCs). In such machines, it is up

to the code generator to optimize the schedule and the communication. Examples of

such architectures are the RAW processor [90] (with explicit send/receive instructions

instead of our bi-directional ICCs) and the HP/ST architecture [28].

Internally these machines are designed in such a way that the instructions of each

cluster can only access the local register file. Whenever some data is needed from a

distant register file, an ICC instruction has to be issued to bring the data in. This is a

81

82 Chapter 5. CAeSaR

RF
r32 − r63

RF
r0 − r31

RF
r64 − r95

RF
r96 − r127

0. r33=...

1. r2 = r1 + r33

cluster1

a. A clustered VLIW processor with 4 clusters

cluster0

A
L

U

L
/S

IC
C

cluster2

A
L

U

L
/S

IC
C

cluster3

A
L

U

L
/S

IC
C

A
L

U

L
/S

IC
C

la
te

n
cy

ICC:
r33=...

...=r2

r3=r33

b. A sample schedule

r2=r1+r3

2. ... = r2

cluster1

cluster0

cluster0

c. The original sample code and the cluster each instruction is assigned to

F
P

U

F
P

U

F
P

U

F
P

U

Figure 5.1: A 4-cluster 4-issue clustered VLIW architecture (a). The instruction sched-

ule in (b) corresponds to the code in (c).

good design decision for two reasons:

i) Converting an architecture into a clustered one requires only a small ISA change

for adding the ICC instruction.

ii) Scaling up the clustered design requires no major re-design of the ISA, apart

from the ICCs that need to access a larger register space.

A design with no ICCs would require that instructions have access to all remote

registers. This would have the drawback that converting a non-clustered processor

to a clustered one would require a significant ISA change affecting all instructions

with a register addressing mode, since more register address bits would be required

per instruction for accessing the remote register files. Moreover, scaling up to more

clusters would require a modification of similar magnitude since the total count of

addressable registers would increase. The ICC architecture, on the other hand, only

requires changes on the ICC instructions themselves. Therefore the clustered design

with ICCs is preferred.

An example of a clustered machine is shown in Figure 4.1. It is composed of 4 clus-

ters, each with a register file of 32 GP registers (the Floating Point (FP) and Predicate

(PR) register files are not shown) and one issue slot capable of executing Arithmetic

(ALU), Load/Store (L/S), Floating Point (FPU) and Inter-Cluster Copy (ICC) instruc-

tions.

5.1. Introduction 83

The code sequence of Figure 5.1.c will run on the clustered machine as in Figure

5.1.b. The ADD instruction r2=r1+r33 is assigned to cluster0, therefore it can not

access register r33 that belongs to cluster1. It therefore has to be modified to r2=r1+r3,

where r3 is local to cluster0. The data is transferred from cluster1 to cluster0 by the

ICC r3=r33, which is the only instruction capable of accessing registers belonging to

different clusters. Any inter-cluster communication is associated with an inter-cluster

latency, that of the latency of the ICC instruction.

It might seem that clustered architectures have an additional overhead compared to

their non-clustered counterparts: that of the inter-cluster delay. In reality there is an

advantage. The clustered design, with the explicit inter-cluster delays, lets the clustered

architecture operate at higher frequencies within a cluster compared to monolithic non-

clustered designs [92].

Code generation for clustered architectures differs from the traditional one for non-

clustered machines. It requires an additional cluster assignment pass that decides on

the cluster that each instruction will be executed at. The difference is shown in Fig-

ure 5.3.a and Figure 5.3.b. Cluster assignment tags each instruction with a cluster

number tag. The cluster assignment algorithm decides on the clusters by querying

a clustering heuristic. The heuristic often makes its decision by taking into account

the inter-cluster communication latencies and the hardware resources. Chapter 4 com-

pared several existing clustering heuristics (e.g., Start-Cycle) and introduced a new one

(LUCAS). After each cluster is tagged with a cluster number, the instruction sequence

gets scheduled by the instruction scheduler.

ICC instructions are required for correct execution. They are inserted by the in-

struction scheduling pass and are placed before each instruction that belongs to one

cluster but reads a register from a different cluster. The ICC transfers the remote reg-

ister value to a local register and then the instruction using the value is modified to use

the local register instead of the remote one.

The challenge for the code generator is to optimally balance communication and

computation since ICC instructions compete with other regular instructions for the

same resources (issue slots). It is this harder resource allocation problem, not present

in the non-clustered VLIWs, that existing code-generation schemes are not designed

to handle effectively.

In Chapter 4 this scheduling problem of ICCs competing with original instructions

for the resources did not exist. The reason is that similarly to most existing works, the

target architecture had separate issue slots for the ICC instructions (as in Figure 5.2.a).

84 Chapter 5. CAeSaR

ICCU ICCU

ICC ICCINSN INSN

ICCU ICCU

or ICC
INSN INSN

or ICC

FU FU

4 units

2 issue slots

b. Clustered VLIW with shared ICC slots
This increases the burden on the code
generator

FU FU

4 units

4 issue slots

a. Clustered VLIW with separate ICC slots
This requires a large issue width

Figure 5.2: Two different ways of treating ICC instructions.

A less wasteful design uses the same issue slots for both regular instructions and ICCs

(Figure 5.2.b). This hardware-efficient design is considered in this chapter. Smarter

code generation techniques compensate for this lack of dedicate hardware slots for the

ICCs.

Optimized code generation for such clustered architectures requires that ICC in-

structions be optimized away whenever possible. This can be done by re-using the data

brought in by past ICCs instead of bringing them again multiple times. We refer to this

optimization as Communication Reuse or ICC-reuse. This is a critical optimization

for a clustered architecture where the inter-cluster communication is a critical resource.

None of the existing approaches reuse ICCs.

In our evaluation of CAeSaR we show that clustered architectures require an im-

proved instruction scheduling algorithm that unifies all clustering, scheduling and ICC-

reuse. The reason why all these phases should be unified is that otherwise a phase-

ordering problem exists that leads to sub-optimal solutions:

• If clustering is done separately from instruction scheduling then many ICCs may

be generated at scheduling time that will harm performance. This has been

shown in [72]. Therefore, a unified clustering + scheduling pass is required

(Figure 5.3.c). This unified approach was followed in Chapter 4.

• If the unified scheduling+clustering is done separately from the communication

reuse (ICC-reuse) (Figure 5.3.d) then the clustering+scheduling decisions will be

based on the assumption that all ICCs exist in the schedule, which will not hold

5.2. Motivation 85

after the ICCs get reused. This can lead to bad clustering/scheduling decisions.

A unified clustering + scheduling + ICC-reuse algorithm, however, will provide

the best solution (Figure 5.3.e).

CAeSaR is a unified instruction scheduling algorithm, that improves code-generation

for clustered architectures where inter-cluster communication is a critical resource.

Our contributions with CAeSaR are:

• Identification and quantification of ICC overhead.

• Introduction of the first unified instruction scheduler for clustered VLIW proces-

sors that performs all clustering, scheduling and communication minimization in

a single algorithm.

• A detailed comparison against the state-of-the art across a wide range of bench-

marks and showing that the proposed approach performs better.

5.2 Motivation

Existing code generation schemes do not optimize the inter-cluster communication. In

the motivating example that follows, we show the shortcomings of the existing state-

of-the-art and how we improve it with the CAeSaR algorithm.

The example is based on the Data Flow Graph (DFG) of Figure 5.4.f mapped on

both a monolithic non-clustered (Figure 5.4.a) and clustered (Figure 5.4.b-e) architec-

ture. The example shows the schedules for both architectures. The non-clustered one

is shown as a reference. The example focuses mainly on the schedules for the clustered

architecture generated by i) a naive decoupled scheduler (Figure 5.4.b), ii) the state-

of-the-art (Figure 5.4.c) UAS [72] and iii) the proposed CAeSaR scheduler (Figure

5.4.e). Figure 5.4.d is an intermediate step between the state-of-the-art and CAeSaR

which helps us get more insights on the workings of CAeSaR. The architecture of

the example is a dual-issue dual-clustered (that is single-issue per cluster) architecture

with a single cycle inter-cluster delay, meaning that the earliest a dependent instruction

can execute on the remote cluster is current cycle+2. The Data Flow Graph of Figure

5.4.f contains both True and False dependencies. The False ones do not imply any data

communication to their immediate successors, they just denote an ordering. To help

visualize the compilation process for each of these schedules, Figure 5.3 shows the

compilation passes involved in each case.

86 Chapter 5. CAeSaR

Instruction
scheduling

......
assignment

Cluster

b. Decoupled Cluster Assignment and Scheduling.

... UAS ...

...

...

Instruction
scheduling

...

...

...

CAeSaR

UAS ICC−Reuse

Scheduling and ICC−Reuse.

STATE−OF−THE−ART

...

a. Compilation passes for non−clustered architectures.

C
lu

st
er

ed
 A

rc
h

it
ec

tu
re

N
o
n

−
C

lu
st

er
ed

c. UAS: Unified cluster Assignment and Scheduling.

d. Decoupled UAS and ICC−Reuse.

e. CAeSaR: unified Cluster Assignment,

Figure 5.3: The various compilation pipelines.

5.2. Motivation 87

A
B
C
D

0
1
2
3
4
5

F
G
H

I J
E

E
J

D
C
B
A0

1
2
3
4
5
6
7

CL1CL0

ICC

F

G H

ICC

I

D
C
B
A0

1
2
3
4
5
6

CL1CL0

ICC

F
G

H
J
E

I

C
D

0
1
2

A
B

3
4
5
6
7
8

CL0 CL1

ICC

F
ICC

ICC
G

ICC

E9

I

H

J
architecture

Non−Clustered

+ICC−reuse

Clustered Architecture

STATE−OF−THE−ART

a. Monolithic

cluster
Assignment
and
Scheduling

Unified
cluster
Assignment
and
Scheduling

E
J

D
C
B
A0

1
2
3
4
5
6
7

CL1CL0

ICC

F

G H
I

unified
Cluster
Assignment
Scheduling

ICC−Reuse
and

b. Decoupled

c. UAS: d. UAS
e. CAeSaR:

Free issue slot
Instruction node
False dependency
True dependency

X

JIHGFB

A

C

D

E (DFG)
f. Data Flow Graph

Figure 5.4: Instruction schedules for the Data Flow Graph (DFG) in (f), based on various

scheduling algorithms. The first one (a) is on a monolithic non-clustered VLIW archi-

tecture. The rest are on a clustered architecture: (b) Decoupled Cluster Assignment

and Scheduling, (c) Unified Assignment and Scheduling (UAS), (d) UAS + ICC-reuse

optimization, (e) CAeSaR (proposed).

88 Chapter 5. CAeSaR

In what follows we introduce each optimization individually and we discuss its

impact on the instruction schedule (Figure 5.4).

i. The first schedule in Figure 5.4.a is the schedule obtained on a non-clustered

(monolithic) VLIW architecture by applying instruction scheduling (Figure 5.3.a).

This schedule is not split in clusters nor does it contain any Inter-Cluster Copy in-

structions (ICCs). Cycle-wise it is the shortest (fastest) since there are no inter-cluster

overheads involved.

ii. From this point on we are concerned only with scheduling for the clustered

architectures. The same compilation technique as in (i.) (5.3.a), if applied on a clus-

tered architecture leads to the schedule of (Figure 5.4.b). We refer to this as the naive

“Decoupled” scheme. The instructions are placed on the cluster that the clustering

algorithm dictates. That is: A, B, C, D, H, E on CL0 and F, G, I, J on CL1. The

scheduling pass inserts the ICCs, which occupy a lot of issue slots. Since the sched-

uler cannot change the clustering decision, the final schedule is full of unused slots.

The need to insert ICC instructions during scheduling creates a phase-ordering issue

between cluster assignment and instruction scheduling.

iii. Unifying the cluster assignment and the instruction scheduling (UAS [72], Fig-

ure 5.3.c and Figure 5.4.c) solves this phase-ordering problem. The clustering decision

is now made while the code and the ICC instructions get scheduled. UAS decides on

the cluster that an instruction will be scheduled at by taking into account the issue slot

occupancy of the ICCs in each case. The decision that UAS makes is a much more in-

formed one than of the previous decoupled approach. The resulting schedule is shown

in Figure 5.4.c. This is the current state-of-the-art.

iv. What is still missing from UAS is the reuse of data already communicated to a

cluster. This is possible in clustered VLIW architectures because each cluster contains

a local Register File. Figure 5.4.d shows that two ICC instructions are in place, even

though both instructions F and H read the same value from A. This is where the ICC-

reuse pass takes action (Figure 5.3.d and Figure 5.4.d). It removes the redundant ICCs

while making sure that H gets its data from the already transmitted value. The resulting

schedule has fewer ICCs, but its size is still the same as that of UAS (iii.). This step is

an intermediate one.

v. CAeSaR (Figure 5.3.e and Figure 5.4.e) integrates the ICC-reuse optimization

into a unified clustering, scheduling and communication reuse algorithm. The uni-

fied approach makes more informed decisions on clustering and scheduling as it is

aware that not only ICC instructions are required but also that they can be optimized

5.3. CAeSaR 89

away. This removes the phase ordering issue between UAS (that is unified cluster-

ing + scheduling with ICC-insertion) and the ICC-reuse pass. CAeSaR is therefore

free of any phase ordering issues in all clustering, scheduling with ICC-insertion and

ICC-reuse. As shown in Figure 5.4.e, CAeSaR makes an ICC-reuse-aware decision

for instruction G, which gets scheduled on CL1 instead of CL0. This leads to more

compact schedules than UAS, or UAS+ICC-reuse.

5.3 CAeSaR

5.3.1 High Level Overview

The CAeSaR scheduling algorithm unifies cluster assignment, instruction scheduling

and communication reuse in a single unified instruction scheduling pass. The algo-

rithm’s structure is based on the commonly used list scheduler. In short the algorithm

schedules all instructions in a single traversal of the DFG. It fills in the scheduling slots

cycle-by-cycle. Once a cycle is scheduled it is never revisited. The code of the algo-

rithm comprises two levels of nested loops. The outer one iterates until all instructions

in the DFG are scheduled. The inner one iterates until the current scheduling cycle is

either full or no other instructions are ready to be scheduled on it. The integration of

cluster assignment and communication reuse is done within the innermost loop.

CAeSaR can work with various clustering heuristics, but the implementation shown

makes use of the Start-Cycle heuristic [27, 41] which is among the best for clustered

architectures with low inter-cluster communication delays (like the 1-cycle delay we

consider), as shown in Chapter 4. Other heuristics such as the Completion-Cycle [27]

or the Critical-Successor [96] or the LUCAS heuristic (Chapter 4) could also be used

instead. The CAeSaR algorithm has similar structure to the UAS algorithm [72]. The

clustering heuristic assigns priorities to the clusters and each of them is considered for

scheduling in that order. This is an aggressive technique, similar to the one shown in

Figure 4.5.

5.3.2 CAeSaR Main Body

The main body of the CAeSaR algorithm is listed in Algorithm 5.1. CAeSaR

is based on list-scheduling, therefore it is composed of two nested loop levels: the

outermost one that starts on Algorithm 5.1 line 8 and the innermost on line 11. CAeSaR

90 Chapter 5. CAeSaR

Algorithm 5.1: CAeSaR scheduling algorithm.

1 /* In1: Data Flow Graph (DFG)

2 Out: Scheduled Code */

3 caesar ()

4 {

5 Calculate DFG node priorities (e.g., node height from roots)

6 /* While there are instructions unscheduled */

7 CYCLE = 0

8 while (instructions left to schedule)

9 update READY_LIST [] with ready + deferred instructions

10 sort READY_LIST [] based on priorities

11 while (READY_LIST [] not empty)

12 INSN = the highest priority of READY_LIST []

13 LIST_OF_CLUSTERS [] = valid clusters for INSN on CYCLE

14 Sort LIST_OF_CLUSTERS [] by start_cycle ()

15 while (unvisited clusters in LIST_OF_CLUSTERS [])

16 BEST_CLUSTER = first not visited LIST_OF_CLUSTERS []

17 /* Try scheduling INSN on best cluster */

18 if (INSN can be scheduled on BEST_CLUSTER at CYCLE)

19 ICC_LIST [] = compute_ICCs (INSN , BEST_CLUSTER)

20 if (ICC_LIST [] != NULL)

21 Try placing ICCs of ICC_LIST [] before CYCLE

22 if (failed)

23 Tag BEST_CLUSTER as visited

24 continue /* next cluster */

25 Schedule ICCs in ICC_LIST []

26 Tag INSN to be renamed with ICC destination reg

27 if (INSN requires reg renaming)

28 INSN = register renamed INSN

29 Schedule INSN

30 Remove INSN from READY_LIST []

31 /* If scheduling failed defer to CYCLE+1 */

32 if (INSN unscheduled)

33 remove INSN from READY_LIST [] and reinsert it at CYCLE +1

34 /* READY_LIST [] is empty */

35 CYCLE ++

36 }

5.3. CAeSaR 91

has a third innermost nested loop (line 15) which iterates over all possible clusters to

select the best one to schedule an instruction.

The outer loop (first) updates the ready list (line 9) with any new ready instruc-

tions from the DFG or any deferred instructions from a previous scheduling step. The

ready list is then sorted based on priority (line 10), which is usually the height of the

instruction node in the DFG.

The inner loop (second) (line 11) tries to fill up the current scheduling cycles with

as many instructions as possible. It first gets the highest priority instruction from the

sorted ready list (line 12), then it forms a prioritized list of all clusters that INSN

(INStructioN) could be scheduled at (lines 13 and 14). The sorting of the list is done

with the help of the Start-Cycle (Algorithm 2.2) clustering heuristic (see Section 5.3.4).

After the list of clusters is sorted, we step into the innermost (third) loop (line 15).

This loops over all clusters in the list and on each iteration selects the first unvisited

cluster. This is the cluster with the highest priority according to the clustering heuristic

(referred to as BEST CLUSTER in line 16) among the clusters that are not tried out.

Once the BEST CLUSTER is set (line 16), the algorithm will try to schedule INSN

on that cluster. However, since ICCs may be required before the current instruction

(line 19, Section 5.3.3), scheduling on the BEST CLUSTER may fail due to insuf-

ficient resources. Therefore the innermost loop (line 15) keeps checking all cluster

candidates until INSN (and the corresponding ICCs) get scheduled (lines 21 to 24). If

an ICC is emitted or if an ICC is reused, then INSN has to be register renamed to use

the register written by the ICC. In either case, INSN gets tagged with the appropriate

register number (Algorithm 5.1 line 26, Algorithm 5.2 lines 13 and 18 respectively).

Renaming takes place right before INSN gets scheduled (lines 27 and 28).

If INSN cannot be scheduled on any cluster, then INSN is removed from the ready

list and deferred until the next cycle (lines 31 to 33). The algorithm proceeds to the

next cycle when all instructions of the ready list have either been scheduled, or have

been deferred to a later cycle (lines 34 and 35).

5.3.3 Compute ICCs

The function that determines the list of ICCs required by the scheduled instruction

(line 19 in Algorithm 5.1) is listed in Algorithm 5.2. If we ignore reusing the ICCs,

then this is done in the following steps:

1. Check all data-flow immediate predecessors of INSN (lines 6 and 7) and for

92 Chapter 5. CAeSaR

each one of them determine the register REG W used to pass the value from the

predecessor to INSN.

2. If INSN is tried on a cluster different than the predecessor’s cluster, then an ICC

is required to transfer the data to the consumer’s cluster (line 9).

3. Create a new ICC instruction to copy the data across register files: REG NEW =

REG W (where REG NEW is a register mapped to INSN’s cluster) that transfers

the value from one cluster to the other (lines 15,16).

4. Append the newly created ICC instruction to the list of ICCs required by INSN

(line 17). This is the list that is returned by this function.

5. Tag INSN to be renamed with REG NEW when renaming is done later on (line

18). This is required so that INSN will read the value from new register, the

target of the ICC.

6. Return the list of ICCs (line 21).

This approach, however, introduces many redundant ICCs. Reusing the ICCs is

described in Section 5.3.5.

5.3.4 Clustering Heuristic

Although CAeSaR can sort its LIST OF CLUSTERS (Algorithm 5.1 line 14) using

any clustering heuristic (as it is decoupled from the actual heuristic used), in this

implementation we use the Start-Cycle heuristic [27]. This is because this heuristic

works the best for clustered VLIW architectures with inter-cluster latency of 1 cycle,

as shown in Chapter 4. The actual heuristic is orthogonal to our approach, since ICC

reuse is supported by our framework, no matter the decision of the clustering heuristic.

Therefore we can plug-in any other clustering heuristic, such as the Completion-Cycle

([27]), the Critical Successor (CS) ([96]), or LUCAS (Chapter 4).

The algorithm for the Start-Cycle heuristic is listed in Algorithm 2.2 in Chapter 2.

It can be easily calculated by looping over all backward dependencies of the instruction

considered and determining the earliest cycle that the instruction can get its data from

its data-flow immediate predecessors if scheduled on the cluster considered.

5.3. CAeSaR 93

Algorithm 5.2: Compute list of ICCs required for INSN scheduled on CLUSTER.

1 /*In1: Instruction INSN

2 Out: List of ICCs required, NULL if empty*/

3 compute_ICCs (INSN , CLUSTER)

4 {

5 ICC_LIST [] = NULL

6 for all DEP flow backward dependencies of INSN

7 PRO = producer of DEP

8 REG_W = register written by PRO and read by INSN

9 if (PRO.cluster != CLUSTER)

10 /* Read ICC Reuse Data Structure */

11 if (REG_W already present in CLUSTER)

12 REG_OLD = register with value of REG_W on CLUSTER

13 Tag INSN to be renamed with REG_OLD

14 continue

15 REG_NEW = new free register

16 ICC = New instruction: ‘‘REG_NEW = REG_W ’’

17 append ICC to ICC_LIST []

18 Tag INSN to be renamed with REG_NEW

19 /* Update ICC Reuse Data Structure */

20 Record that REG_W exists in CLUSTER as REG_NEW

21 return ICC_LIST []

22 }

94 Chapter 5. CAeSaR

5.3.5 ICC Reuse

Re-using the ICCs means that if an ICC instruction has transmitted a valueA to clusterX

some time in the past, then any future use of valueA in clusterX should not require an

additional ICC instruction. Instead the instruction that uses valueA is modified to reuse

the existing one. This is a feature unique to CAeSaR that was neglected by previous

scheduling algorithms because they targeted architectures where the ICC instructions

were not competing with actual program instructions for issue slots.

Reusing the ICCs impacts performance in two distinct ways:

1. It reduces the count of the instructions that get scheduled (code size reduction).

2. It creates new opportunities for more ILP.

Both of these mechanisms contribute to the performance improvements. An example

of this is shown in the motivating example of Figure 5.4. Saving up a single ICC

instruction (that of cycle 3 in Figure 5.4.d), not only decreases the code size (1 less

ICC) , but it also creates new opportunities for greater ILP: the empty slot created by

re-using the ICC later gets occupied by instruction G. As will be shown here in the

performance section, due to these phenomena, and particularly due to the second, a

small decrease in the ICC count can have a much larger impact on performance.

Support for ICC-reuse requires some changes in the scheduling algorithm:

1. Keeping track of the ICCs that bring in data to each cluster. Map both registers of

a new ICC (the source and the destination) to enable easy future reuse of the ICCs

(Algorithm 5.2 line 20). This data gets stored in a dictionary structure which uses

the source register as the key and the destination register as the content. We refer

to it as “ICC Reuse Data Structure”. This is visualized for simplicity as a table

of two columns (one for the source register and one for the destination) (Figure

5.5). For example if the ICC “Rx = Ry” is emitted, then the entry Rx→Ry is

inserted into the Data Structure (see Figure 5.5).

2. Disabling the action of emitting a new ICC if data can be reused (Algorithm 5.1

line 20). This is done by querying the ICC Reuse Data Structure (Algorithm 5.2

line 11). If an entry exists for the register read by the instruction to be scheduled,

then no ICC should be emitted.

3. Register renaming. Once an ICC is to be reused, then INSN has to be register

renamed so that it reads the appropriate register. The register is determined in

5.3. CAeSaR 95

cluster0 cluster1

a. Before ICCs

D: Rx=...

A: Rx=...

B: ...=Rx

C: ...=Rx RxRy

...

...

...

...

RxRy

...

...

cluster0 cluster1

A: Rx=...

B: ...=Ry
D: Rx=...

C: ...=Ry

WRONG

ICC1: Ry=Rx

b. Wrong: No Coherence

cluster0 cluster1

A: Rx=...

B: ...=Ry
D: Rx=...

C: ...=Rz

ICC1: Ry=Rx

ICC2: Rz=Rx

c. Correct (CAeSaR): Register Coherence

ERASE

for cluster1

ICC Reuse
Data Structure

Figure 5.5: The Register File Coherence.

Algorithm 5.2 lines 12 and INSN is tagged with it in line 13. It later gets renamed

as normally in Algorithm 5.1 line 28.

5.3.6 Register File Coherence

Keeping the distributed register files of a clustered processor coherent is required for

correct execution. The problem, though a compiler-based one, is similar to the cache

coherence problem in shared-memory multiprocessors. The baseline approach (UAS)

issues an ICC copy whenever data from a distant cluster is required. This guarantees

correctness as the value brought in is always the latest one. Problems can occur when

reusing ICCs (like in CAeSaR). Reusing the data brought in by earlier ICCs could lead

to using wrong data if the the original cluster has updated the register with a more

recent value.

To further explain the problem, we follow the example of Figure 5.5. In this exam-

ple a register (Rx) is updated twice in cluster0 (instructions A and D) and used twice

in cluster1 (instructions B and C), with the second update on cluster0 (instruction D)

being in between the two uses in cluster1 (Figure 5.5.a instructions B and C). A non-

coherent implementation is shown in Figure 5.5.b. The 2nd use on cluster1 (instruction

C) reuses the data brought in to cluster1 by the existing ICC1. This is incorrect, since

the Rx is updated before C by instruction D.

In CAeSaR, we solve this coherence problem in a similar way as in the write-

invalidate snooping cache coherence protocols. Once a register R is updated on a

cluster, the entry for R on the ICC Reuse Data Structures of all other clusters are

invalidated. This is shown in the example of Figure 5.5.c. Upon the second register

update (instruction D: Rx=...) of cluster0, the ICC Reuse Data Structure of cluster1

96 Chapter 5. CAeSaR

...

...

...

...
regionXregionX

regionY regionY

NOT dominate regionY
regionX does

regionY
regionX dominates

a. Can inherit reuse data b. Cannot inherit reuse data

Figure 5.6: The ICC reuse challenges across scheduling regions.

invalidates the entry “Rx→Ry”. As the algorithm encounters instruction C, it realizes

that it cannot reuse Ry, and therefore it has to issue a new ICC2.

The complexity of this write-invalidate approach is small. Accessing the ICC

Reuse Data Structure is done in constant time, since it is an indexed access to an

array. Therefore, the whole process of invalidating all entries on an N-clustered ma-

chine has a complexity of N-1, a small single-digit integer. This process runs on every

instruction that updates a register, and therefore the total overhead of the Register File

Coherence is linear to the program size.

5.3.7 ICC Reuse Across Scheduling Regions

CAeSaR performs ICC-reuse at the scheduling-region level (EBBs) [66]. The data

brought in to a cluster by an ICC, could be reused outside the region as well. This

global-reuse approach has further complications, as shown in Figure 5.6. If the sched-

uler moves from regionX to regionY and regionX dominates regionY (Figure 5.6.a),

then it is OK to inherit reuse information from regionX to regionY. Otherwise (Figure

5.6.b) this is not allowed as it will break the program semantics. CAeSaR currently

completely flushes the ICC Reuse Data Structure upon a new scheduling region and

therefore does not deal with this extra complexity.

5.3.8 Complexity Analysis

This section calculates and compares the complexity of CAeSaR and UAS.

To calculate the complexity of the CAeSaR algorithm we need to examine its

source code (Algorithms 5.1, 5.2 and 2.2). For the computation we consider an in-

5.3. CAeSaR 97

Complexity

Algorithm Worst-Case Observed

UAS (baseline) O(N3) O(N)

CAeSaR O(N3) O(N)

Table 5.1: Complexity of UAS (baseline) and CAeSaR algorithms.

put DFG of N nodes. The CAeSaR Scheduling algorithm has 3 levels of nested loops:

1. The outer loop iterates until all instructions in the DFG are scheduled. In each

iteration a single cycle gets scheduled. If on average S (with S ≤ issuewidth)

instructions get scheduled, then this loop iterates N/S times. On each iteration

of this loop, the ready list is sorted using quicksort. Given an average ready list

size of R, this usually costs R× logR and R2 in the worst case.

2. The middle loop iterates until all instructions in the ready list are examined for

scheduling. Therefore it iterates R times. It sorts the list of clusters based on

the Start-Cycle clustering heuristic. The Start-Cycle heuristic iterates over all

data-flow immediate predecessors of the instruction to be scheduled and gets

calculated once for each cluster. If P is the number of data-flow immediate

predecessors and C is the number of clusters, then sorting the list of clusters

iterates ClogC +CP in the usual case and C2 +CP in the worst case.

3. The innermost loop iterates over all clusters in the order specified by the clus-

tering heuristic. This loop always iterates C times (constant). On each loop iter-

ation, compute ICCs() is called, which iterates over all immediate predecessors

of the instruction to be scheduled. Therefore it iterates CP times.

The complexity of CAeSaR Scheduling is computed as:

• N/S×R× (logR+ClogC+2CP) in the usual case

• N/S×R× (R+C2 +2CP) in the worst case

In all practical cases all S, R and P are small constants with typical values: S ≤ 3,

R ≤ 10, P ≤ 10. This is an O(N) complexity. The worst-case scenario involves S = 1,

R = N and P = N which leads to complexity O(N3).

UAS has a similar 3-nested loop structure and exhibits similar complexity:

• N/S×R× (logR+ClogC+2CP) in the usual case

98 Chapter 5. CAeSaR

... ...

A
ll

o
ca

ti
o
n

.c IA64

S
ch

ed
u
li

n
g

R
eg

is
te

r

GCC−4.5.0

C
A

eS
a
R

Figure 5.7: The compilation flow.

• N/S×R× (R+C2 +2CP) in the worst case

For all practical cases, the complexity of UAS is O(N) and in the worst-case it is

O(N3). Therefore both schedulers have practically the same complexity. The com-

plexities are listed in Table 5.1.

5.4 Experimental Setup

The target architecture is a clustered VLIW architecture based on the IA64 (Itanium)[63]

ISA. The target architecture used for the evaluation, even though IA64-based, is a

generic one, as it is not constrained by the IA64 bundles [87]. Our target architecture

supports issuing any type of instruction (ALU/Load-Store/FPU/ICC) at any issue slot.

The target configuration used for our measurements is shown in Table 5.2.

We implemented CAeSaR in the instruction scheduling pass (haifa-sched) of GCC-

4.5.0 [1] compiler for IA64. CAeSaR runs just before register allocation, as shown in

Figure 5.7. To evaluate CAeSaR’s performance, we measure the total size (in cycles)

of the schedules generated by the compiler under CAeSaR and compare it against two

state-of-the-art clustering algorithms (UAS [72] and CS [96]).

We evaluated CAeSaR on 8 of the Mediabench II video [34] benchmarks and 8 of

the SPEC CINT2000 [3] as listed in Table 5.3. Since our compiler is a heavily modified

one, we only managed to fully compile the benchmarks shown. All benchmarks were

compiled with several optimizations enabled (-O2).

5.4. Experimental Setup 99

Target Architecture: IA64 based clustered VLIW

Issue width: 4

Instr. Types per issue slot: ALU, L/S, FPU, ICCs

Clusters: Configurable: 2, 4

Instruction Latencies: Same as Itanium2 [63]

Inter-Cluster Latency: 1 cycle

Register File: 128GP, 64FP, 64PR in total

Table 5.2: Target Architecture Configuration.

Mediabench II SPEC CINT2000

cjpeg 164.gzip

djpeg 175.vpr

h263enc 181.mcf

h263dec 186.crafty

mpeg2enc 197.parser

mpeg2dec 255.vortex

jpg2000enc 256.bzip2

jpg2000dec 300.twolf

Table 5.3: Benchmarks.

100 Chapter 5. CAeSaR

5.5 Results and Analysis

5.5.1 Overview

We evaluate CAeSaR by measuring several metrics that give us some vital insights.

We measure:

• the ICC instruction count overhead over the original program instructions (Fig-

ure 5.8.a and Figure 5.9.a)

• the count of ICC instructions issued by each scheduler (Figure 5.8.b, Figure

5.9.b)

• the total schedule cycle count of all the scheduled regions (Figure 5.8.c, Figure

5.9.c)

• the number of original (without ICCs) instructions per cluster (Figures 5.10.a

and 5.10.b)

for the two machine configurations: (4-cluster,4-issue) and (2-cluster,4-issue).

We directly compare CAeSaR against the two state-of-the-art unified cluster as-

signment and scheduling algorithms: (UAS) [72], and Critical-Successor (CS) [96].

We also measure the intermediate scheme: decoupled UAS + ICC reuse (as shown

in Figure 5.4.d). The measurements for UAS + ICC, though less interesting from the

performance perspective, provide some vital insights on the workings of CAeSaR.

5.5.2 ICC Overhead

One of the most important results is the ICC instructions overhead in the baseline case

(Figure 5.8.a, Figure 5.9.a). It shows that ICC instructions are indeed a significant

portion of the scheduled instructions. On average, ICCs add a 19.4% overhead on the

instruction count for the 4-cluster machine and about 8.4% for the 2-cluster machine.

This strongly motivates CAeSaR’s goal to decrease the number of ICCs emitted during

instruction scheduling.

Figures 5.8.b and 5.9.b show the normalized number of ICCs for both hardware

configurations. Although the intermediate ICC-Reuse step does save 12% and 10% of

the ICCs on average for each configuration respectively, CAeSaR achieves savings of

33% and 32%.

5.5. Results and Analysis 101

0%

20%

40%

60%

80%

100%

cjpeg
djpeg

h263enc

h263dec

mpeg2enc

mpeg2dec

jpg2000enc

jpg2000dec

164.gzip

175.vpr

181.mcf

186.crafty

197.parser

255.vortex

256.bzip2

300.twolf

%
 I
n
s
tr

u
c
ti
o
n
 C

o
u
n
t

 Benchmarks

% Instruction Count Normalized to Non-ICCs in UAS for the (4-cluster,4-issue,1-cycle inter-cluster delay) VLIW

Non-ICCs
ICCs

.a The ICC instruction overhead. The percentage of ICCs compared to the Non-ICC (original program instruc-

tions) for UAS.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

cjpeg
djpeg

h263enc

h263dec

mpeg2enc

mpeg2dec

jpg2000enc

jpg2000dec

164.gzip

175.vpr

181.mcf

186.crafty

197.parser

255.vortex

256.bzip2

300.twolf

avgN
o
rm

a
liz

e
d
 I
C

C
s
 c

o
u
n
t

 Benchmarks

Norm. Number of ICCs for the (4-cluster,4-issue,1-cycle inter-cluster delay) VLIW

UAS
CS

ICC-Reuse
CAeSaR

.b The count of ICC instructions per scheduler normalized to the UAS scheduler.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

cjpeg
djpeg

h263enc

h263dec

mpeg2enc

mpeg2dec

jpg2000enc

jpg2000dec

164.gzip

175.vpr

181.mcf

186.crafty

197.parser

255.vortex

256.bzip2

300.twolf

avg

N
o
rm

a
liz

e
d
 C

y
c
le

s

 Benchmarks

Cycles for the (4-cluster,4-issue,1-cycle inter-cluster delay) VLIW

UAS
CS

ICC-Reuse
CAeSaR

.c Total schedule cycles of each scheduler, normalized to UAS.

Figure 5.8: Measurements for the 4-cluster, 4-issue, 1-cycle inter-cluster delay VLIW

machine.

102 Chapter 5. CAeSaR

0%

20%

40%

60%

80%

100%

cjpeg
djpeg

h263enc

h263dec

mpeg2enc

mpeg2dec

jpg2000enc

jpg2000dec

164.gzip

175.vpr

181.mcf

186.crafty

197.parser

255.vortex

256.bzip2

300.twolf

%
 I
n
s
tr

u
c
ti
o
n
 C

o
u
n
t

 Benchmarks

% Instruction Count Normalized to Non-ICCs in UAS for the (2-cluster,4-issue,1-cycle inter-cluster delay) VLIW

Non-ICCs
ICCs

.a The ICC instruction overhead. The percentage of ICCs compared to the Non-ICC (original program instruc-

tions) for UAS.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

cjpeg
djpeg

h263enc

h263dec

mpeg2enc

mpeg2dec

jpg2000enc

jpg2000dec

164.gzip

175.vpr

181.mcf

186.crafty

197.parser

255.vortex

256.bzip2

300.twolf

avgN
o
rm

a
liz

e
d
 I
C

C
s
 c

o
u
n
t

 Benchmarks

Norm. Number of ICCs for the (2-cluster,4-issue,1-cycle inter-cluster delay) VLIW

UAS
CS

ICC-Reuse
CAeSaR

.b The count of ICC instructions per scheduler normalized to the UAS scheduler.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

cjpeg
djpeg

h263enc

h263dec

mpeg2enc

mpeg2dec

jpg2000enc

jpg2000dec

164.gzip

175.vpr

181.mcf

186.crafty

197.parser

255.vortex

256.bzip2

300.twolf

avg

N
o
rm

a
liz

e
d
 C

y
c
le

s

 Benchmarks

Cycles for the (2-cluster,4-issue,1-cycle inter-cluster delay) VLIW

UAS
CS

ICC-Reuse
CAeSaR

.c Total schedule cycles of each scheduler, normalized to UAS.

Figure 5.9: Measurements for the 2-cluster, 4-issue, 1-cycle inter-cluster delay VLIW

machine.

5.5. Results and Analysis 103

The number of ICCs that a scheduler emits relates to the performance of the gen-

erated code. Ignoring the ICC-reuse optimization, there are two interesting opposing

phenomena that affect performance: i) The more the ICCs, the more aggressive the

scheduler is and the more likely it is to generate high performance code. ii) The more

the ICCs, the more the overhead due to ICCs consuming issue slots. Achieving good

performance requires a solution that balances between these two phenomena. In that

respect UAS is more conservative as it issues fewer ICCs compared to CS. However,

the performance of both schedulers is very close (Section 5.5.3).

The ICC-reuse optimization allows the schedulers to be more aggressive at schedul-

ing instructions across clusters since there are more ICC slots available for more useful

computation. These slots enable either i) more ILP as more useful ICCs can be issued,

or ii) more useful computations using the free issue slots for further progressing the

program state. Therefore we expect that CAeSaR, which generates fewer ICCs, will

generate more compact schedules.

5.5.3 Performance

The performance of CAeSaR, UAS and CS is shown in Figure 5.8.c and Figure 5.9.c.

These results show that CAeSaR generates shorter schedules than the state-of-the-art

in all benchmarks. CAeSaR outperforms UAS up to 20.3% and 13.8% on average for

the 4-cluster machine. The performance results for the 2-cluster machine are equally

impressive with an average of 8.4% performance improvement against UAS. CS per-

forms similarly to UAS, which is expected as i) the heuristic defaults to UAS for several

cases and ii) it does not reuse ICCs either.

The two machine configurations (2-cluster and 4-cluster) have the same issue width

(4-issue) and the same inter-cluster delay (1-cycle). However, due to the fact that the 2-

cluster machine can accommodate 8 execution units (2×ALU, 2×L/S, 2×FP, 2×ICC,

twice as many as the 4-cluster machine) in each cluster, most general purpose appli-

cations fit nicely in a single cluster and therefore the distant cluster is under-utilized.

Therefore the ICCs present in the schedule for that machine are fewer (Figure 5.9.a vs

Figure 5.8.a) and therefore the performance improvements CAeSaR can accomplish

by ICC-reuse are smaller. It is up to the hardware designer to decide on the trade-off

between issue per cluster and the operating frequency.

104 Chapter 5. CAeSaR

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

N
o
rm

a
liz

e
d
 I

n
s
tr

u
c
ti
o
n
s

 Benchmarks

Instruction Distribution Across Clusters Normalized to (UAS, CL0) for the (4-cluster, 4-issue, 1-cycle ICC delay) machine

CL0
CL1
CL2
CL3

300.twolf256.bzip2255.vortex197.parser186.crafty181.mcf175.vpr164.gzipmpeg2decmpeg2ench263dech263encdjpegcjpeg

.a Instruction counts for the (4-cluster, 4-issue) machine normalized to (UAS, CL0).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

UAS
CAeSaR

N
o
rm

a
liz

e
d
 I
n
s
tr

u
c
ti
o
n
s

 Benchmarks

Instruction Distribution Across Clusters Normalized to (UAS, CL0) for the (2-cluster, 4-issue, 1-cycle ICC delay) machine

CL0
CL1

300.twolf256.bzip2255.vortex197.parser186.crafty181.mcf175.vpr164.gzipmpeg2decmpeg2ench263dech263encdjpegcjpeg

.b Instruction counts for the (2-cluster, 4-issue) machine normalized to (UAS, CL0).

Figure 5.10: Distribution of original instructions across clusters for both 4-cluster and

2-cluster machines.

5.5. Results and Analysis 105

5.5.4 Phase-ordering

UAS is ICC-aware, meaning that the algorithm considers the communication as sched-

uled resources. But UAS is not ICC-reuse aware, meaning that it cannot calculate the

communication reuse while scheduling. Therefore, when we combine the stages UAS

+ ICC-reuse, we end up with a sub-optimal solution: UAS will be conservative at dis-

tributing instructions across clusters because of the inter-cluster cost associated with

each communication even though at the following stage ICC-reuse will remove some

of the communication instructions, freeing up some slots. The end result is a sub-

optimal schedule containing some empty slots (those that were reused, like in Figure

5.4.d CL1,cycle3), which could have been used for other useful instructions, or other

useful communication.

This is exactly the problem that CAeSaR solves by unifying all scheduling, clus-

tering and communication minimization into a single algorithm. In contrast to UAS,

CAeSaR is more effective at distributing instructions across clusters (Figures 5.10.a

and 5.10.b), as long as this leads to better performance. CAeSaR can calculate the

communication cost (including the communication reuse) more accurately than UAS.

The ILP richer code, that the CAeSaR heuristic generates, is faster and requires less

frequent inter-cluster communication. Figures 5.10.a and 5.10.b show that CAeSaR is

more effective at scheduling more instructions in the less used clusters and fewer in

the more busy one. This is more evident in the 4-cluster case, where the differences in

the count of instructions per cluster are up to 10%. In the 2-cluster case we observe a

similar pattern (but less intense), with the exception of h263enc and 256.bzip2. CAe-

SaR distributes instructions more effectively by making good use of the slots saved by

the unified ICC-reuse mechanism.

If we examine Figure 5.8.b and Figure 5.9.b, we can observe that CAeSaR con-

sistently reuses more ICCs compared to UAS+ICC-reuse (32.6% vs 12.1% and 32.0%

vs 10.0% on average respectively). This result is a strong indication that the phase-

ordering problem between clustering, scheduling and ICC-reuse is handled effectively

by CAeSaR. Not only do ICCs get reused, but the clustering decision adapts as well so

that even fewer ICCs are required.

106 Chapter 5. CAeSaR

5.6 Conclusion

This chapter proposes CAeSaR, a new high-performance instruction scheduling algo-

rithm for clustered VLIW architectures. The proposed algorithm is the first to solve all

three problems: i) cluster assignment, ii) instruction scheduling and iii) inter-cluster

communication reuse within a single unified algorithm. CAeSaR not only minimizes

the count of the Inter-Cluster Copy instructions, but it also generates more compact

code. Our evaluation shows that CAeSaR generates shorter schedules than the state-

of-the-art across a range of benchmarks and machine configurations.

Chapter 6

UCIFF: Unified Cluster-assignment

Instruction scheduling and Fast

Frequency selection

This chapter presents a novel algorithm for solving the problem of software DVFS

control for clustered VLIW processors that allow each cluster to operate at a separate

voltage and frequency point. The proposed algorithm, UCIFF, performs cluster as-

signment, instruction scheduling and fast frequency selection simultaneously, all in a

single compiler pass. UCIFF solves the phase ordering problem between frequency

selection and scheduling, present in existing algorithms.

6.1 Introduction

Traditionally, all clusters of a clustered VLIW processor operate at the same frequency

and voltage. Considerable energy savings can be achieved by freeing each cluster to

operate at its own frequency and voltage level. The reason for this is that the cluster

utilization usually varies; some clusters are fully loaded while others are only partially

loaded. It is therefore sensible to lower the frequency of the under-utilized clusters to

save energy.

Existing DVFS [58] techniques for dynamically scheduled processors (e.g., [5, 12,

37, 59, 86]) rely on the dynamic scheduling hardware to guarantee correct execution.

Therefore such techniques can slow down parts of the processor without harming the

correctness. This, however, does not apply to clustered VLIWs, because the instruc-

tions are scheduled to execute at a very specific point in time by the schedule. Any

107

108 Chapter 6. UCIFF

deviation from the timings dictated by the scheduler will most probably break the pro-

gram semantics. A frequency change of a single cluster can be thought of as a code

motion of the instructions executed by that cluster. This effective code motion, per-

formed at run-time, will not respect the inter-cluster instruction dependencies, unless

there are hardware interlocks to enforce the schedule semantics. Therefore the DVFS

decisions have to take place during scheduling, where the scheduler can make sure that

no dependencies are violated.

The existing compilation techniques for heterogeneous clustered VLIW processors

follow a common strategy. Compiling for these architectures comprises of solving two

distinct but highly dependent sub-problems:

1. Selecting the frequency that each cluster should operate at.

2. Performing cluster assignment and instruction scheduling for the selected fre-

quencies (we refer to both as “scheduling” for simplicity).

There is a phase-ordering issue between these two sub-problems: i. One can-

not properly select the frequencies per cluster without scheduling and evaluating the

schedule. ii. One cannot perform scheduling without having decided on the frequen-

cies.

State-of-the-art work in this field [6] treats these two sub-problems independently

and solves the first before the second. At first a good set of frequencies is found by es-

timating the scheduling outcome for each configuration (without actually scheduling).

Then scheduling is performed for this set of frequencies. We will refer to this approach

as the “Decoupled” one.

The problem is that the frequency decision has a great impact on the quality of

scheduling. We observed that the estimation of the scheduling outcome without per-

forming the actual scheduling, as done in [6], can be inaccurate. Nevertheless, it is a

critical compilation decision since selecting a non-optimal frequency set can lead to a

schedule with poor performance, energy consumption or both.

We propose a Unified Clustering, Instruction scheduling and Fast Frequency se-

lection (UCIFF) scheduling technique, which provides a more concrete solution to the

problem by solving both sub-problems (frequency selection and scheduling) in a sin-

gle algorithm thus alleviating the phase-ordering issue altogether. UCIFF targets het-

erogeneous clustered VLIW processors and performs cluster assignment, instruction

scheduling and fast (low algorithmic complexity) frequency selection, all in a unified

algorithm, as a unified scheduling pass.

6.2. Motivation 109

X

3
2
1
0 E

C

B

A E

3
2
1
0

D

a. DFG

Data Dependency
Issue Slot
Cluster

3
2
1
0 A

B
C
D

Freq: ffFreq:
Instruction Node

at same frequencies
b. Cluster 0 and Cluster 1

Homogeneous
Cluster0 Cluster1

Heterogeneous

1

0
A
B
C
D

E

Freq: Freq: f/2f

c. Cluster1 at half the
frequency of Cluster0

Cluster1Cluster0

Figure 6.1: Under-utilized cluster1 can have half the frequency with no performance

loss and possible energy gains.

The algorithm can be configured to generate optimized code for any of the com-

monly used metrics (Energy, Energy×Delay Product (EDP), Energy×Delay2 (ED2)

and Delay). The output of the algorithm is twofold: i. The operating frequency of each

cluster such that the scheduling metric is optimized. ii. Fully clustered and scheduled

code for the frequencies selected by (i).

In this Chapter we use the terms “frequencies per cluster”, “set of frequencies” and

“frequency configuration” interchangeably.

6.2 Motivation

6.2.1 Homogeneous vs Heterogeneous

This section motivates the heterogeneous clustered VLIW design by demonstrating

how energy can be saved without sacrificing performance in the example of Figure

6.1.

Figure 6.1.a is the Data Flow Graph (DFG) to be scheduled. Figures 6.1.b and 6.1.c

show the instruction schedules that correspond to this DFG on a two-cluster machine

(single-issue per-cluster). Figure 6.1.b is the homogeneous design with both clusters

operating at the same frequency (f), while Figure 6.1.c is the heterogeneous one with

cluster1 operating at half the frequency of cluster0 (f/2). Nevertheless both config-

urations have the same performance as the schedule length is 4 cycles for both. The

heterogeneous can perform as well as the homogeneous because cluster1 was initially

under-utilized (there was slack in part of the schedule).

Since the target architecture is a statically scheduled clustered VLIW one, it is the

job of the scheduler to find the best frequency for each cluster so that the desired metric

110 Chapter 6. UCIFF

(Energy, EDP, ED2 or Delay) is optimized.

6.2.2 Phase Ordering

As already discussed, there is a phase ordering issue between frequency selection and

instruction scheduling. Figure 6.2 shows a high-level view of the scheduling algo-

rithms for a 2-cluster processor with 3 possible frequencies per cluster (f0, f1, f2).

The Decoupled algorithm (existing state-of-the-art based on [6]) is in Figure 6.2.a.

As already mentioned, there are two distinct steps:

1. The first step selects one of the many frequency configurations as the one that

should be the best for the given metric (e.g., EDP). This is based on a sim-

ple estimation (before scheduling) of the schedule time (cycles×T) and energy

consumption that the code will have after scheduling. The exact calculations are

described in detail in Section 6.5.

2. The second step performs scheduling on the architecture configuration selected

by step 1. This includes both cluster assignment and instruction scheduling,

which in an unmodified [6] are in two separate steps.

It is obvious that if step (1) makes a wrong decision (which is very likely since

the decision is based on a simple estimate), then the processor will operate at a point

far from the optimal one. Therefore, step (2) will schedule the code for a non-optimal

frequency configuration which will lead to a non-optimal result.

This phase-ordering issue is dealt with by UCIFF, the proposed unified frequency

selection and scheduling algorithm (Figure 6.2.b). The proposed algorithm solves the

two sub-problems simultaneously and outputs a combined solution which is both the

frequency configuration (that is the frequency for each cluster) and the scheduled code

for this specific configuration.

6.3 UCIFF

The proposed Unified algorithm for Cluster assignment, Instruction scheduling and

Fast Frequency selection (UCIFF) can be more easily explained if two of its main

components are explained separately. That is: i. scheduling for a fixed heterogeneous

processor and ii. unifying scheduling and frequency selection.

6.3. UCIFF 111

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2

(Fx,Fy)

Configuration
Best

Estimate

F
re

q
u

en
y

 C
o

n
fi

g
u

ra
ti

o
n

s

a. Decoupled Frequency selection and Scheduling.

C
lu

st
er

in
g

In
st

r
S

ch
ed

1.Frequency Configuration

Scheduling

2.Clustered+Scheduled Code

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2

AND

Select Best Frequency

Configuration

F
re

q
u

en
y
 C

o
n

fi
g
u

ra
ti

o
n

s

b. UCIFF: Unified Frequency selection and Scheduling.

UCIFF
Cluster + Schedule

2.Clustered+Scheduled Code

1.Frequency Configuration

AND

Figure 6.2: The two-phase scheduling of the current state-of-the-art (a). The proposed

unified approach (b) is free of this phase-ordering problem.

112 Chapter 6. UCIFF

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

cy
cl

e
S

ch
ed

u
li

n
g

cluster1cluster0 cluster0

0

1

2

3

4

cluster1

b. Heterogeneousa. Homogeneous

Figure 6.3: The scheduling problem of misaligned cycle boundaries for the heteroge-

neous processor.

6.3.1 Scheduling for fixed heterogeneous processors

An out-of-the-box scheduler for a clustered architecture can only handle the homoge-

neous case, where all clusters operate at the same frequency (Chapter 2). A heteroge-

neous architecture on the other hand, has different frequencies across clusters. This is

because schedulers work in a cycle-by-cycle manner. They schedule ready instructions

on free cluster resources and move to the next cycle. This cycle-by-cycle operation is

inapplicable when clusters operate at different frequencies, due to the misalignment of

cycle boundaries (Figure 6.3.b). The problem gets worse if cluster frequencies are not

integer multiples of one another (e.g., cluster 0 operating at frequency f and cluster 1

at 1.5 f).

UCIFF introduces a scheduling methodology for heterogeneous clustered architec-

tures with arbitrary frequencies per cluster which can be applied to existing scheduling

algorithms. The idea is that the scheduler operates at a higher base frequency (fsched)

such that the clock period of any cluster is an integer multiple of the clock period of

the scheduler (Tsched). It works in two steps:

i. The scheduler’s base frequency fsched is calculated as the lowest integer common

multiple of all possible frequencies of all clusters. The scheduler internally works at

a cycle Tsched = 1/ fsched , which is always an integer multiple of the cycle that each

cluster operates at. For example in Figure 6.4.b the scheduler’s base cycle is Tsched

while the cycles of cluster0 and cluster1 are 3×Tsched and 2×Tsched respectively.

6.3. UCIFF 113

1 1

Tsched

Tcl1=2Tsched

Tcl0=3Tsched
f
sched =3 f

1

2

1

2

Tsched

Tcl1Tcl0

cluster0 cluster1

Homogeneous

Freq: Freq:f f

3 3

Tsched=Tcl1=Tcl0

Scheduling Slot

11

22 Instr. 2, latency 2

Instr. 3, latency 1

Instr. 1, latency 1

3

b. Scheduling for Heterogeneous

2

2

Tcl0
Tcl1

cluster0 cluster1

Heterogeneous

Freq: Freq:1.5 ff

3

3

a. Scheduling for Homogeneous

Figure 6.4: The scheduler’s internal clock period Tsched compared to the periods of the

two clusters Tcl0 and Tcl1, for a homogeneous (a) and a heterogeneous (b) architecture.

ii. The instruction latencies for each cluster are increased and set to be a multiple

of the original one, equal to (Tcluster/Tsched)×OrigLatency. In the example of Figure

6.4, the instruction latencies for cluster0 are multiplied by 3 while the ones for cluster1

are multiplied by 2.

In this way the problem of scheduling for different frequencies per cluster is trans-

formed to the problem of scheduling instructions of various latencies, which is a solved

problem and is indeed supported by any decent scheduler.

6.3.2 Scheduling for non-fixed heterogeneous processors (UCIFF)

In contrast to the existing state-of-the-art [6], UCIFF solves the phase-ordering prob-

lem between frequency selection and scheduling. It does so by combining them into a

single unified algorithm. In addition, the scheduling algorithm performs cluster assign-

ment and instruction scheduling together (as discussed in Chapter 4) thus removing any

phase ordering issues between all clustering, scheduling and frequency selection.

The UCIFF algorithm is composed of three nested layers: The driver function (Al-

gorithm 6.1) at the outermost layer, the clustering and scheduling function (Algorithm

6.2) at the second layer and the metric calculation function (Algorithm 6.3) at the in-

114 Chapter 6. UCIFF

nermost.

6.3.2.1 The driver

The highest level of the UCIFF algorithm (Algorithm 6.1) performs the frequency

selection. It decides on a single frequency configuration for the whole scheduling

region. Instead of solving the global optimization problem, of determining the optimal

frequency, with a full-search over all configurations, UCIFF uses a fast hill climbing

approach.

Hill climbing (e.g., [82]), in general, searches for a globally good solution by eval-

uating, at each point, its neighbors and by “moving” towards the best among them.

Due to the nature of the problem, trying out a large number of neighbors is computa-

tionally expensive. This is because we cannot evaluate a configuration at cycle c unless

we schedule all instructions up to c. This makes probabilistic algorithms (such as sim-

ulated annealing [46]) very expensive since trying out random configurations will lead

to almost the whole configuration space being scheduled to a very large extent, thus

leading to a time complexity comparable to that of the full-search.

Formally, a frequency configuration is an ordered multiset of each cluster’s fre-

quency: { fa, fb, fc, ...}. Each of fa, fb, fc, ... is one of the l valid frequency levels in the

set { f0, f1, ..., fl−1}. For example a valid configuration for a 2-cluster machine with 3

possible frequency levels (f0, f1, f2) is { f2, f0} (where clusters 0 and 1 operate at f2

and f0 frequencies respectively).

The neighbors of a configuration c are the configurations which are close frequency-

wise to c. More precisely, the configuration { fna, fnb, fnc, ...} is a UCIFF neighbor of

{ fa, fb, fc, ...} if nx = x for all x except one (say y) such that |ny−y| < NDistance. For

example, the neighbors of { f1, f1} for NDistance = 1 are { f0, f1}, { f2, f1}, { f1, f0}
and { f1, f2}.

In UCIFF the hill climbing search is done gradually, in steps of cycles, while the

code gets scheduled for the duration of the step. After each step there is an evaluation.

We refer to this step-evaluation-step approach as “gradual hill climbing” and to the

act of scheduling within a step as “partial scheduling”. This makes UCIFF fast and

accurate. The hill climbing search stops when all instructions of the best neighbors

have been scheduled. All of the above will be further explained through the following

example.

A high level example of the UCIFF algorithm for the 2-cluster machine of Figure

6.2 is illustrated in Figure 6.5. On the vertical axis there are all 9 possible frequency

6.3. UCIFF 115

0{f 0, f }

{f 0, f }2 {f 0, f }2

Active Partial Schedule
Inactive Partial Schedule Neighbor to B

Best Freq Configuration
N
B Kill Freq. Configuration

Active Set

F
re

q
u

en
cy

 C
o
n

fi
g
u

ra
ti

o
n

s 0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }

2

2 2

N

STEP STEP

N

N

B

B

N

N

B

Final Schedule

STEPSTEP STEP STEP End of
Scheduling

Step 1 Step 2 Step 3

E
v
a
lu

a
te

E
v
a
lu

a
te

E
v
a
lu

a
te

Instructions
Scheduled

Figure 6.5: Overview of the UCIFF gradual hill climbing algorithm for a schedule that

consists of three steps.

configurations. The horizontal axis represents the scheduler’s cycles (of Tsched dura-

tion). The partial schedule of each configuration is a horizontal line that starts from the

vertical axis at the configuration point and grows to the right. The evaluation (every

STEP instructions) is represented by the vertical gray line.

At first (Step 1) all configurations are partially scheduled for “STEP” instructions.

Once partially scheduled, they are evaluated and the best configuration is found and

marked as “B”. At this point the neighbors of “B” are found, according to the definition

given earlier. The neighbors are marked as “N”. The neighbors (“N”) along with the

best (“B”) form the active set. The configurations not in the active set are marked with

a red “X”.

In Step2 the configurations in the active set get partially scheduled for another

“STEP” instructions (curly red lines). They get evaluated and the best one (“B”) and

its neighbors (“N”) are found.

In Step3 the active set of Step2 gets partially scheduled for another “STEP” in-

structions. At this point it is interesting to note that { f2, f0} and { f1, f1} have to be

scheduled for both the 2nd and 3rd “STEP”. This is because these are both in the ac-

tive set from Step3 on but they were inactive during Step2. A scheduler cannot just

continue from Step3 without all the previous instructions (and therefore all previous

Steps) being scheduled. Now there are no instructions left to schedule for the active

116 Chapter 6. UCIFF

configurations, therefore the algorithm terminates. After the final evaluation, the best

configuration of the active set is found (“B”, { f2, f0}). The full schedule for this con-

figuration is returned (gold rectangle).

Note that the bar lengths are not proportional to any metric value. They just show

the progress of the algorithm while instructions get scheduled.

The detailed algorithm is listed in Algorithm 6.1. The algorithm initially performs

partial scheduling of all frequency configurations for “STEP” instructions (Algorithm

6.1 lines 11, 15-23). This determines the best configuration and stores it into “BFC”

(Best Frequency Configuration). For the rest of the algorithm, each frequency config-

uration in the neighboring set of “BFC” (lines 14 and 15) gets partially scheduled for

“STEP” instructions and evaluated (lines 16 and 17). The best performing of the neigh-

bors gets stored into “BFC” (line 22). The algorithm repeats until no instructions in the

neighboring set of “BFC” (a.k.a. active set) are left unscheduled (line 23). Each itera-

tion of the algorithm decreases “STEP” by “STEPVAR” (line 20) so that re-evaluation

of the schedules keeps getting more frequent. This makes the algorithm track the best

configuration faster. An initial high value of “STEP” helps in finding good solutions

for small basic blocks, while a small value of “STEP” makes the algorithm more agile

into following the best path.

This gradual hill-climbing process accurately selects a good configuration among

many without resorting to a full-search across all frequency configurations. The end

result is a fully scheduled code for the selected configuration.

It is interesting to note that partial scheduling of all neighbors could be done in

parallel. This could speed up the UCIFF scheduler, to reach speeds close to those of a

theoretical, non-implementable algorithm that could guess the best configuration right

from the start. We refer to this as the Oracle.

6.3.2.2 The Scheduling Core

At one level lower lies the core of the scheduling algorithm (Algorithm 6.2). It is a

unified cluster assignment and scheduling algorithm which shares some similarities

with UAS [72], but it is more close to the LUCAS algorithm (Chapter 4). It has several

unique attributes:

• It operates on a heterogeneous architecture where clusters operate at different

frequencies (as described in Section 6.3.1).

• It only issues an instruction to the cluster chosen by the heuristic. It does not try

6.3. UCIFF 117

Algorithm 6.1: UCIFF driver

1 /* UCIFF: Unified Cluster assignment Instruction Scheduling and

→֒Fast Frequency selection.

2 In1: METRIC_TYPE that the scheduler should optimize for.

3 In2: Schedule STEP instr. before evaluating.

4 In3: STEPVAR: Decrement STEP by STEPVAR upon each evaluation.

5 In4: NBR: The number of neighbors per cluster.

6 Out: Scheduled Code and Best Frequency Configuration. */

7 uciff (METRIC_TYPE , STEP , STEPVAR , NBR)

8 {

9 do {

10 if (BFC not set) /* If first run */

11 NEIGHBORS_SET [] = all frequency configurations

12 else

13 /* Get the NBR closest configurations to BFC */

14 NEIGHBORS_SET [] = neighbors of BFC

15 for FCONF in NEIGHBORS_SET []

16 /* Partially schedule the ready instructions of FCONF

→֒frequency configuration for STEP instructions,

→֒optimizing METRIC_TYPE */

17 SCORE = cluster_and_schedule (METRIC_TYPE , STEP , FCONF)

18 /* Store the score of this configuration into SCORECARD[]*/

19 SCORECARD [FCONF] = SCORE

20 Decrement STEP by STEPVAR until 1 /* Variable steps */

21 BFC = Best Freq Configuration of SCORECARD []

22 Clear SCORECARD []

23 } while (there are unscheduled instructions in active set)

24 return BFC and scheduled code of BFC

25 }

118 Chapter 6. UCIFF

to issue on any other cluster if it cannot currently issue on the chosen cluster.

• It is capable of performing partial scheduling for “STEP” number of instructions.

• It can optimize for various metrics (not just Delay). This includes energy related

ones: Energy, EDP, ED2.

• The Start-Cycle calculation is extended to work for heterogeneous clusters, which

is done by using the correct latency of the data-flow immediate predecessors

(querying LATENCY[]) (see Algorithm 6.3 line 10).

• To isolate the problem studied from other effects, we consider an architecture

with infinite ICC resources.

In more detail, the algorithm is a list-scheduling based one, that operates on a ready

list. The scheduler performs partial scheduling on each active frequency configuration

for a small window of “STEP” instructions. Once a (configuration, cycle) pair is sched-

uled it is never revisited. Switching among configurations requires that the scheduler

maintains a private instance of its data structures (ready list, reservation table, current

cycle) for each configuration. To that end, it saves and restores the snapshot of its

structures upon entry and exit (Algorithm 6.2 lines 7-11, 31). The ready list gets filled

in with ready and deferred instructions (line 13). Then it gets sorted based on priority

(calculated on the Data Dependence Graph) (line 14) and the highest priority one is

selected for scheduling (line 16). A list of candidate clusters is created (line 17) and

the best cluster is found based on the values of the metric used for scheduling (line

18). The instruction is then tried on the best cluster at the current cycle (lines 19 and

20). If successful, then its presence in the schedule is marked on the reservation table

for as many cycles as its latency as specified by LATENCY [] array (line 21), the

IPCL (Instructions Per CLuster) counts the issued instruction (line 22), and INSN gets

removed from the ready list (line 23). If unsuccessful, INSN’s execution is deferred to

next cycle (lines 24 to 26). We move to the next cycle only if the current ready list is

empty (lines 27 to 28).

Recall that in the process studying the scheduling problem in isolation, we consider

an architecture with infinite available resources for the inter-cluster communication.

This means that all ICCs get assigned to their own unique issue slots (as in Figure

2.8.a) which are infinite in number. Incorporating the ICC scheduling in this algorithm

is straight forward, as it was done in the schedulers of Chapters 4 and 5.

6.3. UCIFF 119

Algorithm 6.2: Clustering and Scheduling for various metrics.

1 /* In1: METRIC_TYPE that the scheduler will optimize for.

2 In2: STEP: Num of instrs to schedule before switching FCONF.

3 In3: FCONF: Current Frequency Configuration.

4 Out: Scheduled Code and metric value. */

5 cluster_and_schedule (METRIC_TYPE , STEP , FCONF)

6 {

7 /* Restore ready list for this frequency configuration */

8 READY_LIST [] = READY_LIST_ARRAY [FCONF]

9 /* Restore curr. cycle. CYCLE is scheduler’s internal cycle.*/

10 CYCLE = LAST_CYCLE [FCONF]

11 Restore the Reservation Table state that corresponds to FCONF

12 while (instructions left to schedule && STEP > 0)

13 update READY_LIST [] with ready at CYCLE , include deferred

14 sort READY_LIST [] based on list -scheduling priorities

15 while (READY_LIST [] not empty)

16 select INSN , the highest priority instr. from READY_LIST []

17 create LIST_OF_CLUSTERS [] that INSN can be sched. on CYCLE

18 BEST_CLUSTER=best of LIST_OF_CLUSTERS [] by comparing for

→֒each cluster calculate_heuristic (METRIC_TYPE ,CLUSTER ,

→֒FCONF ,INSN ,IPCL[])

19 /* Try scheduling INSN on the best cluster */

20 if (INSN can be scheduled on BEST_CLUSTER at CYCLE)

21 schedule INSN , occupy LATENCY[FCONF][BEST_CLUSTER][INSN]

→֒slots

22 IPCL[CLUSTER]++ /*Count num. of instr. per cluster*/

23 remove INSN from READY_LIST []

24 /*If failed to sched INSN on best cl. defer to next cycle*/

25 if (INSN unscheduled)

26 remove INSN from READY_LIST [] and re-insert it at CYCLE+1

27 /* No instr. left in ready list for CYCLE, then CYCLE ++ */

28 CYCLE ++

29 /* If we have scheduled STEP instr., finalize and exit */

30 if (instr. scheduled > STEP instructions)

31 Update READY_LIST_ARRAY [], LAST_CYCLE[], Reservation Table

32 return metric value of current schedule

33 }

120 Chapter 6. UCIFF

E = ∑clusters[Est(cl)+Edyn(cl)]

Static (Est) Dynamic (Edyn)

Est(cl) = Pst × cyclescl ×Tcl Edyn(cl) = Edyn,ins(cl)+Edyn,icc

Pst(cl) = Cst ×Vcl Edyn,ins(cl) = ∑ins[Pins(cl)×Latency(ins,cl)]

Pins(cl) = Cdyn × fcl ×V 2
cl

Edyn,icc = Picc ×NumICCs

Picc = Cdyn × f f astest ×V 2
f astest

Table 6.1: Formulas for energy calculation.

6.3.2.3 The metrics

The combined clustering and scheduling algorithm used in UCIFF is a modular one.

It can optimize the code not only for cycle count, but also for several other metrics

that are useful in the context of a heterogeneous clustered VLIW. It supports energy-

related metrics (Energy, EDP, ED2) and also execution Delay (Algorithm 6.3). The

metric type controls the clustering heuristic which decides on the BEST CLUSTER in

Algorithm 6.2 line 18.

The energy-related metrics require that the scheduler have an energy model of the

resources. The energy model is a small module in the scheduling algorithm and it is

largely decoupled from the structure of the algorithm (function energy in line 12 of

Algorithm 6.3). The exact formulas for the energy calculations are in Table 6.1. The

energy (E) is calculated as the sum (∑clusters) of the static (Est(cl)) and dynamic en-

ergy (Edyn(cl)) consumed by the clusters and the inter-cluster communication network.

Static energy consumption is relative to the static power (Pst) and the time period that

the system is “on” (cyclescl ×Tcl) . The total dynamic energy (Edyn(cl)) is the sum of

the dynamic energy consumed in the original instructions (Edyn,ins(cl)) and the inter-

cluster communication (Edyn,icc). Each instruction that executes on a cluster consumes

dynamic energy (Edyn,insn(cl)) relative to its dynamic power (Pins(cl)) and its latency

(Latency(ins,cl)). The dynamic power of an instruction is proportional to the oper-

ating frequency (fcl) and the square of the operating voltage (V 2
cl). Cdyn is a constant

representing the circuit capacitance. Each inter-cluster communication (Edyn,icc) is set

to consume the same dynamic energy as an instruction of the fastest cluster (f f astest).

6.3. UCIFF 121

Algorithm 6.3: Heuristic calculation.

1 /* In1: METRIC_TYPE that the scheduler will optimize for.

2 In2: CLUSTER that INSN will be tested on.

3 In3: FCONF: The current frequency configuration.

4 In4: INSN: The instruction currently under consideration.

5 In5: IPCL: The Instr. count Per CLuster (for dyn. energy).

6 Out: metric value of METRIC_TYPE if INSN scheduled on CLUSTER

→֒ under FCONF*/

7 calculate_heuristic (METRIC_TYPE , CLUSTER , FCONF , INSN , IPCL[])

8 {

9 /* This start_cycle() uses LATENCY[FCONF][PRED.cluster][PRED]

→֒instead of PRED.latency. */

10 UCIFF_SC = start_cycle (INSN , CLUSTER)

11 switch (METRIC_TYPE)

12 case ENERGY : return energy (CLUSTER ,FCONF ,UCIFF_SC ,IPCL[])

13 case EDP: return edp (CLUSTER , FCONF , UCIFF_SC , IPCL[])

14 case ED2: return ed2 (CLUSTER , FCONF , UCIFF_SC , IPCL[])

15 case DELAY: return UCIFF_SC

16 }

6.3.3 DVFS region

UCIFF determines the best frequency configuration at a per-scheduling-region basis.

This is the natural granularity for a scheduling algorithm. This however is not the

right granularity for Dynamic Voltage and Frequency Scaling (DVFS), which usually

takes longer time. The transitions of off-chip voltage regulators usually take a few

microseconds and even on-chip regulators take about 50 nanoseconds [45], both of

which are larger than the duration of a single scheduling region. An average sized

region usually takes less than 50 cycles to complete, therefore on a 2GHz processor

it is less than 25 nanoseconds. Therefore UCIFF’s decisions on the frequency and

voltage levels occur more frequently than what a real DVFS system could follow. As

a result, UCIFF’s per-region decisions have to be coarsened by some mapping from

multiple UCIFF decisions to a single DVFS decision.

There are both hardware and software solutions to this. A possible micro-architectural

solution involves pushing UCIFF’s decision into a FIFO queue. Once the queue is full,

a DVFS decision is made based on the average of the items in the queue, and the queue

gets flushed.

122 Chapter 6. UCIFF

A software solution is to perform sampling on the UCIFF configurations at a rate

at most as high as the one supported by the system. Another way is to come up with a

single DVFS point for the whole program by calculating the weighted average of the

region points generated by UCIFF. A more accurate solution could be based on the

control-edge probabilities. This knowledge can be acquired by profiling and can be

used to form super-regions which operate at a single DVFS point.

The mapping decision for the DVFS points is completely decoupled from the

UCIFF algorithm. A thorough evaluation of the possible solutions is not in the scope

of this thesis.

6.3.4 Algorithmic Complexity

In this section the algorithmic complexity of UCIFF is calculated and compared to the

other approaches. We do that by examining the algorithm (Algorithms 6.1, 6.2, 6.3

and 2.2). Let’s consider an input DFG of N nodes. The UCIFF Scheduling algorithm

has four visible levels of nested loops: two loops in the driver (Algorithm 6.1 and two

loops in the Scheduling Core (Algorithm 6.2). There is a fifth loop in the Start-Cycle

calculation, which is called by Algorithm 6.3.

1. The outermost loop (Algorithm 6.1 lines 9 to 23) iterates as long as there are

unscheduled instructions in the active set. Upon each iteration instructions get

partially scheduled for all configurations in the neighboring set. The number of

iterations depends only on the instruction count N and the step size. Assuming

an average step size STEPavg it is N/ST EPavg. The ST EPavg depends on the

initial value of STEP and the number of instructions N, but we will consider

it to be ST EP/2 for simplicity, which is a good approximation for N not much

greater then 0.5× (STEP2 + STEP). For very large values of N the ST EPavg

becomes 1.

2. The second loop (Algorithm 6.1 lines 15 to 19) iterates over all neighbors and

each time it calls the Scheduling Core to perform scheduling for STEP instruc-

tions. The iterations are FCONF for the first time and NBR (a fixed small inte-

ger constant set at design time) for the rest of the execution. FCONF is the total

number of possible frequency configurations and is calculated as FPCC, where

FPC is the number of possible frequencies per cluster and C is the number of

clusters in the architecture. Therefore the loop iterates FPCC times for the first

and NBR times for the rest.

6.3. UCIFF 123

3. The outer loop of the Scheduling Core (Algorithm 6.2 lines 12 to 32) iterates

until all instructions up to the end of the current STEP are scheduled. In each

iteration a single cycle gets scheduled. If on average S (with S ≤ issuewidth) in-

structions get scheduled (as the partial schedule continues from the most recent

step) then this loop iterates for stepinstructions/S. The number of step instruc-

tions depends on i) how successful the hill-climbing is (L) and ii) on the average

size of the step (ST EPavg). Therefore this loop iterates L×ST EPavg/S times. If

hill-climbing proves good then L has a small value close to 1. This is the usual

case. In the worst case the partial schedules are not recent, leading to iterations

close to N/S. On each iteration of this loop, the ready list is sorted using quick-

sort. Given an average ready list size of R, this usually costs R× logR and R2 in

the worst case.

4. The inner loop of the Scheduling Core (Algorithm 6.2 lines 15 to 27) iterates

until all instructions in the ready list are examined for scheduling. Therefore

it iterates R times. The best cluster is found by get best cluster(). This iterates

once over all clusters and sets the Start-Cycles. The Start-Cycle heuristic iterates

over all data-flow immediate predecessors of the instruction to be scheduled and

gets calculated once for each cluster. If P is the number of data-flow immediate

predecessors and C is the number of clusters, then this costs RCP.

The complexity of UCIFF Scheduling is computed as:

• (((2N/STEP− 1)×NBR)+ FPCC)×L× ST EP/2S×R× (logR +CP) in the

usual case

• (((2N/STEP−1)×NBR)+FPCC)×N/S×R× (R+CP) in the worst case

In all practical cases all STEP, FPC, NBR, L, S, R, P, C are constants with typical

values: ST EP = 8, FPC = 5, NBR = 8, L = 2, S = 2, R ≤ 10, P ≤ 10 and C = 4.

The constant with the largest impact is FPCC, which could have a large value in some

extreme cases (many clusters and many frequencies per cluster). In the common case,

this is an O(N) complexity. The worst-case scenario involves S = 1 and R = N, P = N

which leads to a worst-case complexity of O(N3).

In the Oracle case, the driver only calls the Scheduling Core once which schedules

the code for 1 configuration only. This is a complexity N/S×R× (logR +CP) (still

O(N)) in the usual case and N/S×R× (R+CP) (O(N3)) in the worst case.

124 Chapter 6. UCIFF

... ...

A
ll

o
ca

ti
o
n

.c IA64

S
ch

ed
u
li

n
g

R
eg

is
te

r

U
C

IF
F

GCC−4.5.0

Figure 6.6: The compilation flow.

The Full-Search solution schedules all frequency configurations to completion.

This is a complexity FPCC ×N/S×R× (logR +CP) in the usual case and FPCC ×
N/S×R× (R +CP) in the worst case. Since (((2N/STEP− 1)×NBR)+ FPCC)×
L×ST EP/2S ≤ FPCC, UCIFF is usually faster than the Full-Search.

6.4 Experimental Setup

The target architecture is an IA64 (Itanium) [87] based statically scheduled clustered

VLIW architecture. The architecture has 4 clusters and an issue width of 4 in total

(that is 1 per cluster), similar to [6]. Each cluster’s cycle time is 4, 5, 6 or 7 times a

reference base cycle. Therefore the ratio of the fastest frequency to the slowest one is

7:4.

We have implemented UCIFF in the scheduling pass (haifa-sched) of GCC-4.5.0

[1] (Figure 6.6) cross compiler for IA64.

Our experimental setup has some of its aspects deliberately idealized so that the

generated code quality is isolated from external noise.

• Each cluster has all possible types of resource units available for all its issue

slots. This alleviates any instruction bundling issues (which exist in the IA64

instruction set).

• No noise from register allocation / register spills. Although the scheduler runs

twice (before and after register allocation) our measurements are taken before

register allocation. At this stage the compiler still considers an infinite register

file. This is not far from reality though, as clustered machines have abundant

register resources (each cluster has a whole register file for its own use).

• No noise from the memory hierarchy. All memory accesses have a constant

latency, that of a cache hit.

6.5. Results 125

• Infinite ICC resources.

We evaluated UCIFF on 6 of Mediabench II video [34] benchmarks. All bench-

marks were compiled with optimizations enabled (-O flag). The results are based on

the scheduler’s output.

6.5 Results

We evaluate UCIFF by comparing it against the Decoupled, the Oracle and the Full-

Search algorithms. As already explained, the Oracle is a non-implementable algorithm

that could guess the best configuration right from the start, whereas the Full-Search

schedules all configurations to completion.

The Decoupled scheduler is the state-of-the-art acyclic scheduler for heteroge-

neous clustered VLIW processors (based on the loop (cyclic) scheduler of [6]). It de-

couples frequency selection from instruction scheduling. The frequency selection step

is done via a simple estimation of the energy consumption and the execution (schedule)

time. The estimation was done as in [6]:

The schedule time is equal to the cycle count of a profiled homogeneous architec-

ture (cycleshom) multiplied by the arithmetic mean of the clock periods of the hetero-

geneous clusters: Time = cycleshom × (∑cl Tcl)/NumO fClusters. The cycle count of

each cluster is easily calculated as: cyclescl = Time/Tcl.

The energy calculation is similar to that of UCIFF (Table 6.1) with two main dif-

ferences:

1. The dynamic energy of a cluster is equal to a fraction of that of a homogeneous

cluster, proportional to the ratio of fcl to the average frequency:

Edyn,ins(cl) = Edyn,ins hom(cl)× fcl/[∑cl(fcl)/NumO fClusters]

2. The energy of the interconnect is equal to that of the homogeneous:

Edyn,icc = Picc ×NumICCshomogeneous

The Oracle scheduler is a decoupled scheduler with a perfect frequency selection

phase. The frequency configuration selected will always produce the best schedule

with 100% accuracy. This scheduler is the upper bound (optimal) in code quality

(Figure 6.8) and the lowest bound (optimal) in the scheduler run-time (Figure 6.9). It

is non-implementable as it requires future knowledge.

126 Chapter 6. UCIFF

Decoupled-based UCIFF-based

Decoupled Oracle Full-Search UCIFF

Phase-ordering problem Yes No No No

Code quality Low High High High

Algorithmic complexity Low Low High Medium

Realistic (implementable) Yes No Yes Yes

Table 6.2: Some features of the algorithms under comparison.

A Full-Search UCIFF-based scheduler does not perform any kind of pruning on

the frequency space. It is structured as UCIFF, but instead of a hill climbing search, it

does a full search over the frequency configurations. This makes it the slowest (Figure

6.9), but in the meantime it always achieves the optimal code quality, same as that of

the Oracle (Figure 6.8).

Although in the vanilla Decoupled [6] clustering and scheduling are in separate

steps, in all implementations of the above algorithms, scheduling includes both cluster

assignment and instruction scheduling in a unified pass as discussed in Section 6.3.2.2

and Algorithm 6.2. This lets us focus only on the phase ordering problem we are

interested in: the one between frequency selection and scheduling.

The high-level features of these algorithms are summarized in Table 6.2.

Since UCIFF unifies two otherwise distinct phases (frequency selection and schedul-

ing), we show some results (Section 6.5.1) that quantify the first phase separately. This

provides vital insights as to why the unified solution performs better.

6.5.1 Accuracy of Frequency Selection

The outcome of the Decoupled algorithm relies heavily on the accuracy of the fre-

quency selection phase. The stand-alone frequency selection step makes its decision

based on estimations of the energy consumption and the scheduled code’s schedule

length as in [6]. The estimations are based on the energy and cycle numbers of a

homogeneous architecture and on the ratio of the clock cycle of each cluster of the

heterogeneous against that of the homogeneous.

On the other hand UCIFF is not based on estimation, but rather on real partial

scheduling results. Its frequency decision is therefore much more informed.

UCIFF’s frequency selection superiority over the Decoupled algorithm is shown

6.5. Results 127

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e
s
ti
m

a
ti
o
n
s
 w

it
h
in

 m
a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation. (DECOUPLED, ED2)

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e
s
ti
m

a
ti
o
n
s
 w

it
h
in

 m
a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation. (UCIFF, ED2)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e
s
ti
m

a
ti
o
n
s
 w

it
h
in

 m
a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation (DECOUPLED, EDP)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e
s
ti
m

a
ti
o
n
s
 w

it
h
in

 m
a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation (UCIFF, EDP)

Figure 6.7: The Accuracy of the Frequency Selection (Y axis) within the range from

the Oracle (X axis) for Decoupled (Left) and UCIFF (Right). UCIFF is executed with

STEP=8, STEPVAR=2 and NBR=4

in Figure 6.7. The horizontal axis shows the error margins in the scheduling outcome

when compared to that of the Oracle. For example, a 5% error margin includes the

frequency selections that generate results at most 5% worse than that of the Oracle.

The vertical axis shows the percentage of frequency selections that have the error mar-

gin shown in the horizontal axis. The Decoupled accuracy fluctuates significantly for

various metrics; In ED2 it is about 5 times less accurate than in EDP. UCIFF, on the

other hand, is constantly very accurate with the fluctuations being less than 10% over

all error margins.

6.5.2 UCIFF code quality

The quality of the code generated by each scheduling algorithm when optimizing for

various metrics (Energy, EDP, ED2 and Delay) is shown in Figure 6.8.

UCIFF generates high quality code, very close to that of the Oracle and superior to

that of the Decoupled scheme. In metrics that are heavily biased towards certain fre-

quencies (e.g., the delay being biased towards the maximum frequencies or the energy

being biased towards the lowest possible frequencies) the Decoupled scheme is too

128 Chapter 6. UCIFF

 1

 1.01

 1.02

Decoupled UCIFF Oracle/Full-Search

Normalized ENERGY

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

 1

 1.02

 1.04

 1.06

 1.08

Decoupled UCIFF Oracle/Full-Search

Normalized EDP

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Decoupled UCIFF Oracle/Full-Search

Normalized ED2

 1

 1.02

 1.04

 1.06

 1.08

 1.1

Decoupled UCIFF Oracle/Full-Search

Normalized DELAY

Figure 6.8: Code quality (Energy, EDP, ED2, Delay) for Decoupled, UCIFF and

Oracle/Full-Search(FS), over the Mediabench II benchmarks1 normalized to Orale/Full-

search. UCIFF is executed with STEP=8, STEPVAR=2 and NBR=4

6.5. Results 129

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (ENERGY)

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (EDP)

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (ED2)

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (DELAY)

Figure 6.9: The scheduler’s Run-Time in terms of scheduling actions for Energy, EDP,

ED2 and Delay, over the Mediabench II benchmarks1 normalized to Oracle/Decoupled.

UCIFF is tuned with STEP=8, STEPVAR=2 and NBR=4

very close to the Oracle. This is further backed up by the frequency selection accuracy

results of Figure 6.7.

The hardest metric for both UCIFF and the Decoupled is ED2. The prediction

accuracy (Figure 6.7) is significantly lower for it and the code-quality results of Figure

6.8 show similar behavior. In this metric the estimation of the Decoupled algorithm

proves not accurate enough, being 2.15× worse than the Oracle in the worst case.

UCIFF, on the other hand, is constantly more accurate than the Decoupled and very

close to the Oracle.

6.5.3 UCIFF runtime

We provide an estimate of the average case time complexity of each algorithm by

estimating of the execution time of each algorithm using “scheduling actions” as a

1h263dec energy results are missing due to failure in compilation

130 Chapter 6. UCIFF

time unit. A “scheduling action” is the action of scheduling an instruction. This is

a fairly accurate estimate of the time complexity since all algorithms share the same

scheduling core. The results are shown in Figure 6.9.

UCIFF achieves a code quality close to that of the Oracle and the Full-Search, but

with a much lower run-time than the Full-Search (Figure 6.9). This is because UCIFF,

powered by hill-climbing, performs a smart pruning of the frequency configuration

space.

UCIFF can be tuned to operate at various points in the trade-off space of code qual-

ity versus scheduling time complexity. It can get closer or even match Oracle’s perfor-

mance by searching more frequency configurations. There are three knobs that we can

configure. In decreasing order of importance they are: NBR, STEP and STEPVAR (see

Algorithm 6.1). The NBR variable controls the number of neighboring configurations

in the neighboring set. A NBR value of 4 means that at most 4 neighbors per cluster

are in the neighboring set (that is equivalent to NDistance = 2 of Section 6.3.2.1). The

higher its value, the more accurate the result but the longer it takes for the scheduler

to run. The STEP controls the cycle distance before evaluating and re-selecting the

neighbors. For very small regions STEP should be as high as the size of the region, to

allow for a full-search over it. A high value of STEP however makes the algorithm less

adaptive to changes. This is the job of STEPVAR. It decreases STEP by STEPVAR

until STEP reaches 1. The results shown were taken with NBR=4, STEP=8, STEP-

VAR=2. A full investigation of optimally selecting these variables is beyond the scope

of this thesis.

6.6 Conclusion

This Chapter presented UCIFF, a novel instruction scheduler for heterogeneous clus-

tered VLIW architectures. Such architectures are capable of adjusting the operating

Voltage and Frequency points of each cluster individually, thus saving energy. UCIFF

is the first scheduler that performs cluster assignment, instruction scheduling and per-

cluster fast frequency selection in a unified manner. Our evaluation shows that the

proposed algorithm produces code of superior quality than the existing state-of-the-

art and reaches the quality of a scheduler with an oracle frequency selector. This is

achieved with a modest increase in algorithmic complexity.

Chapter 7

Related Work

7.1 Instruction Scheduling for VLIW processors

Acyclic instruction scheduling for VLIWs was pioneered by [29] with the Trace-

scheduling algorithm. This algorithm expands the scheduling region beyond basic

blocks to larger profiling-guided regions called traces. These large regions provide

enough instructions for the scheduler to re-order effectively. A less complicated but

highly effective alternative to traces are the superblocks [39]. These regions simplify

the scheduler’s work by only allowing for outgoing control edges from within a region.

VLIW architectures with support for predicated execution can benefit from hyperblock

scheduling [61].

Several instruction schedulers form regions not based on profiling information.

This is useful in two cases: i. when applications have unpredictable control flow

and ii. when profiling is impractical. Extended Basic Blocks (EBB) [66] form tree-

like regions which are then scheduled by a normal list scheduler. Treegions [35] are

also tree-shaped, and are similar to EBBs. They are shown to outperform superblock

scheduling. Aligned Scheduling (Chapter 3), LUCAS (Chapter 4), CAeSaR (Chapter

5) and UCIFF (Chapter 6) are all implemented on top of GCC’s [1] Haifa Sched-

uler which operates on EBBs. Percolation scheduling [70] and other techniques (e.g.,

[64, 65]) perform global code hoisting across multiple control paths concurrently and

perform scheduling on the resulting code blocks.

Cyclic (loop) scheduling algorithms for VLIW architectures perform pipelining on

the instructions of loops. There are two important techniques: i) Modulo Scheduling

[21, 50, 55, 78] which works best on scientific code with no or few control paths.

Modulo Scheduling along with its interactions with the other code-generation phases

131

132 Chapter 7. Related Work

(e.g., [38, 55, 79, 80, 77, 93]) and the architecture (e.g., [22]) have been studied in

detail. Its has been implemented in several popular compilers, including GCC. ii)

Software Pipelining which is an instruction pipelining technique that supports even

non-numerical codes. This scheduling algorithm supports control flow inside the loop

and it supports a variable initiation interval [25, 65]. A variant of this scheduler is

implemented in the GCC compiler ([10]). The optimized techniques presented in this

thesis could potentially be extended to work for cyclic scheduling techniques. This

however is out of the scope of this thesis.

7.2 Clustered Architectures

The clustering scheme has been applied to both statically (e.g., [28, 84, 90]) and dy-

namically (e.g., [44, 74]) scheduled processors.

Clustered super-scalars have been proposed in [74] and have been implemented

in successful commercial products, such as the Alpha 21264 [44]. Clustering is done

in hardware and therefore has to be fast and efficient. The clustering algorithms used in

hardware are simpler than the ones used in the compiler. A review of the state-of-the-

art heuristics are presented in [14]. Such heuristics make use of the register dependence

graph and steer instructions based on the cluster where their operands where steered to.

Being dynamic approaches, they also try to balance the run-time load of the clusters.

Clustered VLIW processors have also been implemented in commercial products,

such as the Multiflow TRACE 28/300 machines [57], Analog’s TigerSHARC [33] and

the TI C64xx series. They have been widely studied in projects like the HP/ST Lx

VLIW [28] and BOPS’ ManArray [75]. A comprehensive taxonomy of inter-cluster

communication implementations on VLIW architectures is presented in [92]. The de-

sign features (such as operating frequency, performance, energy consumption, etc.) of

each implementation are quantified and discussed.

The RAW processor [90] is another example of a software-exposed clustered ar-

chitecture. Its design and its scheduling techniques resemble those of clustered VLIW

processors. The RAW is a 2-D array of identical tiles, each of which carries com-

munication routers (one static and one dynamic which together form the operand net-

work [91]), a MIPS-style processor, a pipelined floating-point unit, instruction and data

caches. Each cluster communicates data across with send/receive instructions. It is a

more latency tolerant architecture compared to clustered VLIWs since, contrary to the

former, operations on each core are not executed in lockstep. Therefore, each core is

7.3. Scheduling for clusters 133

free to execute regardless of whether the other cores are stalled or not. The scheduler

however does not explicitly try to exploit this feature.

The EDGE architecture [13] (an instantiation of which is TRIPS [84]) is a partly

dynamically-scheduled architecture. Each processor of the TRIPS 4-core system con-

sists of a 16-wide-issue grid array of processing elements which (in ILP mode) work

together as a wide-issue ILP processor. They execute blocks of code (Trips-Blocks

[88]) in a data-flow manner. A value produced by one element (producer) is directly

communicated to the element which executes a flow dependent instruction on that

value (consumer). The value is transferred via the interconnect, bypassing the reg-

ister file. This is facilitated by the EDGE ISA which explicitly encodes instruction

dependencies thus doing in software what the front-end of an out-of-order superscalar

architecture does in hardware [18]. This suggests that each operation carries pointers

that point to the target operations which take as an input the output of that particu-

lar operation. Therefore, each one of an operation’s results is routed through the 4x4

operand network (taking some latency proportional to the distance) and is then placed

at the input slot of the operation waiting at the instruction buffer (reservation table) of

that execution element.

Data-flow execution is not new to the micro-architecture world. Apart from its

obvious use in old data-flow machines, most dynamically scheduled processors use

Reservation Stations [36] in a similar fashion. The difference, however, is that the

EDGE architecture can scale much more than the standard dynamic-scheduling hard-

ware since EDGE is not fully dynamic. The instructions are statically assigned to the

Reservation Tables (RTs) but within each RT they are issued dynamically. As such

the EDGE architecture (Static Placing Dynamic Issue) [18] stands in between the fully

statically scheduled VLIW architecture [31] (Static Placing Static Issue) and the fully

dynamically scheduled architectures (Dynamic Placing Dynamic Issue).

7.3 Scheduling for clusters

Pioneering work on code generation for clustered architectures was introduced in [26,

27], with the Bottom-Up-Greedy (BUG) cluster-assignment algorithm. The order that

the instructions are considered for clustering is a critical-path based ordering, whereas

in later schemes (where clustering is unified within the scheduler) the instructions

are visited in a ready list priority ordering. The clustering heuristic in BUG is the

Completion-Cycle, which will select a distant cluster only if the instruction’s con-

134 Chapter 7. Related Work

sumers can get their input data in time.

Significant work on clustered machines has been done in the context of the Mul-

tiflow compiler [57]. It reused to a large extent Ellis’ work on clustering ([27]). The

various design points (heuristic tuning, order of visiting the instructions, etc.) of in-

struction scheduling, including the cluster assignment, are discussed in detail in this

work.

[15] partitions the register file so as to have more register files with fewer ports

each. Cluster assignment and ICC insertion takes place after scheduling the code since

the input of this code generator is the output of a compiler that targets an ideal VLIW

core. This, however, is sub-optimal since the inter-cluster latencies can not be hidden

effectively. The clustering heuristic aims at minimizing the inter-cluster communica-

tion. This, however, is a poor clustering heuristic as it is not guided by the goal of

minimizing the schedule length. This work is the first to mention minimizing the ICCs

by reusing the copied data; however, no further details are given.

[23] is one of the first iterative solutions to clustering. Each iteration of the algo-

rithm measures the schedule length by performing instruction scheduling and doing a

fast register pressure and ICC count estimation. This being an iterative algorithm, it

has a long run-time and its use is not practical in compilers.

Scheduling for RAW requires too that the code be partitioned into clusters. There

are two approaches followed; the first one [52] uses the DSC heuristic algorithm [94].

The RAW architecture communicates data across clusters with send/receive instruc-

tions which are similar to ICCs. The scheduler visits instructions in a topological or-

der and uses a completion time heuristic to guide the process. The other one [53] uses

an iterative unified assignment and instruction scheduling approach. Their approaches

however are limited to scheduling within basic blocks (whereas the Bulldog [27] ap-

proach is not). The authors, without identifying the challenges associated with ICCs,

do mention that a multi-cast inter-cluster communication operation could be used as

an optimization, without providing any further details. This, however, is a hardware-

based approach, specific to the RAW architecture. CAeSaR (Chapter 5) provides a

generic solution that works on standard clustered architectures.

Scheduling for EDGE architectures is discussed in [18, 60, 69, 88]. There are

several issues which are tightly coupled to the implementation details. These are: i)

the placement of the Register Files and Memory Banks closer to a certain side of the

chip, ii) the small fan-out of each execution element, iii) the maximum block size that

can be mapped on the element, iv) the fact that, regardless of the control path taken, the

7.4. Combined Cluster Assignment & Instruction Scheduling 135

same number of Register/Memory outputs must occur. These EDGE-specific problems

require specialized solutions. Other than that, the approach followed is quite similar

to the one followed on clustered VLIW processors. It is basically a list scheduling

algorithm which operates on Trips-Blocks [60, 88] (which are regions similar to hy-

perblocks [61]) which uses specific heuristics that take into account along with the

temporal features of the code, also the spatial characteristics of the TRIPS chip[18, 69].

7.4 Combined Cluster Assignment & Instruction Schedul-

ing

The first work that proposes a combined instruction scheduling and clustering pass is

Unified Assignment and Scheduling (UAS) [72]. The scheduling algorithm is a modi-

fied list scheduler. The inter-cluster bandwidth is considered as a scheduling resource,

but the Inter-Cluster Copies (ICCs), unlike CAeSaR (Chapter 5) are not optimized

away. The cluster assignment of UAS is aggressive in two ways:

1. It uses the aggressive Completion-weighted Predecessor (CWP) clustering heuris-

tic (which is performs very similarly to the Start-Cycle (SC) [27, 41]). It shown

to be the best performing heuristic over several others (None, Random, Magnitude-

weighted Predecessor and Critical-Path in Single Cluster using CWP) on the ar-

chitecture that was evaluated. The inter-cluster delay is fixed to 1 cycle, which

explains why the CWP heuristic was found to be the best performing one among

the heuristics tested. In Chapter 4 we show that the CWP heuristic causes an

unbounded performance degradation as the inter-cluster latency is increased.

2. The scheduling algorithm is structured in a way that will try to schedule an in-

struction on any cluster, even if it is not the first choice of the clustering heuris-

tic. This is shown in Figure 4.5.b. The decision of the clustering heuristic is

not always respected y the scheduler: If the heuristic decides at cycle c to place

instruction i on cluster cl, but due to some constraints this is not possible, then

the scheduler will place i on some other cluster other than cl.

Recently, a new clustering heuristic was introduced by [96]. This differs from the

previously mentioned ones in that, under certain conditions, the clustering decision is

based on earliest schedule cycle of the most critical immediate successor of the current

instruction. In our evaluation we name this heuristic as Critical-Successor (CS) for

136 Chapter 7. Related Work

brevity. Similarly to the existing clustering heuristics, it is not meant to operate across

a wide range of inter-cluster delays. As shown in Chapter 4, the CS heuristic quite often

defaults to the Start-Cycle, which is why its performance is also linearly proportional

to the inter-cluster delay.

CARS [40, 41] is a combined scheduling, clustering, and register allocation code

generation framework based on list-scheduling. The Start-Cycle heuristic (as it was

introduced in [27]) steers the clustering decisions.

Finally there are several combined loop-scheduling and clustering algorithms [7,

16, 95]. These are based on the software-pipeline scheduling technique of modulo-

scheduling. These techniques are only applicable on innermost loops under very spe-

cific and strict conditions.

Compared to UAS, the LUCAS scheduling algorithm (Chapter 4) will always obey

the decision of the clustering heuristic. In LUCAS (Chapter 4), the heuristic is a hy-

brid one that switches between the aggressive Start-Cycle and the more conservative

Completion-Cycle (CC), leading to best performance across a wide range of inter-

cluster delays. CAeSaR (Chapter 5) is tested on a system with a 1-cycle inter-cluster

latency and therefore it was structured similarly to UAS, therefore it does not always

obey the decision of the heuristic. CAeSaR is powered by the aggressive Start-Cycle

heuristic. Finally UCIFF (Chapter 6) will obey the heuristic and the heuristic used is

the Start-Cycle.

The CAeSaR scheduler (Chapter 5) reuses the data communicated across clusters,

by caching the data in the local register files. This is a novel feature, missing from

existing schedulers for clustered architectures. It proves to be particularly important

for architectures with limited inter-cluster communication bandwidth or with limited

available ICC slots.

The main clustering and scheduling algorithms proposed in the literature are sum-

marized and compared to CAeSaR and LUCAS in Table.7.1.

7.5 Heterogeneous Clustered VLIW

A dynamically-scheduled heterogeneous clustered processor was proposed in [9]. The

dual-cluster design has one high-performance and one low-performance cluster. It

does not support DVFS. A DVFS-capable heterogeneous clustered processor was in-

troduced by [68]. The proposed design is a dynamically scheduled one, and as such no

contributions are made on the compiler side.

7.6. Scheduling for Caches 137

Algorithm C
lu

st
er

A
ss

ig
n

m
en

t

In
st

r.
S

ch
ed

u
li

n
g

R
eg

.
A

ll
o

ca
ti

o
n

IC
C

-R
eu

se

L
at

en
cy

A
d

ap
ti

v
e

D
V

F
S

BUG [27]
√ × × × × ×

UAS [72]
√ √ × × × ×

CS [96]
√ √ × × × ×

CARS[41]
√ √ √ × × ×

LUCAS (Chapter 4)
√ √ × × √ ×

CAeSaR (Chapter 5)
√ √ × √ × ×

UCIFF (Chapter 6)
√ √ × × × √

Table 7.1: Summarized features of LUCAS, CAeSaR, UCIFF and other clustering

schedulers in the literature.

The most closely related work to UCIFF is [6]. It proposes code generation tech-

niques for a heterogeneous clustered VLIW processor, very similar to ours. It proposes

a loop scheduling algorithm based on modulo scheduling. This approach however, as

we have discussed extensively in Section 6.2.2, suffers from the phase ordering issue

of frequency selection and scheduling which are completely decoupled from one an-

other. The frequency selection is done by estimating the energy and the execution time

of each frequency configuration based on profiling data from a homogeneous run.

7.6 Scheduling for Caches

Non-blocking (also known as lockup-free) caches were introduced in [49] and have

been studied in detail since (e.g. [85, 89]). Non-blocking caches are a cost-effective op-

timization and are common in all processors, including VLIW ones. Aligned Schedul-

ing (Chapter 3) exploits the non-blocking feature to improve performance on VLIW

processors.

Instruction scheduling optimized for cache memories has been studied in the past.

The majority of the work [24, 43, 54, 56] focuses on improving instruction scheduling

for processors with non-blocking caches and stall-on-use execution semantics. Bal-

anced Scheduling [43] proposes a scheduling algorithm for pipelined architectures that

makes sure that the processors stall less upon a cache-miss. The main goal of the in-

138 Chapter 7. Related Work

struction scheduler is to schedule the right number of instructions after a Load, such

that, in case of a miss, there are enough independent instructions to execute until the

loaded value (that missed) is used by an instruction. [56] improves Balanced Schedul-

ing by applying ILP enhancing optimizations. An extension to Balanced Scheduling

is introduced in [54], which proposes using profiling information to drive instruction

scheduling so that it makes more informed decisions. [24] proposes a static cache-

reuse model that helps the instruction scheduler make informed decisions on the la-

tency of a memory instruction. The paper shows that this produces better schedules

than considering all memory instructions as either all-hits or all-misses. These ap-

proaches are summarized in Table.7.2. Aligned Scheduling is very different from these

approaches. It mainly targets VLIW processors that have Stall-On-Miss execution se-

mantics, enabling them to improve their performance close to that of Stall-On-Use.

Therefore the optimization that Aligned Scheduling introduces exploits a completely

different architectural feature. There is no indication that any of the schemes that tar-

get stall-on-use semantics will consistently outperform our baseline on a stall-on-miss

VLIW target, which is why we do not compare against them.

The only work we are aware of that focuses on VLIW processors is Cache Sensitive

Modulo Scheduling [83]. It proposes a software-pipeline cyclic scheduling algorithm

that improves performance in one of two ways: it either schedules memory instructions

early or issues pre-fetch instructions. Both ways lead to fewer cache-misses, with the

former one proving to be the most effective one. This work is orthogonal to Aligned

Scheduling as it focuses on the pre-fetching problem rather than on grouping Loads

together.

All of the instruction scheduling techniques proposed in the literature (summa-

rized in Table.7.2) are significantly different from Aligned Scheduling (Chapter 3).

All except one are for pipelined processors with delay slots and stall-on-use execution

semantics. Such processors, unlike the VLIW ones, do not stall upon a cache-miss,

unless absolutely necessary (a use of the missing value). Aligned Scheduling exploits

the non-blocking caches along with the capability of the VLIW to issue several instruc-

tions in parallel and the statically available MLP to hide cache latencies.

Code optimizations that exploit the non-blocking caches have also been proposed

in the past. [73] proposes an analysis and transformation framework for optimizations

that cluster misses together. They show that significant performance improvements

can be achieved by doing that. These schemes involve high-level transformations,

usually at loop level. Aligned Scheduling on the other hand, is a scheduling algorithm,

7.6. Scheduling for Caches 139

Optimize for

Instruction Scheduler A
cy

cl
ic

/C
y

cl
ic

S
ta

ll
-o

n
-U

se

S
ta

ll
-o

n
-M

is
s

N
o

n
-B

lo
ck

in
g

C
ac

h
es

C
ac

h
e-

M
is

se
s

M
is

s-
O

v
er

la
p

p
in

g

V
L

IW

C
ac

h
e

P
ro

fi
li

n
g

Baseline list Scheduler [1] A × × × × × × ×
Balanced Scheduling [43] A

√ × √ × × × ×
Load Sched with profile information [54] A

√ × √ × × × √

Cache Sensitive Modulo Scheduling [83] C × × √ √ × √ ×
Aligned Scheduling (Chapter 3) A × √ √ × √ √ ×

Table 7.2: Summarized comparison of memory-aware instruction schedulers for VLIW.

performing fine-grain optimization in the compiler back-end.

Chapter 8

Conclusions and Future Work

8.1 Summary of Contributions

Energy has become a major processor design constraint, particularly for mobile em-

bedded systems. In such systems it is often profitable in terms of area and energy to

offload several micro-architectural tasks to the compiler. The VLIW design philosophy

follows this trend of using fewer and less complex hardware running code generated by

smarter compilers. Compiler solutions, however, often lead to lower performance than

their hardware solutions. In this thesis we propose new or improve existing instruction

scheduling optimizations for energy efficient VLIW processors. Next we summarize

the contributions of the four novel scheduling schemes we proposed.

• Firstly, we presented Aligned Scheduling (Chapter 3), an instruction scheduler

for VLIW processors with Stall-On-Miss semantics and non-blocking caches.

Aligned Scheduling was shown to be effective at hiding cache miss latencies

using a software-only solution. In fact it significantly bridges the gap between

the Stall-On-Miss and Stall-On-Use architectures, the latter being supported by

hardware.

• Secondly, in Chapter 4 we presented LUCAS, a scheduler for clustered VLIW

processors, powered by a novel clustering heuristic. Compared to the prior-art,

LUCAS produces fast code no matter the inter-cluster communication latency.

Its adaptation to the latency is based on fast switching between two clustering

heuristics, one aggressive and one conservative, at an instruction-level granu-

larity. The performance results show that this fine-grain switching between the

141

142 Chapter 8. Conclusions and Future Work

heuristics, when controlled by an effective mechanism, it produces results supe-

rior to the individual heuristics, across a wide range of inter-cluster latencies.

• Thirdly, in Chapter 5 we presented CAeSaR, a novel scheduling algorithm for

clustered VLIW processors with limited ICC resources. CAeSaR is the first

scheduler to incorporate ICC communication reuse at its core. Moreover the

ICC-reuse is unified in the algorithm so that no phase-ordering issues occur

between ICC-reuse and scheduling. Compared to the existing state-of-the-art,

CAeSaR produces faster code, with fewer ICC communication instructions.

• Finally, in Chapter 6 we presented UCIFF, a novel scheduler for heterogeneous

clustered VLIW processors. These architectures allow each cluster to operate at

a separate Voltage and Frequency point. Compared to prior-art, UCIFF solves

the phase-ordering issue between frequency selection and instruction scheduling,

by solving both problems in a unified algorithm. UCIFF solves performs cluster

assignment, instruction scheduling and frequency selection in a unified way. The

code generated by UCIFF is consistently better than the prior-art for various

metrics (Energy, Delay, ED, ED2) and very close to the theoretical oracle.

The proposed compiler mechanisms enable simple VLIW architectures to be more

competitive against more complex designs.

8.2 Future Work

The work of this thesis can be extended in several ways. Firstly, the proposed algo-

rithms can be unified with register allocation to improve code quality when register

pressure becomes significant. Secondly, the algorithms can be extended to operate

on larger regions and on loops. Finally, the techniques could be adapted to perform

clustering/scheduling at run-time for a reconfigurable architecture.

8.2.1 Unifying Register Allocation

It is a well known fact that there is a phase-ordering problem between scheduling and

register allocation. The reason is that instruction scheduling changes the order of the

instructions, which causes a change in the overlapping live ranges of the registers,

which changes the problem that the register allocator solves. The register allocator has

8.2. Future Work 143

two side-effects: i. it adds non-true dependencies to the code (due to register re-use)

and ii. it emits spill instructions (if required) which are unscheduled.

In most practical cases this problem does not have severe implications. There are

two reason for this. Firstly, architectures are usually designed such that most appli-

cations do not cause register spills. Therefore the register file is usually not full even

after the scheduler has parallelized the code. Secondly, since ILP is a scarce resource,

the scheduler is unable to modify the code to such extent that the registers spill. For

these reasons it is common practice in commercial compilers to solve this problem by

running the instruction scheduler twice. Once before register allocation and once after.

This is the approach followed by GCC [1].

None of the algorithms presented in this thesis take into account the register allo-

cation trade-offs. Instead they follow the 2-step approach of GCC (scheduling - reg.

allocation - scheduling). A complete solution of the problem, however should include

register allocation. A unified version of the algorithms presented in this thesis with

register allocation built-in will provide a more complete solution.

8.2.2 Bigger Regions and Loop Scheduling

The proposed techniques are implemented as extensions of the GCC haifa-scheduler

and are therefore limited to the EBB region. A natural extension of the proposed

schemes is to embed them into a more aggressive scheduler that operates on larger

regions (see Section 2.5), like Selective Scheduling [62, 65].

The main challenge is that usually such global schedulers do not operate on a global

DFG. Instead they perform a series of code motion techniques that make use of other

representations (e.g., instruction availability sets). Porting the proposed schemes into

these global schedulers requires extensions on the data structures of these schedulers

to accommodate the data required and also modifications on the proposed schemes to

be able to operate under this new environment.

Applying the proposed schemes to loops is yet another natural extension of this

work. Global schedulers (like [62, 65]) perform software pipelining on loops. There-

fore porting our scheme to a global scheduler will naturally apply our techniques on

loops too. Modulo scheduling techniques, on the other hand, use a different code base

and therefore require further modifications.

144 Chapter 8. Conclusions and Future Work

8.2.3 Hardware Reconfiguration and Scheduling at Run-Time

Run-time reconfiguration of hardware is a means of improving efficiency. In the con-

text of Clustered VLIWs, a reconfigurable processor could exploit the TLP-ILP trade-

off by allowing the flexibility of either running one thread per cluster or joining clusters

together to allow for better ILP performance. This dynamic architectural environment

requires that the programs adapt to it at run-time or at load-time. Therefore the code

has to be re-generated, targeting the newly configured environment.

The code generation techniques proposed in this thesis are all designed to operate

inside a full-blown compiler, at design time. In a reconfigurable environment, however,

some code generation optimizations have to be executed at run-time or at load-time

where the available analysis data is limited and the execution time of the algorithms is

restricted. There are several things that need redesigning: i) Given the limited environ-

ment that these algorithms have to operate in, there are interesting trade-offs regarding

what kind of data should be packed along with the binary carrying compile-time anal-

ysis information not to be recomputed from scratch. ii) The scheduling algorithms

themselves need redesigning. Both the tasks of the design-time and run-time sched-

ulers have to be redefined and tuned. The design-time scheduler will probably have

to schedule for a generic target that is the average of all the possible targets. The run-

time scheduler operates on already scheduled code, therefore it could be optimized to

operated on a limited scope that could have the same impact as operating on the whole

code.

Bibliography

[1] Gcc: Gnu compiler collection. http://gcc.gnu.org.

[2] ski ia64 simulator. http://ski.sourceforge.net.

[3] SPEC benchmark. http://www.spec.org.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques, and

tools. Addison-Wesley, 1986.

[5] D. H. Albonesi, R. Balasubramonian, S. Dropsbo, S. Dwarkadas, E. G. Fried-

man, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro, et al.

Dynamically tuning processor resources with adaptive processing. Computer,

36(12):49–58, 2003.

[6] A. Aleta, J. Codina, A. González, and D. Kaeli. Heterogeneous clustered vliw

microarchitectures. In Proceedings of the International Symposium on Code Gen-

eration and Optimization, pages 354–366. IEEE Computer Society, 2007.

[7] A. Aletà, J. Codina, J. Sánchez, A. González, and D. Kaeli. Agamos: A graph-

based approach to modulo scheduling for clustered microarchitectures. Comput-

ers, IEEE Transactions on, 58(6):770–783, 2009.

[8] V. Bala and N. Rubin. Efficient instruction scheduling using finite state automata.

In MICRO, pages 46–56, 1995.

[9] A. Baniasadi and A. Moshovos. Asymmetric-frequency clustering: a power-

aware back-end for high-performance processors. In Low Power Electronics and

Design, 2002. ISLPED’02. Proceedings of the 2002 International Symposium on,

pages 255–258. IEEE, 2002.

145

146 Bibliography

[10] A. Belevantsev, M. Kuvyrkov, V. Makarov, D. Melnik, and D. Zhurikhin. An

interblock vliw-targeted instruction scheduler for gcc. In Proceedings of GCC

Developers Summit, 2006.

[11] A. Branover, D. Foley, and M. Steinman. Amd fusion apu: Llano. Micro, IEEE,

32(2):28–37, 2012.

[12] D. Brooks and M. Martonosi. Dynamic thermal management for high-

performance microprocessors. In High-Performance Computer Architecture,

2001. HPCA. The Seventh International Symposium on, pages 171–182. IEEE,

2001.

[13] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin, C. Moore,

J. Burrill, R. McDonald, and W. Yoder. Scaling to the end of silicon with edge

architectures. Computer, 37(7):44–55, 2004.

[14] R. Canal, J. Parcerisa, and A. Gonzalez. Dynamic cluster assignment mecha-

nisms. In High-Performance Computer Architecture, 2000. HPCA-6. Proceed-

ings. Sixth International Symposium on, pages 133–142, 2000.

[15] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for vliws: A

preliminary analysis of tradeoffs. In Microarchitecture, 1992. MICRO 25., Pro-

ceedings of the 25th Annual International Symposium on, pages 292–300, 1992.

[16] J. Codina, J. Sanchez, and A. Gonzalez. A unified modulo scheduling and reg-

ister allocation technique for clustered processors. In Parallel Architectures and

Compilation Techniques, 2001. Proceedings. 2001 International Conference on,

pages 175 –184, 2001.

[17] R. Colwell, R. Nix, J. O’Donnell, D. Papworth, and P. Rodman. A vliw ar-

chitecture for a trace scheduling compiler. Computers, IEEE Transactions on,

37(8):967–979, 1988.

[18] K. E. Coons, X. Chen, D. Burger, K. S. McKinley, and S. K. Kushwaha. A spatial

path scheduling algorithm for edge architectures. In Proceedings of the 12th in-

ternational conference on Architectural support for programming languages and

operating systems, ASPLOS XII, pages 129–140, New York, NY, USA, 2006.

ACM.

[19] K. Cooper and L. Torczon. Engineering a compiler. Elsevier, 2007.

Bibliography 147

[20] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Matt-

son. The transmeta code morphing trade; software: using speculation, recovery,

and adaptive retranslation to address real-life challenges. In Code Generation

and Optimization, 2003. CGO 2003. International Symposium on, pages 15–24,

2003.

[21] J. Dehnert and R. Towle. Compiling for the cydra. The Journal of Supercomput-

ing, 7(1-2):181–227, 1993.

[22] J. C. Dehnert, P. Y.-T. Hsu, and J. P. Bratt. Overlapped loop support in the cydra

5. In Proceedings of the third international conference on Architectural support

for programming languages and operating systems, ASPLOS III, pages 26–38,

New York, NY, USA, 1989. ACM.

[23] G. Desoli. Instruction assignment for clustered vliw dsp compilers: A new ap-

proach. HP Laboratories Technical Report HPL, year = 1998,.

[24] C. Ding, S. Carr, and P. H. Sweany. Modulo scheduling with cache reuse infor-

mation. In Euro-Par, pages 1079–1083, 1997.

[25] K. Ebcioğlu and T. Nakatani. A new compilation technique for parallelizing

loops with unpredictable branches on a vliw architecture. In Selected papers of

the second workshop on Languages and compilers for parallel computing, pages

213–229, London, UK, UK, 1990. Pitman Publishing.

[26] J. Ellis. Bulldog: A compiler for vliw architectures. Technical report, Yale Univ.,

New Haven, CT (USA), 1985.

[27] J. R. Ellis. Bulldog: a compiler for VLSI architectures. MIT Press, Cambridge,

MA, USA, 1986.

[28] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood. Lx: a

technology platform for customizable vliw embedded processing. In Proceedings

of the 27th annual international symposium on Computer architecture, ISCA ’00,

pages 203–213, New York, NY, USA, 2000. ACM.

[29] J. Fisher. Trace scheduling: A technique for global microcode compaction. Com-

puters, IEEE Transactions on, C-30(7):478–490, 1981.

148 Bibliography

[30] J. Fisher, P. Faraboschi, and C. Young. Vliw processors. In D. Padua, editor,

Encyclopedia of Parallel Computing, pages 2135–2142. Springer US, 2011.

[31] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel processing:

a smart compiler and a dumb machine. In Proceedings of the 1984 SIGPLAN

symposium on Compiler construction, SIGPLAN ’84, pages 37–47, New York,

NY, USA, 1984. ACM.

[32] J. A. Fisher, P. Faraboschi, and C. Young. Embedded computing: a VLIW ap-

proach to architecture, compilers and tools. Elsevier, 2005.

[33] J. Fridman and Z. Greenfield. The tigersharc dsp architecture. Micro, IEEE,

20(1):66–76, 2000.

[34] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf. Mediabench II video:

Expediting the next generation of video systems research. Microprocessors and

Microsystems, 33(4):301–318, 2009.

[35] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide issue pro-

cessors. In High-Performance Computer Architecture, 1998. Proceedings., 1998

Fourth International Symposium on, pages 266–276, 1998.

[36] J. Hennessy, D. Patterson, D. Goldberg, and K. Asanovic. Computer architecture:

a quantitative approach. Morgan Kaufmann, 2003.

[37] M. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors: appli-

cation to energy reduction. In Computer Architecture, 2003. Proceedings. 30th

Annual International Symposium on, pages 157–168, 2003.

[38] R. A. Huff. Lifetime-sensitive modulo scheduling. In Proceedings of the ACM

SIGPLAN 1993 conference on Programming language design and implementa-

tion, PLDI ’93, pages 258–267, New York, NY, USA, 1993. ACM.

[39] W.-M. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R. Bringmann, R. Ouel-

lette, R. Hank, T. Kiyohara, G. Haab, J. Holm, and D. Lavery. The superblock:

An effective technique for vliw and superscalar compilation. The Journal of Su-

percomputing, 7(1-2):229–248, 1993.

[40] K. Kailas, K. Ebcioglu, and A. Agrawala. Cars: a new code generation frame-

work for clustered ilp processors. Technical report, 2000.

Bibliography 149

[41] K. Kailas, K. Ebcioglu, and A. Agrawala. Cars: a new code generation frame-

work for clustered ilp processors. In High-Performance Computer Architecture,

2001. HPCA. The Seventh International Symposium on, pages 133–143, 2001.

[42] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., 2001.

[43] D. R. Kerns and S. J. Eggers. Balanced scheduling: instruction scheduling when

memory latency is uncertain. In Proceedings of the ACM SIGPLAN 1993 con-

ference on Programming language design and implementation, PLDI ’93, pages

278–289, New York, NY, USA, 1993. ACM.

[44] R. E. Kessler. The alpha 21264 microprocessor. Micro, IEEE, 19(2):24–36, 1999.

[45] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast, per-

core dvfs using on-chip switching regulators. In High Performance Computer

Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on, pages

123–134, 2008.

[46] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Jour-

nal of Statistical Physics, 34(5-6):975–986, 1984.

[47] A. Klaiber et al. The technology behind Crusoe processors. Transmeta Corpora-

tion White Paper, 2000.

[48] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Card-

well, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and

K. Yelick. Scalable processors in the billion-transistor era: Iram. Computer,

30(9):75–78, 1997.

[49] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In 25 years

of the international symposia on Computer architecture (selected papers), ISCA

’98, pages 195–201, New York, NY, USA, 1998. ACM.

[50] M. Lam. Software pipelining: an effective scheduling technique for vliw ma-

chines. In Proceedings of the ACM SIGPLAN 1988 conference on Programming

Language design and Implementation, PLDI ’88, pages 318–328, New York, NY,

USA, 1988. ACM.

150 Bibliography

[51] V. S. Lapinskii, M. F. Jacome, and G. A. De Veciana. Cluster assignment for

high-performance embedded vliw processors. ACM Transactions on Design Au-

tomation of Electronic Systems, 7(3):430–454, July 2002.

[52] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amaras-

inghe. Space-time scheduling of instruction-level parallelism on a raw machine.

In Proceedings of the eighth international conference on Architectural support

for programming languages and operating systems, ASPLOS VIII, pages 46–57,

New York, NY, USA, 1998. ACM.

[53] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent scheduling.

In Microarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM

International Symposium on, pages 111–122, 2002.

[54] G. Lindenmaier, K. McKinley, and O. Temam. Load scheduling with profile

information. In A. Bode, T. Ludwig, W. Karl, and R. Wismller, editors, Euro-Par

2000 Parallel Processing, volume 1900 of Lecture Notes in Computer Science,

pages 223–233. Springer Berlin Heidelberg, 2000.

[55] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. Swing module scheduling:

a lifetime-sensitive approach. In Parallel Architectures and Compilation Tech-

niques, 1996., Proceedings of the 1996 Conference on, pages 80–86, 1996.

[56] J. L. Lo and S. J. Eggers. Improving balanced scheduling with compiler opti-

mizations that increase instruction-level parallelism. In Proceedings of the ACM

SIGPLAN 1995 conference on Programming language design and implementa-

tion, PLDI ’95, pages 151–162, New York, NY, USA, 1995. ACM.

[57] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O’Donnell,

and J. Ruttenberg. The multiflow trace scheduling compiler. The Journal of

Supercomputing, 7(1-2):51–142, 1993.

[58] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey. A voltage reduction

technique for digital systems. In Solid-State Circuits Conference, 1990. Digest of

Technical Papers. 37th ISSCC., 1990 IEEE International, pages 238–239, 1990.

[59] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho. Profile-

based dynamic voltage and frequency scaling for a multiple clock domain micro-

processor. In Proceedings of the 30th annual international symposium on Com-

puter architecture, ISCA ’03, pages 14–27, New York, NY, USA, 2003. ACM.

Bibliography 151

[60] B. A. Maher, A. Smith, D. Burger, and K. S. McKinley. Merging head and tail

duplication for convergent hyperblock formation. In Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 39,

pages 65–76, Washington, DC, USA, 2006. IEEE Computer Society.

[61] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective

compiler support for predicated execution using the hyperblock. In Proceedings

of the 25th annual international symposium on Microarchitecture, MICRO 25,

pages 45–54, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[62] V. Makarov. The finite state automaton based pipeline hazard recognizer and

instruction scheduler in GCC. In Proceedings of the GCC Developers Summit,

2003.

[63] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture. Micro, IEEE,

23(2):44–55, 2003.

[64] S.-M. Moon and K. Ebcioğlu. An efficient resource-constrained global schedul-

ing technique for superscalar and vliw processors. In Proceedings of the 25th

annual international symposium on Microarchitecture, MICRO 25, pages 55–71,

Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[65] S.-M. Moon and K. Ebcioğlu. Parallelizing nonnumerical code with selec-

tive scheduling and software pipelining. ACM Trans. Program. Lang. Syst.,

19(6):853–898, Nov. 1997.

[66] S. S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann Publishers, San Fransisco, California, USA, 1997.

[67] T. Müller. Employing finite automata for resource scheduling. In Proceedings

of the 26th annual international symposium on Microarchitecture, MICRO 26,

pages 12–20, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[68] N. Muralimanohar, K. Ramani, and R. Balasubramonian. Power efficient re-

source scaling in partitioned architectures through dynamic heterogeneity. In

Performance Analysis of Systems and Software, 2006 IEEE International Sympo-

sium on, pages 100–111, 2006.

152 Bibliography

[69] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin, and S. W.

Keckler. Static placement, dynamic issue (spdi) scheduling for edge architec-

tures. In Proceedings of the 13th International Conference on Parallel Archi-

tectures and Compilation Techniques, PACT ’04, pages 74–84, Washington, DC,

USA, 2004. IEEE Computer Society.

[70] A. Nicolau. Percolation scheduling: A parallel compilation technique. Technical

Report, Cornell University, Ithaca, NY, 1985.

[71] W. Oed. Cray y-mp c90: System features and early benchmark results. Parallel

Computing, 18(8):947–954, 1992.

[72] E. Özer, S. Banerjia, and T. M. Conte. Unified assign and schedule: a new ap-

proach to scheduling for clustered register file microarchitectures. In Proceedings

of the 31st annual ACM/IEEE international symposium on Microarchitecture,

MICRO 31, pages 308–315, Los Alamitos, CA, USA, 1998. IEEE Computer So-

ciety Press.

[73] V. S. Pai and S. Adve. Code transformations to improve memory parallelism.

In Proceedings of the 32nd annual ACM/IEEE international symposium on Mi-

croarchitecture, MICRO 32, pages 147–155, Washington, DC, USA, 1999. IEEE

Computer Society.

[74] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar

processors. In Proceedings of the 24th annual international symposium on Com-

puter architecture, ISCA ’97, pages 206–218, New York, NY, USA, 1997. ACM.

[75] G. Pechanek and S. Vassiliadis. The manarraytm embedded processor architec-

ture. In Euromicro Conference, 2000. Proceedings of the 26th, volume 1, pages

348–355 vol.1, 2000.

[76] T. A. Proebsting and C. W. Fraser. Detecting pipeline structural hazards quickly.

In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’94, pages 280–286, New York, NY, USA, 1994.

ACM.

[77] B. R. Rau. Iterative modulo scheduling: an algorithm for software pipelining

loops. In Proceedings of the 27th annual international symposium on Microar-

chitecture, MICRO 27, pages 63–74, New York, NY, USA, 1994. ACM.

Bibliography 153

[78] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedu-

lable horizontal architecture for high performance scientific computing. In Pro-

ceedings of the 14th annual workshop on Microprogramming, MICRO 14, pages

183–198, Piscataway, NJ, USA, 1981. IEEE Press.

[79] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for

software pipelined loops. In Proceedings of the ACM SIGPLAN 1992 conference

on Programming language design and implementation, PLDI ’92, pages 283–

299, New York, NY, USA, 1992. ACM.

[80] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Code generation schema for

modulo scheduled loops. In Proceedings of the 25th annual international sym-

posium on Microarchitecture, MICRO 25, pages 158–169, Los Alamitos, CA,

USA, 1992. IEEE Computer Society Press.

[81] R. M. Russell. The cray-1 computer system. Commun. ACM, 21(1):63–72, Jan.

1978.

[82] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial

intelligence: a modern approach. Prentice hall Englewood Cliffs, 1995.

[83] F. J. Sánchez and A. González. Cache sensitive modulo scheduling. In Proceed-

ings of the 30th annual ACM/IEEE international symposium on Microarchitec-

ture, MICRO 30, pages 338–348, Washington, DC, USA, 1997. IEEE Computer

Society.

[84] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keck-

ler, and C. R. Moore. Exploiting ilp, tlp, and dlp with the polymorphous trips

architecture. In Proceedings of the 30th annual international symposium on Com-

puter architecture, ISCA ’03, pages 422–433, New York, NY, USA, 2003. ACM.

[85] C. Scheurich and M. Dubois. Lockup-free caches in high-performance multipro-

cessors. Journal of Parallel and Distributed Computing, 11(1):25–36, 1991.

[86] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and

M. Scott. Energy-efficient processor design using multiple clock domains with

dynamic voltage and frequency scaling. In High-Performance Computer Archi-

tecture, 2002. Proceedings. Eighth International Symposium on, pages 29–40,

2002.

154 Bibliography

[87] H. Sharangpani and H. Arora. Itanium processor microarchitecture. Micro, IEEE,

20(5):24–43, 2000.

[88] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K. S.

McKinle, and J. Burrill. Compiling for edge architectures. In Proceedings of

the International Symposium on Code Generation and Optimization, CGO ’06,

pages 185–195, Washington, DC, USA, 2006. IEEE Computer Society.

[89] G. S. Sohi and M. Franklin. High-bandwidth data memory systems for super-

scalar processors. In Proceedings of the fourth international conference on Ar-

chitectural support for programming languages and operating systems, ASPLOS

IV, pages 53–62, New York, NY, USA, 1991. ACM.

[90] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-

man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,

V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The raw microproces-

sor: a computational fabric for software circuits and general-purpose programs.

Micro, IEEE, 22(2):25–35, 2002.

[91] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar operand networks:

on-chip interconnect for ilp in partitioned architectures. In High-Performance

Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth Interna-

tional Symposium on, pages 341–353, 2003.

[92] A. S. Terechko and H. Corporaal. Inter-cluster communication in vliw architec-

tures. ACM Trans. Archit. Code Optim., 4(2), June 2007.

[93] P. Tirumalai, M. Lee, and M. Schlansker. Parallelization of loops with exits on

pipelined architectures. In Proceedings of the 1990 ACM/IEEE conference on

Supercomputing, Supercomputing ’90, pages 200–212, Los Alamitos, CA, USA,

1990. IEEE Computer Society Press.

[94] T. Yang and A. Gerasoulis. Dsc: scheduling parallel tasks on an unbounded

number of processors. Parallel and Distributed Systems, IEEE Transactions on,

5(9):951–967, 1994.

[95] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Modulo scheduling with in-

tegrated register spilling for clustered vliw architectures. In Proceedings of the

Bibliography 155

34th annual ACM/IEEE international symposium on Microarchitecture, MICRO

34, pages 160–169, Washington, DC, USA, 2001. IEEE Computer Society.

[96] X. Zhang, H. Wu, and J. Xue. An efficient heuristic for instruction scheduling on

clustered vliw processors. In Proceedings of the 14th international conference on

Compilers, architectures and synthesis for embedded systems, CASES ’11, pages

35–44, New York, NY, USA, 2011. ACM.

	PhD coversheet April 2012
	v.porpodas_thesis
	Introduction
	Aligned Scheduling: Exploiting MLP to hide cache-miss latencies on VLIWs
	Latency-adaptive Unified Clustering and Scheduling (LUCAS)
	Clustered architectures
	LUCAS

	Cluster Assignment, Scheduling and Communication Reuse (CAeSaR)
	Unified Clustering, Scheduling and Fast-Frequency selection for Heterogeneous Clustered VLIW (UCIFF)

	Background
	VLIW Machine Model
	Basic Terminology
	Compiler Structure
	Instruction Scheduling
	Scheduling Regions
	Clustered VLIW Machine Model
	Heterogeneous Clustered VLIW
	Cluster Assignment
	Load Scheduling

	Aligned Scheduling
	Introduction
	Motivation
	Hoisting of Low-Priority Loads (HLPL)
	Lowering of Low-Priority Loads (LLPL)
	Discussion

	Aligned Scheduling
	Overview
	Aligned Scheduling driver
	Aligned Scheduling selection
	Complexity Analysis and Comparison

	Experimental Setup
	Results and Analysis
	Case study: cjpeg
	All benchmarks

	Conclusion

	LUCAS
	Introduction
	Motivation
	Clustering Heuristics
	Scheduling

	LUCAS
	Algorithm
	Algorithmic Complexity

	Experimental Setup
	Architecture
	Compiler
	Evaluation

	Results and Analysis
	Performance
	Instruction Distribution

	Conclusion

	CAeSaR
	Introduction
	Motivation
	CAeSaR
	High Level Overview
	CAeSaR Main Body
	Compute ICCs
	Clustering Heuristic
	ICC Reuse
	Register File Coherence
	ICC Reuse Across Scheduling Regions
	Complexity Analysis

	Experimental Setup
	Results and Analysis
	Overview
	ICC Overhead
	Performance
	Phase-ordering

	Conclusion

	UCIFF
	Introduction
	Motivation
	Homogeneous vs Heterogeneous
	Phase Ordering

	UCIFF
	Scheduling for fixed heterogeneous processors
	Scheduling for non-fixed heterogeneous processors (UCIFF)
	DVFS region
	Algorithmic Complexity

	Experimental Setup
	Results
	Accuracy of Frequency Selection
	UCIFF code quality
	UCIFF runtime

	Conclusion

	Related Work
	Instruction Scheduling for VLIW processors
	Clustered Architectures
	Scheduling for clusters
	Combined Cluster Assignment & Instruction Scheduling
	Heterogeneous Clustered VLIW
	Scheduling for Caches

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Unifying Register Allocation
	Bigger Regions and Loop Scheduling
	Hardware Reconfiguration and Scheduling at Run-Time

	Bibliography

