46 research outputs found
Successful Versus Failed Adaptation to High-Fat Diet–Induced Insulin Resistance: The Role of IAPP-Induced β-Cell Endoplasmic Reticulum Stress
ObjectiveObesity is a known risk factor for type 2 diabetes. However, most obese individuals do not develop diabetes because they adapt to insulin resistance by increasing beta-cell mass and insulin secretion. Islet pathology in type 2 diabetes is characterized by beta-cell loss, islet amyloid derived from islet amyloid polypeptide (IAPP), and increased beta-cell apoptosis characterized by endoplasmic reticulum (ER) stress. We hypothesized that IAPP-induced ER stress distinguishes successful versus unsuccessful islet adaptation to insulin resistance.Research design and methodsTo address this, we fed wild-type (WT) and human IAPP transgenic (HIP) rats either 10 weeks of regular chow or a high-fat diet and prospectively examined the relations among beta-cell mass and turnover, beta-cell ER stress, insulin secretion, and insulin sensitivity.ResultsA high-fat diet led to comparable insulin resistance in WT and HIP rats. WT rats compensated with increased insulin secretion and beta-cell mass. In HIP rats, in contrast, neither beta-cell function nor mass compensated for the increased insulin demand, leading to diabetes. The failure to increase beta-cell mass in HIP rats was the result of ER stress-induced beta-cell apoptosis that increased in proportion to diet-induced insulin resistance.ConclusionsIAPP-induced ER stress distinguishes the successful versus unsuccessful islet adaptation to a high-fat diet in rats. These studies are consistent with the hypothesis that IAPP oligomers contribute to increased beta-cell apoptosis and beta-cell failure in humans with type 2 diabetes
The Clinical Applications of a Systems Approach
In the second of a two part series, Ahn and colleagues provide a practical discussion of how a systems approach will affect clinical medicine, using diabetes as an example
Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New β-Cell Cluster Model
The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions